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Objectives of today’s class

= Representation coordination

= Coordination functions
= Kernel similarity functions
= Canonical correlation analysis

= Contrastive learning
= [nformation, entropy and mutual information

= Representation fission
» Factorized multimodal representations
= Clustering and fine-grained fission
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Multimodal
Representation




Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission
: i1 i 0
PN - X
A © A © A ©
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Representation
Coordination



Sub-Challenge 1b: Representation Coordination

I<_,I Definition: Learn multimodally-contextualized
representations that are coordinated
‘ ‘ through their cross-modal interactions

A ©

Strong Coordination: Partial Coordination:

Modality A _\_ Modality A BN —— RN

; !

Modality B [ —" Modality B [ ——
—



Coordination Function

Zy Coordination function

Modality A A encoder

fa

Modality B @) L)

j:

Learning with coordination function:

L= g(fA(A):fB(.))

Zp with model parameters 6, 6, and 6;_

sy Requires paired data
Examples of coordination function:
ZyZp

1zallllzgl

(D) Cosine similarity:

9(z4,2p) = Strong coordination!

s For normalized inputs (e.g., z, — Z,) , equivalent to Pearson correlation coefficient
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Coordination Function

Zy Coordination function
Modality A A [l HNEm
f Learning with coordination function:
4 9(24,2p)
. L= )
Modality B ‘ encoder 2@ g(fA(A) fB(.))
f B ZB with model parameters 6, 6, and 6;_

Examples of coordination function:
(@ Kernel similarity functions:

Linear
Polynomial
Exponential
RBF

9(z4,2) = k(zy, zp)

Language Technologies Institute

s All these examples bring
relatively strong coordination
between modalities




Kernel Function

A kernel function: Acts as a similarity metric between data points

K(xi,xj) — ¢(xl.)T¢(xj) - <¢(xi)» (p(xj)) m) ¢(x) can be high-dimensional space!
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Coordination Function

Modality A A encoder

fa

Modality B @) L)

j:

Learning with coordination function:

L= g(fA(A):fB(.))

with model parameters 6, 6, and 6;_

Zp

Examples of coordination function:

w

[TTT]
V

o
o
@

@ Canonical Correlation Analysis (CCA):

argmax corr(z,, Zg)
VrUifA»fB

w CCA includes multiple projections,
all orthogonal with each others
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Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

L (u*,v*) = argmax corr(u’ X, v'Y)
> /i 4 uv
e ® o o v° ¢ o %o
SN LY e
o ° ¢ ° Y
X ° *

Two views X, Y where same instances have the same color

sy Remember that X and Y consist of paired data
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Deep Canonically Correlated Autoencoders (DCCAE)

00 ---00) 3 [ )
1 ,%""‘:ﬁ A I
——————— S /’/ d ~~~~~~~~~
————————— View H, " \\\\\
Hy (0O ...00 00---00JH,

Ul 14

00 ---00 argmax corr(H,, H,) =
Wx V;U;Wx;wy Wy

00 ---00 Q0 ---

Text Image

X Y

Wang et al., On deep multi-view representation learning, PMLR 2015
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Multi-view Latent “Intact” Space

Given multiple views z; from the same “object”:

View Space Z;

AN ) %
&
$ b
K P gy " 2 6
> @ = 1 A - —43) 0(,
¥ = /A iy .
N q
W ==y

View Space Z,
~
i
=
z
5
|
v
57 adeds maip

Latent Intact Space

1) There is an “intact” representation which is complete and not damaged

2) The views z; are partial (and possibly degenerated) representations
of the intact representation

Xu et al., Multi-View Intact Space Learning, TPAMI 2015
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Auto-Encoder in Auto-Encoder Network

Reconstructed Text

7(M,1) Latent Intact
Representation
00..008) -
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Transformation Transformatio

OO — Q Q network network

rrean

Input Text
x@)

Zhang et al., AE2-Nets: Autoencoder in Autoencoder Networks, CVPR 2019
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Gated Coordination

Modality A — ® -}—

Modality B\'\onmE ® M = somm

s

Language Technologies Institute

Gated coordination:

Zy = ga(x4,xp) - x4

zg = gp(x4,xp) - Xp

mep Related to attention modules in transformers

Viore about it next week!




