

Language Technologies Institute

Multimodal Machine Learning

Lecture 1.1: Introduction Louis-Philippe Morency

> * Fall 2021, 2022 and 2023 co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk. Spring 2023 edition taught by Yonatan and Daniel Fried

Your teaching team This Semester (11-777, Fall 2023)

Louis-Philippe Morency morency@cs.cmu.edu Course instructor

Paul Liang pliang@cs.cmu.edu Co-lecturer

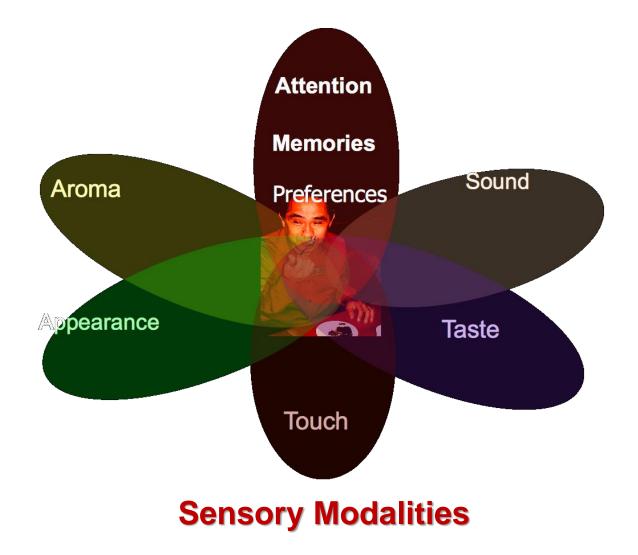
勜

Syeda Akter <u>sakter@andrew.cmu.edu</u> TA

Mehul Agarwal mehula@andrew.cmu.edu TA

Aditya Rathod arathod@andrew.cmu.edu TA

Soham Dinesh Tiwari sohamdit@andrew.cmu.edu TA


Haofei Yu haofeiy@andrew.cmu.edu TA

Language Technologies Institute

- What is Multimodal?
 - Research-oriented definition
 - Dimensions of modality heterogeneity
 - Modality connections and interactions
- Core technical and conceptual challenges
 - Representation, alignment, reasoning, generation, transference and quantification
- Course syllabus

What is Multimodal?

What is Multimodal?

Language

- Lexicon
 - Words
- Syntax
 - Part-of-speech
 - Dependencies
- Pragmatics
 - Discourse acts

Acoustic

- Prosody
 - Intonation
 - Voice quality
- Vocal expressions
 - Laughter, moans

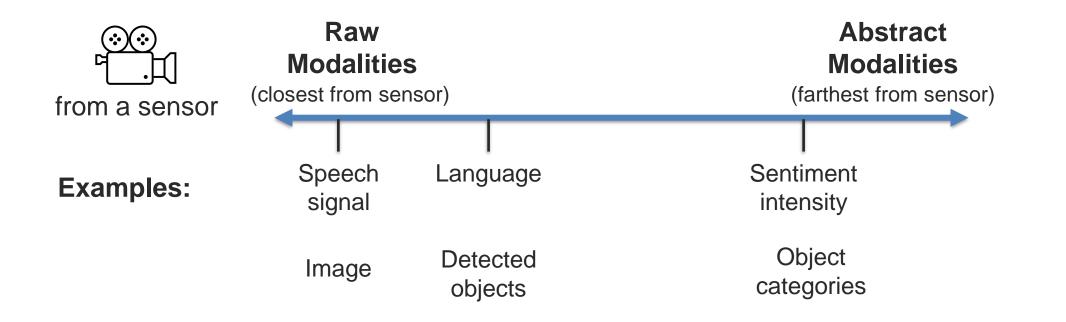
Visual

- Gestures
 - Head gestures
 - Eye gestures
 - Arm gestures
- Body language
 - Body posture
 - Proxemics
- Eye contact
 - Head gaze
 - Eye gaze
- Facial expressions
 - FACS action units
 - Smile, frowning

Touch

- Haptics
- Motion

Physiological

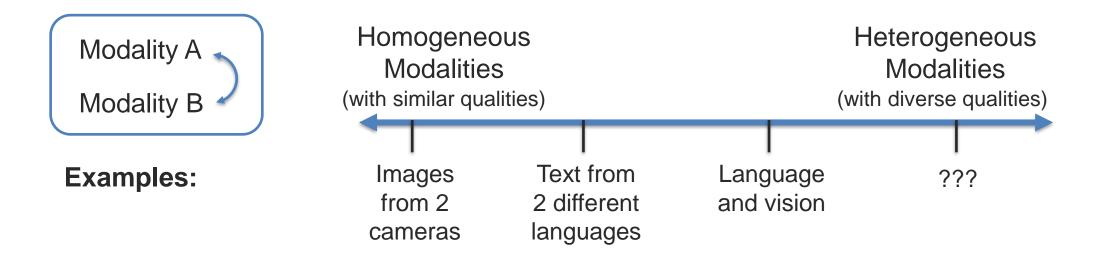

- Skin conductance
- Electrocardiogram

Mobile

- GPS location
- Accelerometer
- Light sensors

Modality

Modality refers to the way in which something expressed or perceived.


