
EECS 388: Lab 9
● Intro to AppSec Project
● Binary Exploitation Primer

Current Assignments

● Project 4 available now!
○ Due Thursday, Nov. 16 at 6 p.m.
○ Coverage: Buffer overflow

exploitation (in several different
ways)

● Lab assignment 4 also
available!
○ Due Thursday, Nov. 2 at 6 p.m.

Control Hijacking
& Application
Security

AppSec: Project Overview

● 9 targets
○ Varying difficulty (marked “easy”, “medium”, “hard”). All are x64 (64-bit) programs.
○ Overwriting stack variables, return address, injecting shellcode, ROP, reverse engineering, etc.

● Tools
○ You will need to use GDB for this project

■ http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
○ And ROPgadget (we’ll cover this next week)

■ https://github.com/JonathanSalwan/ROPgadget
○ And Ghidra (we’ll cover this next week)

■ https://ghidra-sre.org/

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://github.com/JonathanSalwan/ROPgadget
https://ghidra-sre.org/

Important x64 CPU Registers
● RSP: Stack pointer

○ Points to the top (lowest address) of the current stack frame

● RBP: Frame/Base pointer

○ Points to the bottom (highest address) of the current stack frame

○ Used to reference function parameters and local variables

● RIP: Instruction pointer

○ Points to the next instruction to be executed

● RAX, RBX, RCX, RDX, RDI, RSI

○ Temporary data storage

Recall from Lecture: Stack Frame Example

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers
3. Push the return address (RIP) and main’s frame pointer (RBP) on the

stack

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers
3. Push the return address (RIP) and main’s frame pointer (RBP) on the

stack

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers
3. Push the return address (RIP) and main’s frame pointer (RBP) on the

stack
4. Move FP (RBP) to begin a new stack frame for foo

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers
3. Push the return address (RIP) and main’s frame pointer (RBP) on the

stack
4. Move FP (RBP) to begin a new stack frame for foo
5. Push foo’s variables on the stack

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers
3. Push the return address (RIP) and main’s frame pointer (RBP) on the

stack
4. Move FP (RBP) to begin a new stack frame for foo
5. Push foo’s variables on the stack
6. Pop variables off the stack

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers
3. Push the return address (RIP) and main’s frame pointer (RBP) on the

stack
4. Move FP (RBP) to begin a new stack frame for foo
5. Push foo’s variables on the stack
6. Pop variables off the stack
7. Popping main’s FP (RBP) off stack puts our RBP back where it was

before the call to foo, likewise for the return address and RIP

Recall from Lecture: Stack Frame Example

1. Push main’s local variables onto stack
2. Prepare for call to foo by storing foo’s args into registers
3. Push the return address (RIP) and main’s frame pointer (RBP) on the

stack
4. Move FP (RBP) to begin a new stack frame for foo
5. Push foo’s variables on the stack
6. Pop variables off the stack
7. Popping main’s FP (RBP) off stack puts our RBP back where it was

before the call to foo, likewise for the return address and RIP

$./stacktest AAAA

void do_something(char* buffer) {

 char my_var[128];

 strcpy(my_var, buffer);

}

int main (int argc, **argv) {

 do_something(argv[1]);

}

We need to make a new stack
frame for this function call

To prepare for a function call, we
need to
1. Store any arguments passed to

the function to the registers (if
no enough register, then push
arguments onto the stack)

2. Push the return address onto
the stack

What happens during a function call?

* “Calling Convention” is the term you can google.

Function call cont.
$./stacktest AAAA

void do_something(char* buffer) {

 char my_var[128];

 strcpy(my_var, buffer);

}

int main (int argc, **argv) {

 do_something(argv[1]);

}

Function prologue:

3. Space on the stack for
do_something’s variables is
allocated by “subtracting”
from RSP

2. RBP is set to be the
value of RSP to signify
the start of a new
stack frame

1. Previous value of RBP is
pushed onto the stack.
(When the function returns,
this allows the old stack
frame to be restored.)

Buffer Overflow Vulnerability
$./stacktest AAAAAAAAAAAAAAAA... (152 As)

void do_something(char* buffer) {

 char my_var[128];

 strcpy(my_var, buffer);

}

int main (int argc, **argv) {

 do_something(argv[1]);

}

There is no bounds
checking. It just copies
to the stack until src
contains a null byte

When function ends, RIP will be
set to the stored return address
(now 0x4141414141414141).
We can make the return
address whatever we want.

strcpy(dst, src) copies
A’s into stack space

GDB: Useful Things to Remember
● disassemble → shows dump of assembly code
● info reg → show the values of registers
● x → examine memory contents

○ x/64wx $sp

■ 0x10: 0xaabbccdd 0x11223344 ...
○ x/64bx $sp

■ 0x10: dd cc bb aa / 44 33 22 11 / ...