Coordination with Contrastive Learning

Contrastive loss:

weyp Drings closer and
pushes negative pairs apart

Modality A A encoder

fa

Modality B . encoder 2@
/B ZB Simple contrastive loss:
" + . " ——
Paired data: {A. @ max{0, a + sim(z,, zp) Slm(ZA,iB)}
(e.g., images and text descriptions) negative pair
A ©
A ©
A ©
A ) rositive pairs sy Similar to hinge loss
+«— Negative pairs
A ©
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Example — Visual-Semantic Embeddings

Two contrastive loss terms:

fL

Visual . encoder
(image)
fv

max{0, a + sim(z,, z}}) — sim(z, z;;)}

[TTT] + max{0, a + sim(zy, z]) — sim(zy, z;)}
Zy

Nearest iages Nearest images

Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NIPS 2014
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Example — CLIP (Contrastive Language—Image Pre-training)

Zy

Language A [ELeiLd DNEE Popular contrastive loss: InfoNCE

f L L N

1 sim(zy, Zp)
Visual . encoder @ | L= N log=— =
(image) fV Zy i—1 i=1 S}m(ZA, ZB)
negative pairs

Positive and negative pairs: and
® O N wsp CLIP encoders (f, and fy) are
3E T great for language-vision tasks
S& o | o | e msp Z;, and zy are coordinated but not

B [ identical representation spaces

[Radford et al., Learning Transferable Visual Models From Natural Language Supervision. ICML 2021]
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Multimodal Coordination — Information Theory

Language A

Information in both modalities

» Described people, objects, actions
« lllustrative gestures, motion

Visual O

(image)
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Information and Entropy — Information Theory

. o -
Language A How much information in the modality*

X Information Theory ¢, .. on 1648)

viain intuition:

X A1 1111117 Information content I(x)

® Not very random... So, low information [(x)~

p(x)

x:."“0,1,0,1,0,0,1,1,1,0,0,1”
B More random... So, higher information

1
1G6) = log (1) = ~log(p(x)

Shannon, A Mathematical Theory of Communication, 1948
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Information and Entropy — Information Theory

. L -
Language A How much information in the modality

N Information Theory ¢, .. o 1e48)

Information content 1(X) = —log(p(X))

B For discrete alphabet X, then X is discrete random variable

Entropy: weighted average of all possible outcomes from X

H(X) = E[I(X)] = E[-logp(X)] == ) p()log(p(X))

xXeEX
® Entropy can also be defined for continuous random variables
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Entropy with Two Modalities

If no overlapping But in most real-world scenarios,
information modalities are inter-connected

Modality A A A teacup on the right of a laptop

in a clean room.

Modality B
y . Statistical Semantic

Association Dependency Correspondence  Relationship
used for

A=0 A0 ACN® A
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Entropy with Two Modalities

Modality A A

»

Modality B @

H@®)
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Entropy with Two Modalities

H(A)

Modality A A [ HAI®) Conditional entropy H(Y|X)

2/.\« H(Y|X) = —Exyllogp(y|x)]

Modality B @ ' H(@| ‘)/ _ g, llogp,gf;ﬂ
H®)

If X and Y independent, H(Y|X) = H(Y).
If X fully determines Y, then H(Y|X) = 0.
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Entropy with Two Modalities

Mutual information /1(X;Y)

I(X;Y) = H(X) — H(X|Y)

Modality A A

ny(x, y)]

+ lo
5 Py(y)

= Exr [log Py (x)

Modality B @

Pxy (x,y) ]

I(X;Y) = Exy [log Px(x)Py(y)

[(X;Y) = Dy, (Pxy(x,y) Il Px(x)Py(y))
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Multimodal Fusion with Mutual Information

\
-

: A
Modality A A\ Assumption?
Information present in both

modalities is most important
for the downstream task

Modality B @ )

Colombo et al., Improving Multimodal Fusion via Mutual Dependency Maximization, EMNLP 2021
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Contrastive Learning and Connected Modalities

Language A encoder

fL

Visual . encoder
(image)
fv

Connected modalities: 1 IP focuses ¢
4 N unique
Modality A A\ - .. ‘

shared Mutual information /(X;Y)
 Modality B ’) |

unique , [log Py (x,7)

XY
Py (x)Py(y)