A dictionary definition...

Multimodal: with multiple modalities

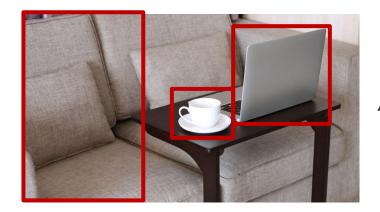
A research-oriented definition...

Multimodal is the scientific study of

heterogeneous and interconnected data Connected + Interacting Information present in different modalities will often show diverse qualities, structures and representations.

Abstract modalities are more likely to be homogeneous

Dimensions of Heterogeneity


Information present in different modalities will often show diverse qualities, structures, and representations.

A teacup on the right of a laptop in a clean room.

Dimensions of Heterogeneity

Information present in different modalities will often show diverse qualities, structures, and representations.

A teacup on the right of a laptop in a clean room.

1 E

Element representations: discrete, continuous, granularity

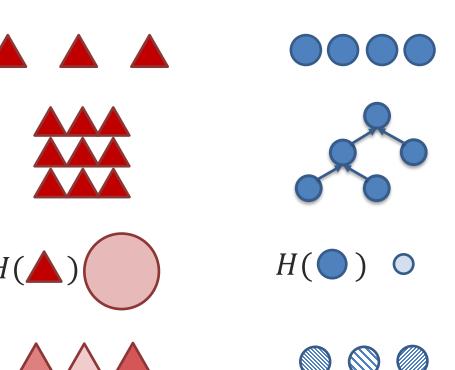
勜

y_1 12

Modality A

Noise: Uncertainty, noise, missing data

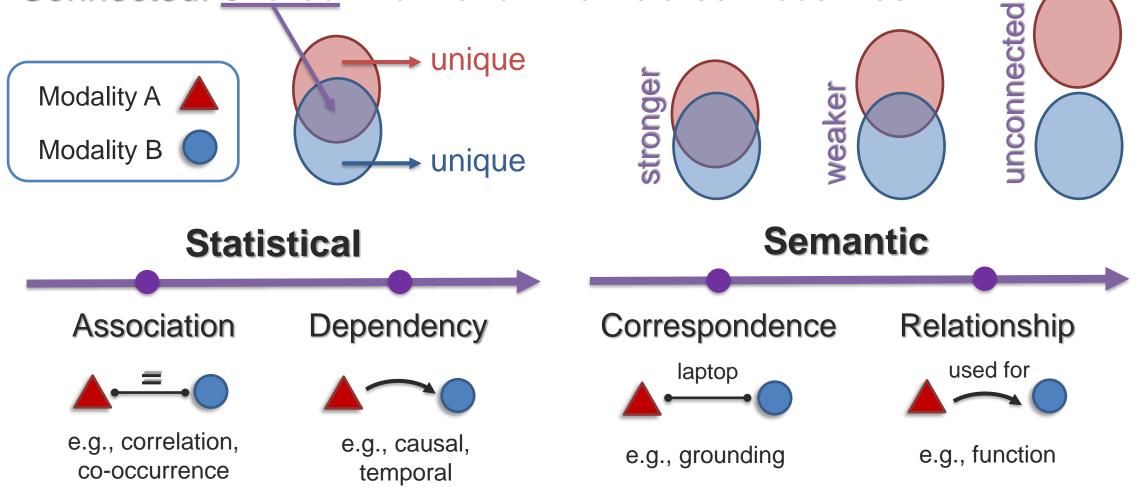
Abstraction, entropy


Element distributions: Density, frequency

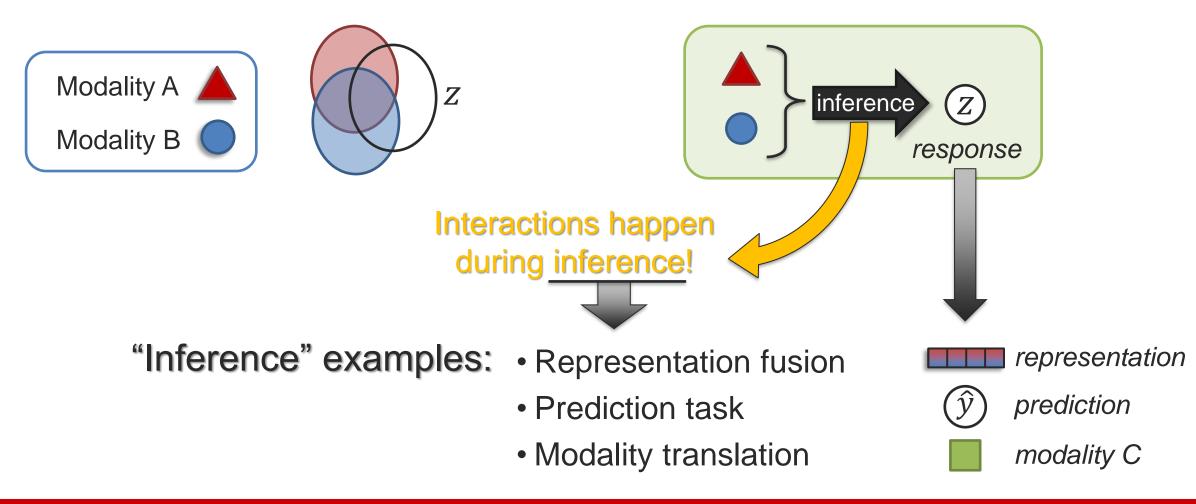
Structure: Temporal, spatial, latent, explicit

Element representations:

Discrete, continuous, granularity



 γ_2


Modality B

Connected Modalities