● next instruction → execute the next machine instruction
● step instruction → step to next machine instruction
● break *0xaabbccdd

break function_name

● continue → execute until next break / end
● run [arglist] → start program with optional arglist, run until breakpoint or termination
● print function_name → prints the address of a function

gdb --args

Values at each
address

gdb cheatsheet:
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Intel

Operands ordered as dest, src

Only syntax supported by Ghidra

objdump -d -M intel a.out

Assembly Syntax: Intel vs. AT&T

AT&T

Operands ordered as src, dest

GDB can be set to AT&T or Intel

objdump -d -M att a.out

add rsp, 0x10 add $0x10, %rsp

lea -0x1c(%rbp),%raxlea rax, [rbp-0x1c]

We use Intel syntax everywhere,
but you’ll see AT&T syntax in
some online docs.

Merely two ways of expressing the same thing.

Consider this
C code:

Definition of read_input() is
on next slide.

This is the same
read_input() function you
will be using in project 4

Lets see what it really does!

● Compile it:
○ gcc -m64 -static -fno-stack-protector -o vulnOut vuln.c

■ This command means:

● gcc to compile vuln.c.

● Generate executable for x64 architecture.

● Disable stack canary

● Use ‘vulnOut’ as the filename for the generated executable.

● Debug it:
○ gdb vulnArgs

disassemble main() to
get target return
address:

disassemble main() to
get target return
address:

Disas vuln() to get offset of buffer[20] :

Set a breakpoint..

Breakpoint set at call to printf in vulnerable

Create a file, and use it as the input

1.Create a python file
which output 8 of ‘A’

2. Pipe the output to a
filename ‘tmp’

3. Run the gdb

Let’s peek at the stack:
$rsp →

$rbp →
& return address
(0x000000000040187c)
Little Endian!

$rbp - 0x20→

: displays 120 bytes in hexadecimal, starting from the address where
the previous instance of this command has finished.

Recall from main:

Find our target address:

Now we can build our exploit:

We’ll use Python to construct an input and pipe it to a file for the target that:

● Overwrites the buffer in the stack up-to-and-including the base pointer
● Writes the return address immediately afterwards

Repeat “A”
40 times (why?)

Convert int to
8 little-endian bytes

Recall from last slide:

Pwnage:

Or equivalently:

 Some final notes:

● Read Smashing the Stack for Fun and Profit (a hacker classic!)
● Link to today’s code:

○ https://github.com/388f23/lab4demo
○ Compile with command on slide 23

\\

See you next week!

GDB Resources

First Things First

GDB cheat sheet:
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Useful Things to Remember

● Registers: RIP, RBP, RSP
○ What’s the purpose of each?
○ RIP- Instruction pointer, the address of the instruction to execute
○ RBP- Base pointer, the base of the stack frame
○ RSP- Stack pointer, the top of the current stack frame

● Useful GDB commands
○ disas(semble) = shows dump of assembly code
○ info reg = show the address of registers
○ x = show memory contents
○ ni = execute the next machine instruction
○ si = step to next machine instruction
○ (c)ontinue = execute until next break / end

disas(semble)

● Shows dump of assembly code
● Useful to see the contents of a function
● Resolves some of the function calls
● Usage: disas <function name>

○ Ex. disas main

disas(semble)

(b)reak

● Sets a breakpoint in the assembly
● Reference a point in the program in multiple ways
● Use to stop the execution to examine the stack
● Example usage: b <point to reference>
● Helpful link

○ https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_28.html#SEC29

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_28.html#SEC29

(b)reak

Below they need debug info. Not useful in our targets but good to know.

info

● Gives information of the argument passed
● Commonly used to give register information
● Many other uses

○ Good Resource
○ https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_44.html#SEC45

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_44.html#SEC45

info reg

x

● Displays the memory contents at a given address
● Useful for the examination of the buffer
● Syntax

○ x [Address expression]
○ x /[Format] [Address expression]
○ x /[Length][Format] [Address expression]
○ Reference: http://visualgdb.com/gdbreference/commands/x

http://visualgdb.com/gdbreference/commands/x

info frame

x Format

● o - octal
● x - hexadecimal
● d - decimal
● u - unsigned decimal
● t - binary
● f - floating point
● a - address
● c - char
● s - string
● i - instruction

x Format size modifiers

● b - byte
● h - halfword (16-bit value)
● w - word (32-bit value)
● g - giant word (64-bit value)

ni

● Execute one machine instruction
● If it is a function call proceed until the function returns

si

● Execute one machine instruction, then stop and return to the debugger.
● Steps into instructions
● May bring you down a rabbit hole into functions that aren’t relevant to you,

such as printf

si

(p)rint

● Prints the value of its argument
● Works with same pointer logic as C
● Lots of different uses so check the cheat sheet!
● Common usage: p <value to print>

(p)rint - Examples

(c)continue

● Execute until next break or end of program
● Helpful when you need to gather info at multiple points in your program
● Usage: continue

