

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.1: Multimodal Representation Fusion Paul Liang

* Co-lecturer: Louis-Philippe Morency. Original course codeveloped with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk. Some slides from Jeffrey Girard. Week 3 reading assignment was posted

- 1. Wed 8pm: Choose your paper
- 2. Friday 8pm: Post your summary
- 3. Monday 8pm: Post your extra comments (3 posts)

Be sure to post your discussion comments before Monday 8pm!

Start the discussion early 🙂

Pre-proposals due tomorrow (Wednesday 9/13 8pm)

One submission per team on Canvas. 1-2 pages.

- 1. Research problem
- 2. Dataset and modalities
- 3. Multimodal challenges and evaluation metrics?
- 4. Baseline models? Is the source code available?
- 5. Sketch of ideas.
- 6. Team members, split of workload, rough timeline/milestones.
- 7. Computing needs

Primary TAs

- Each team will have one primary TA
- Meetings with primary TA will be scheduled for next week
 - Feedback for the pre-proposals
- Contact your primary TA anytime (piazza or email)
 - Groups will be created in Piazza for each team
- Some projects may have a secondary TA, with complementary expertise

Lecture Objectives

- Multimodal representations
 - Cross-modal interactions
- Representation fusion
 - Additive and multiplicative fusion
 - Tensor and polynomial fusion
 - Gated fusion
 - Modality-shift fusion
 - Dynamic fusion
 - Fusion on raw modalities
 - Heterogeneity-aware fusion
- Measuring non-additive interactions

Multimodal Representation

Multimodal Machine Learning

Language I really like this tutorial

Acoustic

瘚

Vision

Multimodal Machine Learning

劎

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

> This is a core building block for most multimodal modeling problems!

Individual elements:

It can be seen as a "local" representation or representation using holistic features **Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities

猕

Cross-modal Interactions

瘚

劎

Taxonomy of Interaction Responses – A Behavioral Science View

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

Cross-modal Interactions – A Taxonomy

Cross-modal Interactions – Representation Fusion

Representation Fusion

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Basic fusion:

猕

Fusion with Unimodal Encoders

> Unimodal encoders can be jointly learned with fusion network, or pre-trained

俲

Early and Late Fusion – A historical View

Early fusion:

Late fusion:

瘚

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model *cross-modal interactions* between the multimodal elements

Let's study the univariate case first (only 1-dimensional features)

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Additive terms Multiplicative error
(bias term) terms term (residual term)

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- *y*: audience score
- x_A : percentage of smiling
- *x_B*: professional status (0=non-critic, 1=critic)

Linear regression:

$$y = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error
(bias term) terms term (residual term)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

 w_0 : average score when x_A and x_B are zero w_1 : effect from x_A variable only w_2 : effect from x_B variable only w_3 : effect from x_A and x_B interaction only ϵ : residual not modeled by w_0 , w_1 , w_2 or w_3

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- y: audience score
- x_A : percentage of smiling
- *x_B*: professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

contained within this interval"

Linear regression:

Confidence interval: "95% confident that w parameter is

p-values would be another way to test hypothesis

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- y: audience score
- x_A : percentage of smiling
- *x_B*: professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

	Estimate	95% CI	
w ₀	5.29	[4.86, 5.73]	
<i>w</i> ₁	1.19	[0.85, 1.53]	Positive effect
<i>W</i> ₂	-1.69	[-2.14, -1.24]	Negative effect

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

- y: audience score
- x_A : percentage of smiling
- *x_B*: professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

	Estimate	95% CI	
<i>w</i> ₀	5.79	[5.29, 6.29]	
<i>w</i> ₁	0.68	[0.25, 1.11]	
<i>W</i> ₂	-2.94	[-3.73, -2.15]	
<i>W</i> ₃	1.29	[0.61, 1.97]	Multiplicative interaction!

獤

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model *cross-modal interactions* between the multimodal elements

Let's study the univariate case first

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error
(bias term) terms term (residual term

1 Additive terms: $z = w_1 x_4 + w_2 x_B + \epsilon$

2 Multiplicative "interaction" term: $z = w_3(x_A \times x_b) + \epsilon$

3 Additive and multiplicative terms: $z = w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$

獤

With unimodal encoders:

Modality A \bigwedge encoder f_A Modality B encoder f_B

Additive fusion:

$$\boldsymbol{z} = f_A(\boldsymbol{\bigtriangleup}) + f_B(\boldsymbol{\bigcirc})$$

It could be seen as an ensemble approach (late fusion)

can be seen as additive

Multiplicative Fusion

Simple multiplicative fusion:

$$\boldsymbol{z} = \boldsymbol{w}(\boldsymbol{x}_A \times \boldsymbol{x}_B)$$

Bilinear Fusion:

$$\boldsymbol{Z} = \boldsymbol{W}(\boldsymbol{x}_A^T \cdot \boldsymbol{x}_B)$$

Jayakumar et al., Multiplicative Interactions and Where to Find Them, ICLR 2020

谢

Tensor Fusion

Zadeh et al., Tensor Fusion Network for Multimodal Sentiment Analysis, EMNLP 2017

勜

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Low-rank Fusion with Trimodal Input

Tensor Fusion

Low-rank Fusion :

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

勜

Going Beyond Additive and Multiplicative Fusion

Additive interaction:

 $z = w_1 x_A + w_2 x_B$

First-order polynomial

Additive and multiplicative interaction:

 $z = w_1 x_A + w_2 x_B + w_3 (x_A \times x_B)$

Second-order polynomial

High-Order Polynomial Fusion

Hou et al., Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling, Neurips 2019

Gated Fusion

[Arevalo et al., Gated Multimodal Units for information fusion, ICLR-workshop 2017]

Gating Module (aka, attention module)

[Chen et al., Multimodal Sentiment Analysis with Word-level Fusion and Reinforcement Learning, ICMI 2017]

Modality-Shifting Fusion

Example with language modality:

Primary modality: language

Secondary modalities: acoustic and visual

[Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019] [Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020]

獤

Mixture of Fusions

[Zadeh et al., Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph, ACL 2018] [Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records, AAAI 2021]

Nonlinear Fusion

... but will our neural network learn the nonlinear interactions?

Language Technologies Institute

Measuring Non-Additive Interactions

Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020 → introduced the EMAP method

Measuring Non-Additive Interactions

Projection from nonlinear to additive (using EMAP):

[Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020]

Measuring Non-Additive Interactions

	I-INT	I-SEM	I-CTX	T-VIS	R-POP	T-ST1	T-ST2
Nonlinear 🦛 Neural Network	90.4	69.2	78.5	51.1	63.5	71.1	79.9
Polynomial 🦛 Polykernel SVM	,91.3	74.4	81.5	50.8	_	72.1	,80.9
Nonlinear 🦛 FT LXMERT	83.0	68.5	76.3	53.0	63.0	66.4	78.6
Nonlinear 🦛 🔓 + Linear Logits	89.9	73.0	80.7	,53.4	64.1	,75.5	80.3
Additive ⇐ Linear Model	90.4	72.8	80.9	51.3	63.7	75.6	76.1
Best Model	91.3	74.4	81.5	53.4	64.2	75.5	
	91.1	74.2	81.3	51.0	04.1	75.9	80.7

[Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020]

[Wortwein et al., Beyond Additive Fusion: Learning Non-Additive Multimodal Interactions, Findings-EMNLP 2022]

Fusion with Heterogeneous Modalities

Goal: Fusion with raw modalities

Language Technologies Institute

勜

Image Representation Learning: Masked Auto-Encoder (MAE)

[He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022]

Multimodal Masked Autoencoder

[Geng et al., Multimodal Masked Autoencoders Learn Transferable Representations, 2022]

Dynamic Early Fusion

Idea: Deciding when to fuse in early fusion

[Xue and Marculescu, Dynamic Multimodal Fusion, arxiv 2022]

Dynamic Early Fusion

Fusion fully learned from optimization and data

1. Define basic representation building blocks

2. Define basic fusion building blocks

Concat fuse	Attention fuse	Add fuse
-------------	----------------	----------

3. Automatically search for composition using neural architecture search

[Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records. AAAI 2021] [Liu et al., DARTS: Differentiable Architecture Search. ICLR 2019]

Heterogeneity-aware Fusion

Information transfer, transfer learning perspective

1a. Estimate modality heterogeneity via transfer

(Implicitly captures heterogeneity)

2a. Compute modality heterogeneity matrix

[Zamir et al., Taskonomy: Disentangling Task Transfer Learning. CVPR 2018] [Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022] Information transfer, transfer learning perspective

[Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022]

Improving Optimization

Kinetics dataset (a) headbangin e) robot dancin g) riding a bike

Adding more modalities should always help?

Modalities: RGB (video clips)

A (Audio features)

OF (optical flow - motion)

Dataset	Multi-modal	V@1	Best Uni	V@1	Drop
	A + RGB	71.4	RGB	72.6	-1.2
Vination	RGB + OF	71.3	RGB	72.6	-1.3
Kineucs	A + OF	58.3	OF	62.1	-3.8
	A + RGB + OF	70.0	RGB	72.6	-2.6

But sometimes multimodal doesn't help! Why?

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020] [Wu et al., Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks. ICML 2022]

Relevance heterogeneity

2 explanations for drop in performance:

- 1. Multimodal networks are more prone to overfitting due to **increased complexity**
- 2. Different modalities overfit and generalize at different rates

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020] [Wu et al., Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks. ICML 2022]

Improving Optimization

Relevance heterogeneity

Key idea 2: Simultaneously train unimodal networks to estimate OGR wrt each modality

÷

Reweight multimodal loss using unimodal OGR values

Allows to better balance generalization & overfitting rate of different modalities

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020] [Wu et al., Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks. ICML 2022]

Heterogeneity in Noise: Studying Robustness

Strong tradeoffs between performance and robustness

[Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021]

Acoustic

Model

Ø

All I can $_{\mathcal{V}}$

say is...

Heterogeneity in Noise: Studying Robustness

Several approaches towards more robust models

Translation model Joint probabilistic model

[Ngiam et al., Multimodal Deep Learning. ICML 2011]
[Srivastava and Salakhutdinov, Multimodal Learning with Deep Boltzmann Machines. JMLR 2014]
[Tran et al., Missing Modalities Imputation via Cascaded Residual Autoencoder. CVPR 2017]
[Pham et al., Found in Translation: Learning Robust Joint Representations by Cyclic Translations Between Modalities. AAAI 2019

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

61

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