Connected: Shared information that relates modalities

Interacting: process affecting each modality, creating new response

Taxonomy of Interaction Responses – A Behavioral Science View

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

Multimodal is the scientific study of heterogeneous and interconnected data ③

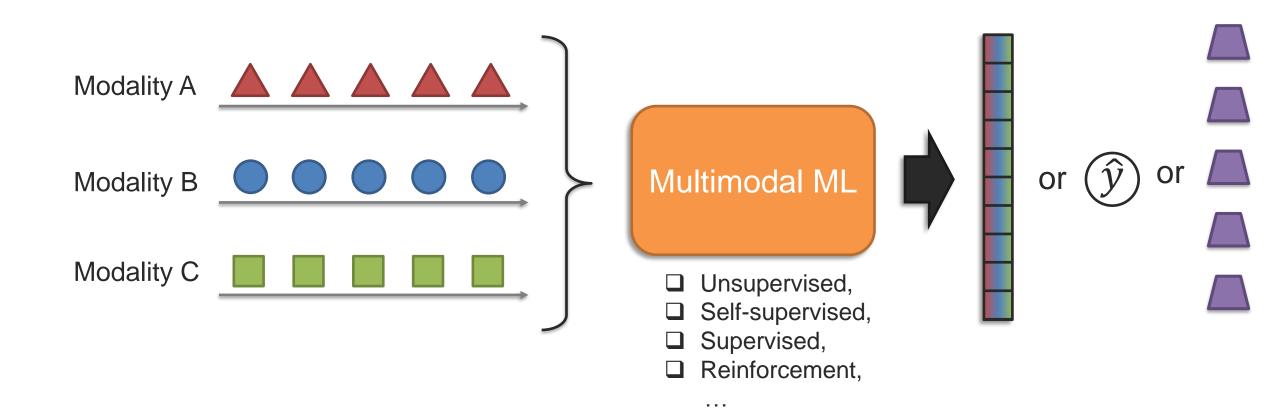
Multimodal Machine Learning

Multimodal Machine Learning (ML) is the study of computer algorithms that learn and improve through the use and experience of data from multiple modalities

Multimodal Artificial Intelligence (AI) studies computer agents able to demonstrate intelligence capabilities such as understanding, reasoning and planning, through multimodal experiences, and data

Multimodal AI is a superset of Multimodal ML

Multimodal Machine Learning



Acoustic

Vision

Multimodal Machine Learning

What are the core multimodal technical challenges,

understudied in conventional machine learning?

Multimodal Technical Challenges – Surveys, Tutorials and Courses

2016

Multimodal Machine Learning: A Survey and Taxonomy

Tadas Baltrusaitis, Chaitanya Ahuja and Louis-Philippe Morency (Arxiv 2017, IEEE TPAMI journal, February 2019)

https://arxiv.org/abs/1705.09406

Tutorials: CVPR 2016, ACL 2016, ICMI 2016, ...

