
EECS 388: Lab 6
● Project 3 Introduction
● Python Socket Tutorial
● Wireshark Primer

Current Assignments
● Lab Assignment 3 Thursday, Oct. 12 at 6 p.m.
● Project 3: Networking due Thursday, Oct. 26 at 6 p.m.

○ Coverage:
■ Network traces
■ Password cracking
■ Identity management
■ DNS resolver

Reminder: Midterm is Friday, Oct 20 7-8:30 p.m.

Web Project Recap

SQL Injection

1.0 - No defense

● Basic exploitation of data vs. code

1.1 - Simple escaping

● New ways to escape characters?

1.2 - Hashing

● The password isn’t sanitized, but it’s hashed
● How can we control the hash?

XSS

2.0 - No defense

● Basic exploitation of data vs. code

2.2 - Remove several tag

● Use other tags or trick Regex?

2.1 - Remove “script”

● Use other tags or trick Regex?

2.3 - Remove some punctuation

● Combine techniques (sanitization,
tricking regex?)

CSRF

3.0 - No defense

● HTML form with username and password inputs
● ajax POST requests to the correct URL

3.1 - Token validation

● Combine XSS and CSRF!
● Bypass SOP by using an <iframe>

Networking Project Intro

Introduce the story
You are hired by the U.S. Department of Cyber Espionage (USDCE) , and your
first job is to conduct an investigation of a cyber attack.

● There are five checkpoints
● Some tools you may find helpful along the way:

○ Wireshark
○ Python ssl
○ Python sockets
○ John the Ripper
○ …

Wireshark

Apply a filter based on protocol
(HTTP, TLS, etc.)

Packet list

Protocol breakdown

John the Ripper

● Password Cracker!
● Helpful in trying to brute-force decrypt password-protected files or crack

password hashes
● Use a wordlist to “guess”

○ Consists of passwords discovered in breaches of other systems
○ Common wordlists can be found online
○ John the Ripper has a good built-in wordlist

■ Or you can specify a custom wordlist using the --wordlist argument
● john --wordlist=<wordlist> <target hash>

Crack your own file

● Add a weak password to your PDF file
○ Implementation varies depending on platform

■ Mac: https://tinyurl.com/4zk654kp
■ Windows: https://tinyurl.com/2p8vnc9v
■ Linux: https://tinyurl.com/y9sz5whv

● Generate PDF hash file
○ pdf2john.pl pdf_protected.pdf > pdf.hash

● Crack it!
○ john pdf.hash

https://tinyurl.com/4zk654kp
https://tinyurl.com/2p8vnc9v
https://tinyurl.com/y9sz5whv

Python Networking

● Some common Python modules:

○ ssl, socket

● Socket: endpoints of the communication channel between client and

server (typically provide bare TCP and UDP)

● Use ssl to wrap sockets to provide TLS connections

● Create a socket object using

socket.socket()

● Default protocol used is TCP

● TCP Socket Flow

Python Socket

Python Socket Example
import socket

HOST = "127.0.0.1" # server’s hostname or IP address
PORT = 65432 # port used by server

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: # create a socket object
sock.connect((HOST, PORT)) # connect to the server
sock.sendall(b"Hello, world!") # send message
data = s.recv(1024) # read server’s reply - maximum data received at once is 1024 bytes

print(data) # print server’s reply

● AF_INET is the Internet address family for IPv4
● SOCK_STREAM is the socket type for TCP
● s.connect expects a pair (host, port)
● s.recv returns a bytes object

Wireshark
Walkthrough

Review: Computer Networking in a Nutshell

● How do we send data over a network?
● Layers separate protocols according to the task they have to do

○ Layers don’t depend on each other (in theory)

Review: Network Encapsulation

Ethernet

IP

HTTP DataTCP

TLS HTTP

TLS HTTP

HTTP

HTTP DataTCP TLS HTTP

IP HTTP DataTCP TLS HTTP

Wireshark

Apply a filter based on protocol
(HTTP, TLS, etc.)

Packet list

Parsed packet layers

Raw packet bytes

Wireshark Demo: Apply filter

Select all packets of TCP or
UDP protocol with port 80:

Wireshark Demo: Apply filter

Select all packets of HTTP
with POST method:

Wireshark Demo: Dissect Packet

Application layer

Corresponding
raw bytes

Wireshark Demo: Protocol Hierarchy
Statistics – Protocol Hierarchy:

Review: Link Layer/Ethernet

● Ethernet is the most common protocol
● Provides connectivity between hosts and routers
● You can find MAC addresses here

○ It is unique identifier assigned to a network interface controller
○ Assigned at the hardware/physical level (e.g. the WiFi card of your laptop)

Review: IP (Internet Protocol)

● Responsible for delivering packets from source hosts to destination host
● Every host has a unique identifier known as an IP address
● IP by itself is unreliable

○ Packets may be dropped, reordered, duplicated, or corrupted
○ No acknowledgements provided

● You can arbitrarily change the source IP; routers do not verify source IP
○ This can lead to Denial of Service attacks

● Each packet is sent independent of other packets
● You may encounter both IPv4 packets (32-bit addresses)

or IPv6 packets (128-bit addresses)

Review: Transport Layer

● TCP and UDP are two of the protocols within the Transport layer
● TCP is connection-oriented and reliable

○ It is useful when you require all data to be transmitted, in a consistent order
○ E.g. HTML, pictures, etc.

● UDP is packet-oriented, not reliable or ordered
○ UDP is useful when you want to keep up with something in “real-time”, or when you have

simple, short query/answer requests
○ E.g. Video streaming: you don’t care if a couple frames are lost, just that the video stays

streaming

● Distributed database for resolving domain names to IP addresses

● Hierarchical organization

● Uses UDP for speed
(minimize latency)

Review: Domain Name System

No Labs Next Two Weeks!