Graduate-level courses:

Multimodal Machine learning (11th edition) https://cmu-multicomp-lab.github.io/mmml-course/fall2020/

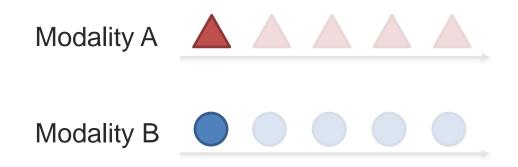
Advanced Topics in Multimodal Machine learning https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/

2022

Foundations and Recent Trends in Multimodal Machine Learning

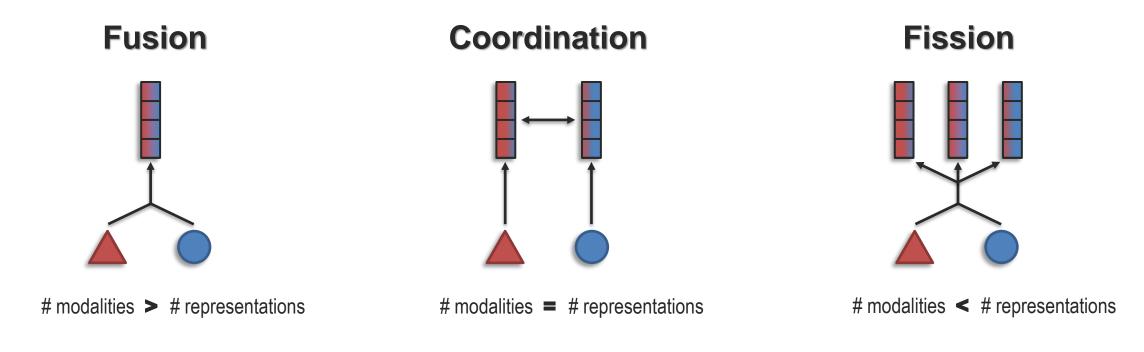
Paul Liang, Amir Zadeh and Louis-Philippe Morency

✓ 6 core challenges
 ✓ 50+ taxonomic classes
 ✓ 700+ referenced papers
 https://arxiv.org/abs/2209.03430


Tutorials: ICML 2023, CVPR 2022, NAACL 2022

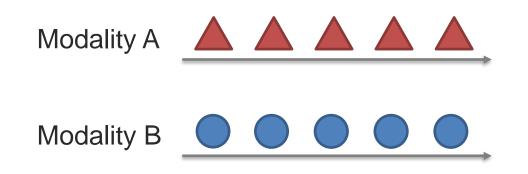
Updated graduate-level course:

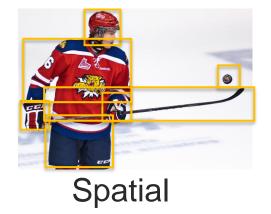
Multimodal Machine learning (12th edition) https://cmu-multicomp-lab.github.io/mmml-course/fall2022/ **Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities


> This is a core building block for most multimodal modeling problems!

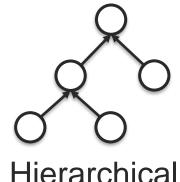
Individual elements:

It can be seen as a "local" representation or representation using holistic features **Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities

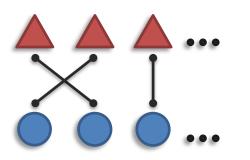




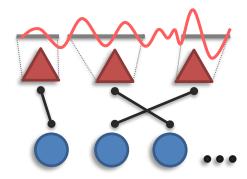
Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure


Most modalities have internal structure with multiple elements

Elements with temporal structure:


Other structured examples:

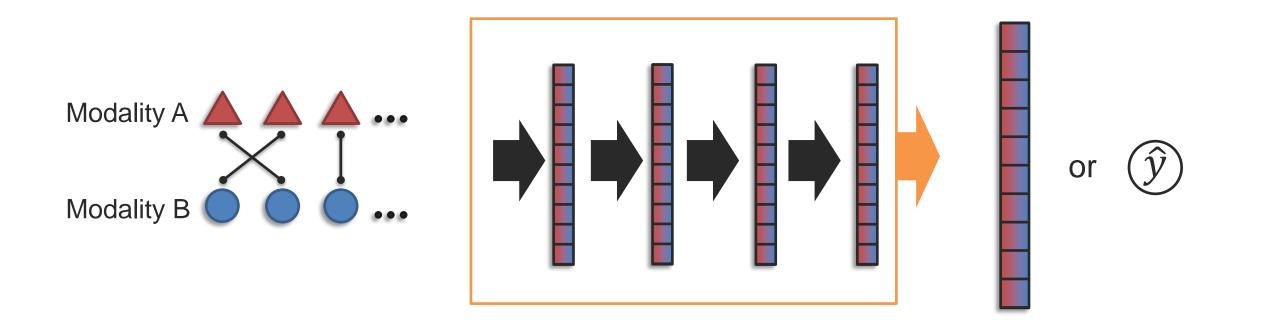
Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure


Sub-challenges:

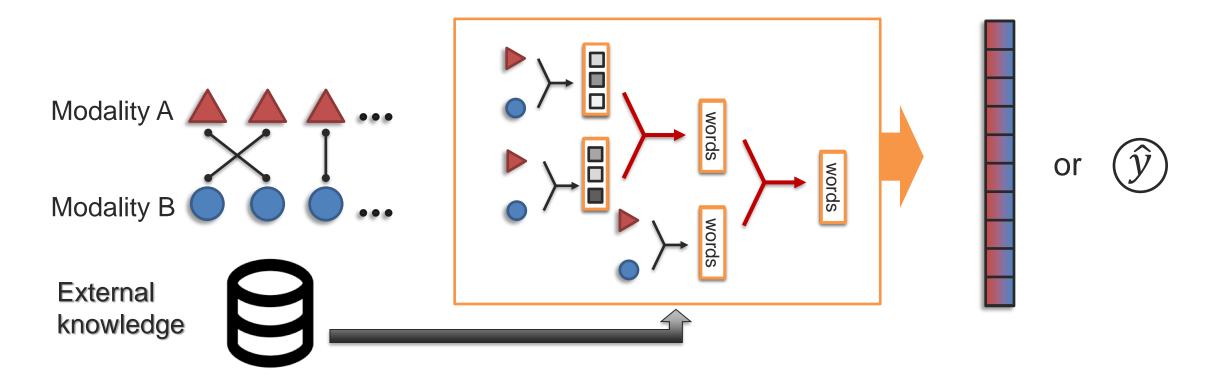
Discrete Alignment

Discrete elements and connections

Continuous Alignment


Segmentation and continuous warping

Contextualized Representation

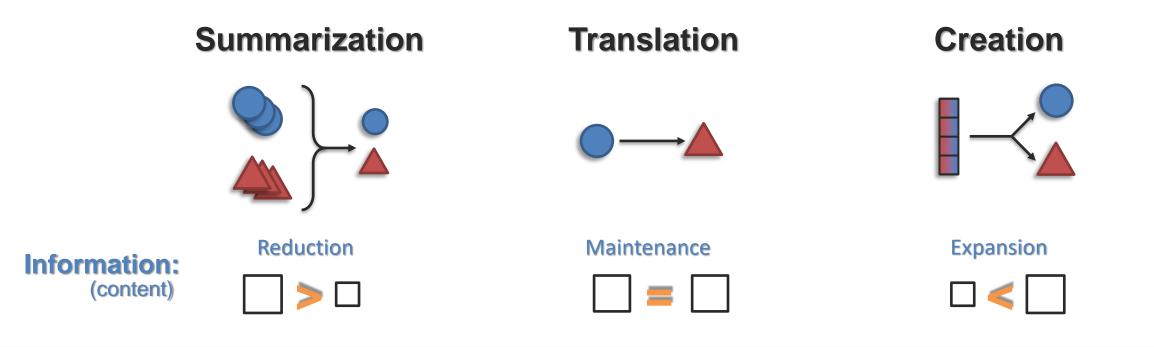


Alignment + representation

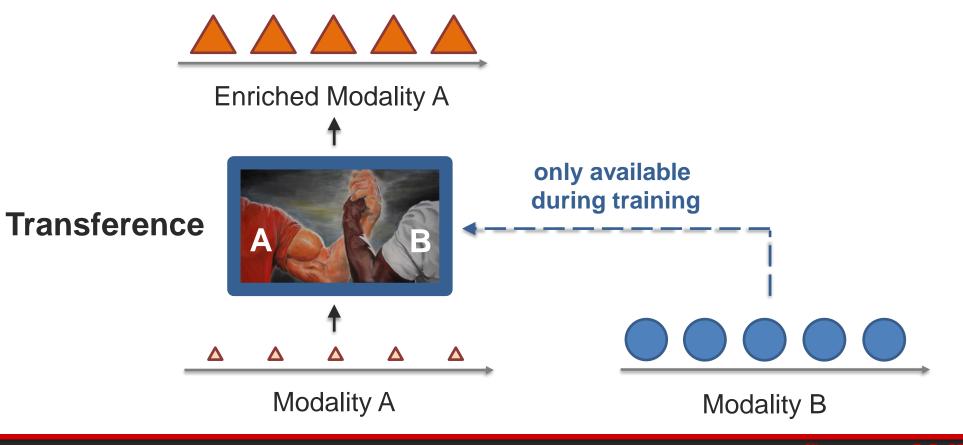
Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure

勞


Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure

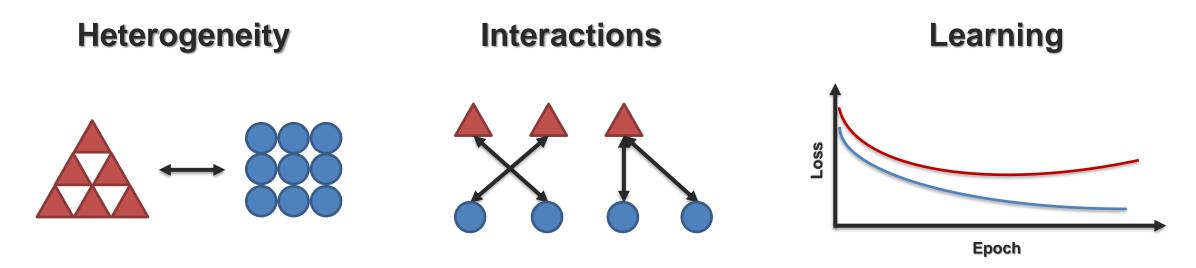
Sub-challenges:


Structure	Intermediate	Inference	External
Modeling	concepts	Paradigm	Knowledge
	words or or or	$\boxed{2}$	8

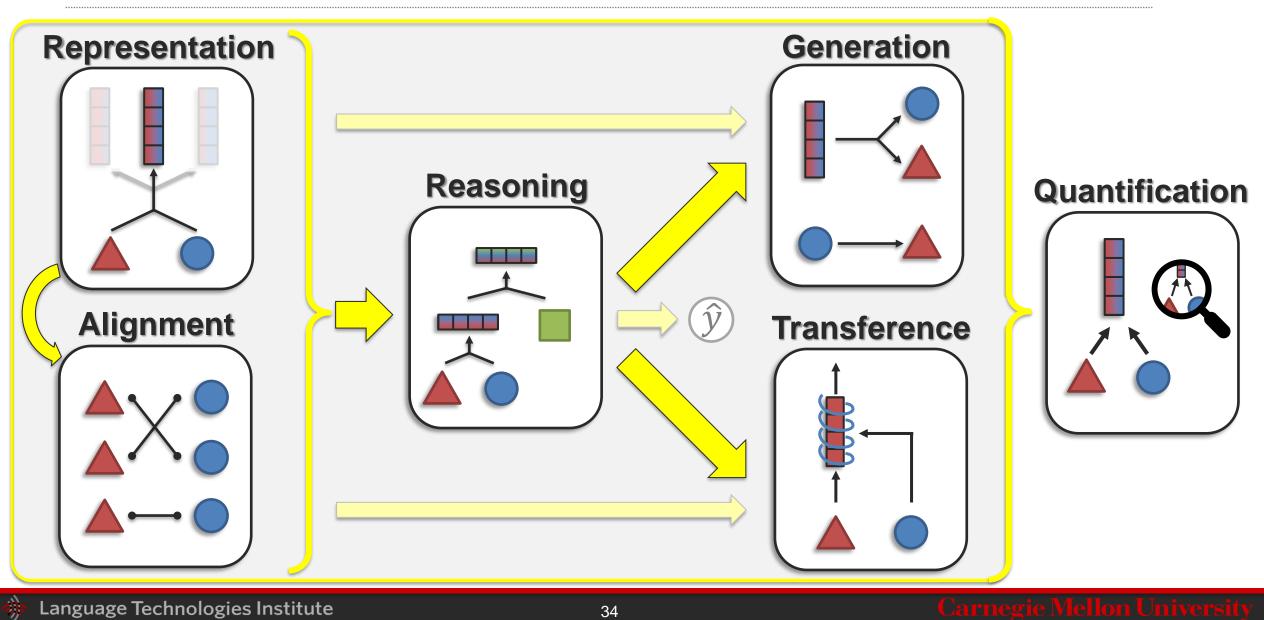
Definition: Learning a generative process to produce raw modalities that reflects cross-modal interactions, structure and coherence

Sub-challenges:

Definition: Transfer knowledge between modalities, usually to help the target modality which may be noisy or with limited resources



Definition: Transfer knowledge between modalities, usually to help the target modality which may be noisy or with limited resources



Definition: Empirical and theoretical study to better understand heterogeneity, cross-modal interactions and the multimodal learning process

Sub-challenges:

Core Multimodal Challenges

Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures
Week 1 8/29 & 8/31	 Course introduction Multimodal core challenges Course syllabus 	 Multimodal applications and datasets Research tasks and datasets Team projects
Week 2 9/5 & 9/7 Read due: 9/9	 Unimodal representations Dimensions of heterogeneity Visual representations 	 Unimodal representations Language representations Signals, graphs and other modalities
Week 3 9/12 & 9/14 Read due: 9/16 Proj. Due: 9/13	 Multimodal representations Cross-modal interactions Multimodal fusion 	 Multimodal representations Coordinated representations Multimodal fission
Week 4 9/19 & 9/21 Proj. due: 9/24	 Multimodal alignment and grounding Explicit alignment Multimodal grounding 	 Alignment and representations Self-attention transformer models Masking and self-supervised learning
Week 5 9/26 & 9/28 Read due: 9/30	 Multimodal transformers Multimodal transformers Video and graph representations 	 Multimodal Reasoning Structured and hierarchical models Memory models
Week 6 10/3 & 10/5 Proj. due: 10/8	Project hours	 Multimodal language grounding Grounded semantics and pragmatics

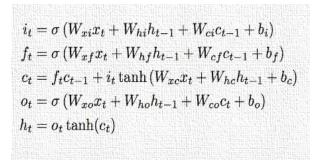
Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures
Week 7 10/10 & 10/12 Read due: 10/14	 Multimodal interaction Reinforcement learning Discrete structure learning 	 Multimodal inference Logical and causal inference External knowledge
Week 8 10/17 & 10/19	Fall Break – No lectures	
Week 9 10/24 & 10/26 Proj. due: 10/29	 Multimodal generation Translation, summarization, creation Generative models: VAEs 	 New generative models GANs and diffusion models Model evaluation and ethics
Week 10 10/31 & 11/2	Project presentations (midterm)	Project presentations (midterm)
Week 11 11/7 & 11/9 Read due: 11/12	Democracy Day – No Class –	 Transference Modality transfer and co-learning Self-training and multitask learning
Week 12 11/14 & 11/16 Read due: 11/21	QuantificationHeterogeneity and interactionsBiases and fairness	 New research directions Recent research in multimodal ML

Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures				
Week 13 11/21 & 11/23	Thanksgiving Week – No Class –					
Week 14 11/28 & 11/30	Guest lecture	Guest lecture				
Week 15 12/5 & 12/7 Proj. due: 12/10	Project presentations (final)	Project presentations (final)				

Course Syllabus


Three Course Learning Paradigms

Course lecture participation (16% of your grade)

Reading assignments (12% of your grade)

Course project assignments (72% of your grade)

Course Recommendations and Requirements

Ready to read about 6 papers this semester !

- Curated list of research papers for the 6 reading assignments
- Summarize one paper and contrast it with other papers

Already taken a machine learning course

- Strongly recommended for students to have taken an introduction machine learning course
- 10-401, 10-601, 10-701, 11-663, 11-441, 11-641 or 11-741

- Motivated to produce a high-quality course project
 - Projects are designed to enhance state-of-the-art algorithms
 - Four project assignments, to help scaffold the project tasks

- Dataset should have at least two modalities:
 - Natural language and visual/images
- Teams of 3, 4 or 5 students
- The project should explore algorithmic novelty
- Possible venues for your final report:
 - NAACL 2024, ACL 2024, IJCAI 2024, ICML 2024, ICMI 2024
- We will discuss on Thursday about project ideas
- GPU resources available:
 - Amazon AWS and Google Cloud Platform

$$\begin{split} & i_t = \sigma \left(W_{ai} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right) \\ & f_t = \sigma \left(W_{af} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right) \\ & c_t = f_t c_{t-1} + i_t \tanh(W_{xc} c_t + W_{hc} h_{t-1} + b_c) \\ & o_t = \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right) \\ & h_t = o_t \tanh(c_t) \end{split}$$

Pre-proposal (due Wednesday Sept. 13)

Define your dataset, research task and teammates

First project assignment (due Sunday Sept. 24)

- Study related work to your selected research topic
- Second project assignment (due Sunday Oct 8)
 - Experiment with unimodal representations
- Midterm project assignment (due Sunday Oct 29)
 - Implement and evaluate state-of-the-art model(s)
- Final project assignment (due Sunday Dec. 10)
 - Implement and evaluate new research ideas

- Each team will be required to create a GitHub repository which will be accessible by TAs
- Each report should include a description of the task from each teammate
- Please let us know soon if you have concerns about the participation levels of your teammates

- Thursday 8/31: Lecture describing available multimodal datasets and research topics
- Tuesday 9/5: Let us know your dataset preferences for the course project
- Thursday 9/7: During the later part of the lecture, we will have an interactive period to help with team formation. More details to come
- Wednesday 9/13: Pre-proposals are due. You should have selected your teammates, dataset and task

- Post your project preferences:
 - List of your ranked preferred projects
 - Use alphanumeric code of each dataset
 - Detailed dataset list in the "Lecture1.2-datasets" slides
 - Previous unimodal/multimodal experience
 - Available CPU / GPU resources
- For topics or datasets not in the list:
 - Include a description with links (for other students)

Course Grades

<i>i</i> _t =	$=\sigma\left(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i\right)$
	$=\sigma\left(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}c_{t-1}+b_f\right)$
	$= f_t c_{t-1} + i_t \tanh (W_{xc} x_t + W_{hc} h_{t-1} + b_c)$
	$= \sigma \left(W_{xo}x_t + W_{ho}h_{t-1} + W_{co}c_t + b_o \right)$
	$= o_t \tanh(c_t)$

- Lecture highlights
 16%
- Reading assignments
 12%
- Project preferences/pre-proposal 2%
- First project assignment 10%
- Second project assignment 10%
- Mid-term project assignment
 - Report and presentation 20%
- Final project assignment
 - Report and presentation 30%

Lecture Highlight Form

Starting Week 2 !!

	Lecture 2.1 - Highlight Form
	DEADLINE Submit your Lecture Highlight form by Thursday Sept 10, 2020 at 10:40am ES You have 42 hours to fill out this form, from the scheduled end time of the lecture.
	MPORTANT: Please read the detailed instructions in Piazza's Resources section ("Lectu Highlights - Instructions.pdf", in the Instructions for Course Assignments list) before filli out this form.
1	https://piazza.com/cmu/fall2020/11777a/resources
	Your email address (Imorency@andrew.cmu.edu) will be recorded when you submit this form. Not you? <u>Switch account</u>
	* Required
	Your answer
	(Optional) First 30 mins - Any question? Please include slide number(s)
	Your answer
	Next 30 mins - Main take home message (about 15-40 mins) * 2
	excoordina Maintake nome message (about to 40 mins)

Similar to note-taking during lectures

For each course segment (30mins):
 2 sentences describing the main points

Help you summarizing the lecture

What is the main take-away message from the lecture Short paragraph (15-40 words)

Ask questions about the lecture

Will be answered either online or at the next lecture

Submitted same day as lecture (before 8pm)

Students are encouraged to attend lectures in person

Segment 1		1	Segment 2		Segment 3		
9:30am		10:00	0am	10:3	30am	10	:50an
Sche	duled					Schee	dulec
beginning						er	nd
of the lecture					C	of the	lectu

Segment 1 starts at 9:30am, even if the lecture starts slightly later.

Segment 3 ends whenever the lecture ends

Slides happening around the segment borders (+/- 5min of 10:00am and 10:30am) can be included in either neighboring segment.

- Study groups: 9-10 students per group (randomly, in Piazza)
- 4 paper options are available
 - Each student should pick one paper option!
 - Google Sheets were created to help balance the papers between group members
 - Then you will create a short summary to help others [1 point]
- Discussions with your study group
 - Read other's summaries. Ask questions!
 - Write follow-up posts comparing the papers and suggesting ideas [1 point]
 - At least one follow-up post for every paper you did not read

Four main steps for the reading assignments

- 1. Monday 8pm: Official start of the assignment
- 2. Wednesday 8pm: Select your paper
- 3. Friday 8pm: Post your summary
- 4. Monday 8pm: Post your follow-up posts

Detailed instructions posted on Piazza

https://piazza.com/cmu/fall2023/11777/resources

- Each student has 6 late submission wildcards
 - For lecture highlight forms or reading assignments
- Each project team has 2 late submission wildcards
 - For any of the project assignments
- Total number of wildcards: 8 (6 individual and 2 team-level)
- Each wildcard gives 24-hour extension
 - No partial credits for the wildcards
 - Automatically calculated (no need to contact us apriori)

See details about late submission policy in syllabus

https://piazza.com/cmu/fall2023/11777/resources

Piazza https://piazza.com/cmu/fall2023/11777/info

ριαzza	11777 ~ Q & A <u>Resources</u> Statistics ~ Manag	e Class 🛐 Louis-Philippe Morency 🗔 -					
	Carnegie Mellon University - Fall 2022 11777: Multimodal Machine Le	arning					
	Syllabus 🛃 🖍 💼	â					
	Course Information Staff Resources						
	Description <pre> Edit </pre>	Announcements + Add					
	Multimodal machine learning (MMML) is a vibrant multi-disciplinary research field which addresses some of the original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including linguistic, acoustic and visual messages. With the initial research on audio-	Add an Announcement Click the Add button to add an announcement.					
	visual speech recognition and more recently with language & vision projects such as image and video captioning, this research field brings some unique challenges for multimodal researchers given the heterogeneity of the data and the contingency often found between modalities. This course will teach fundamental mathematical concepts related to MMML including multimodal alignment and fusion, heterogeneous representation learning and multi- stream temporal modeling. We will also review recent papers describing state-of-the-art probabilistic models and computational algorithms for MMML and discuss the current and upcoming challenges. Recommended preparation: This is a graduate course designed primarily for PhD and research master students at LTI, MLD, CSD, HCII and RI; others, for example (undergraduate) students of CS or from professional master programs, are advised to seek prior permission of the instructor. It is required for students to have taken an introduction machine learning course such as 10-401, 10-601, 10-701, 11-663, 11-441, 11-641 or 11-741. Prior	✓ Announcements					
		 ✓ Question/Answers ✓ Reading assignmer 					
	knowledge of deep learning is recommended. Students should have proper academic background in probability, statistic and linear algebra. Programming knowledge in Python is also strongly recommended.						
	More details in the Syllabus document.	9 9					
	General Information	Project resources					
	Time	i rejectrecedrece					
	Tuesdays and Thursday, 10:10am-11:30am Location	✓ Course syllabus					

瘚