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

Zy
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Contrastive Learning and Mutual Information

Language A L InfoNCE: _— critic function
f (x4, Xp)
Ii L=—FE [log v —
Visual . encoder @
(image) fv Zy Critic function f is trained to be a binary classifier
diStingUiShing Xa, xB~p(xA, xB) VS Xy, xB~p(xA)p(xB)
. : * _ p(xA:xB)
InfoNCE/CL: At optimal loss, f* (x4, x5) =

‘ ) _ _ p(xa)p(xp)’
- ‘Captures’ mutual information

- Optimizes a lower bound on
mutual information

Plugging f* back into £ gives:

p(xa)p(xp) N

— —I(X,, Xp) + logN
p(xA)xB) 4B 5

L*>E [log

In other words: [(X4,Xg) = logN — L*

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]
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Open
Multiview Redundancy and Contrastive Learning challenges

. . . transfer
How much information should be shared? # bits 4 I(vi:va) performance
Multi-view redundancy: I (X1; X5) = I(X1;Y) et Mess notenough | too muoh
? ? \ info»I (x:y) hypothesis signal noise
X5y
missing _> \
. inf
Not enough signal " capursdinfo

JUSt right I(vi;ve) =1(x;y) I(Vlt; va) I(vi;ve) =I(x5y) I(Vlt; V2)
Too much noise
Multi-view redundancy
may not hold for
multimodal problems!

[Tian et al., What makes for Good Views for Contrastive Learning? NeurlPS 2020]
[Tosh et al., Contrastive Learning, Multi-view Redundancy, and Linear models. ALT 2021]
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Representation
Fission



Sub-Challenge 1c: Representation Fission

Definition: Learning a new set of representations that
reflects multimodal internal structure such

X as data factorization or clustering
A ©
Modality-level fission: Fine-grained fission:

Modality A A\ 111 Modality A A\
11
Modality B @ [(ITT] Modality B @
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Modality-Level Fission

Information primarily in language modality

« Syntactic structure
« Vocabulary, morphology

Language A

Information in both modalities

» Described people, objects, actions
« lllustrative gestures, motion

Visual O

(image)

Information primarily in visual modality

» Texture, visual appearance
« Depth, perspective, motion
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Recall Taxonomy of Interactions

signal response

ath —> Equivalence
atb —> Enhancement
atb — | |and() Independence
atbh —> Dominance
a+tb — (or[ ]) Modulation
ath = /\ Emergence

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)
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Representation Fission via Information Theory

Unique to modality 1
and task Y ;8!

Y

Synergy: Emerging information
from multimodal interaction

Redundancy: Shared by
both modalities and task

Unique to modality 2
and task Y Xo
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Partial Information Decomposition

Classical Information Theory Partial Information Decomposition
R=1(X1;X2Y)=1I(X1;X5) — I(XXK1K2) I(X2;Y]X1)
Can be negative!
X X,
Y Y
Uy = I(X1;Y|X) U2=I1(X3Y|X1)  p(Xxy;Y) I(X5;Y)
No synergy! R— S8 =1(X1;X5;Y) Explains negative!

R+U; +Us+ S =1(X1,X3Y) Task-relevant

multimodal info

[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]
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Partial Information Decomposition

One type of information decomposition

Unimodal marginal-matching distributions:

Ap = {q(z1,72,y) : q¢(z1,y) = p(x1,9), 9(x2,y) = p(2,%)}

p(xl,QJQ,y)
Y Y Y % %
S = I,(X1,X2;Y) — min I;(X;,X2;Y)
qEAp
\\ _J \ J
hd Y

Task-relevant Task-relevant multimodal
multimodal info  info without synergy:

Sq* = Iq* (Xl,XQ;Y) — min Iq(Xl,XQ;Y) =0

[Bertschinger et al., Quantifying Unique Information, Entropy 2014] qgeEA,
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Partial Information Decomposition

One type of information decomposition

Unimodal marginal-matching distributions:

Ap = {q(z1,72,y) : q¢(z1,y) = p(x1,9), 9(x2,y) = p(2,%)}

S = Ip(Xl,XQ;Y) — miAn Iq(Xl,XQ;Y)
qEp

+ consistency equations relating interactions with information theory:

Only need unimodal marginals to infer redundancy and uniqueness: I(X1;Y) Y I(X2;Y)

R = ?61%}; Iq(Xl; XQ;Y) Ul = qIéllAI; Iq(Xl; Y|X2) U2 = qrglAIL Iq(XQ; Y|X1)

Can be solved efficiently as a convex optimization problem
Scales to high-dimensional continuous modalities via neural networks

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]
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Open
Quantifying Interactions challenges

These interactions can be efficiently estimated — gives a path towards understanding interactions

Language: And he I don 't think he got mad when hah

I don 't know maybe. Shf‘-'doni N
- § Ir:cnsirlmtcjsgtavc)c:lr‘ﬁ.lege towatehyour AN @ s there a
Vision: > Toxt - suagest — . ‘ red shape
g Asdocieelione, WA | cbovea
Acoustic: (frustrated voice) * Video : straight face. circle?
Sentiment Sarcasm VQA
| ' o -
R UUgy S R UUqw S RUU; S
Language/Agreement Multimodal Transformer Multiplicative/Transformer

Also matches human judgment of interactions, and other sanity checks on synthetic datasets
Can also be used to choose most appropriate models — can they be used to better train/design new models?

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]
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Open
Quantifying Interactions challenges

Lower and upper bounds for interactions in a semi-supervised setting: p(z1,y),p(x2,y),p(z1, Z2)

Efficient approximation algorithms
[Cicalese et al., 2002, Compton 2022]

— min HT(X]_,XZ,Y) — min Iq(Xl,Xz;Y)

ldea 2: min-entropy couplings

Upper bound: S

reA, g€EA,
S = Pelixf (X1, X0;Y) — réuAn I,(X1,X2;Y)
S =1I,(X1,XsY) — IéuAn I,(X1, Xo;Y) ldea 1: disagreement
\ y J fii M — ¥
Lower bound: 5 = Taslk gerl)evg%\t_ Has ('Izallélgglevant fa: ‘ — V2
multimodal info multimodal info

Gives theoretical results on estimating intera%%}?éjgﬁ%nﬁ%el performance for semi-
supervised multimodal learning

[Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]
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On Agreement, Disagreement, and Synergy

A (mini) taxonomy of interactions

R>S
Agreement
p(y|z1) = p(y|z2)
S>R
: ) fi M —
pP(T1,%2,Y _
fz-‘ — )2
Uu>»5
Disagreement
p(ylz1) # p(ylr2)
S>U

[Blum and Mitchell. Combining Labeled and Unlabeled Data with Co-training. COLT 1998

I1—Y1 \
$2—>y2/

Y

Open
challenges

I(Xl, Xz) > I(Xl,X2|Y)

Agreement redundancy
Contrastive learning

I(Xl,XQ) < I(Xl,X2|Y)

Agreement synergy
Future work?

Disagreement uniqueness
Feature selection

Disagreement synergy
Future work?

[Peng et al., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. TPAMI 2005]
[Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]
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Factorized Learning of Shared + Unique Information

> 1 ) Maximize the mutual information
[(z;@) and I(z;A)

unique

Can you please pass the cow? S h ared

unique
(ModalityA A\ - j> 2 ) Minimize the conditional entropy
 Modality B .) H(z|®) and H(z|A)

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2021]
[Wang et al., Rethinking Minimal Sufficient Representation in Contrastive Learning, CVPR 2022]
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Factorized Multimodal Representations

e=zp |
L
e | )

But NC IO ensure
encoder I DUl Nnow ffJJfI(J
Y, proper tactorization?

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

Modality A A

Modality B @
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A Generative-Discriminative Approach

Lo
encoder ¥\ N (ccoder A
L=L,+L,+La
L.
L
e - o)
Lo
"

[ L~

e=z) -] — e=m) e

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

Modality A A

Modality B @

Independent priors
for z4, zg and zy
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Learning Task-relevant Unique Information

I 2 ) Maximize task-relevant unique information
1(Z;Y|®)

Y
I 1 ) Maximize task-relevant shared information

Can you please pass the cow? I (Z; ‘ ; Y) d nd I (Z; A ; Y)

I 3 ) Maximize task-relevant unique information

I(Z;Y|A)

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]
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Learning Task-relevant Unique Information

Self CL

I

Cross-

modal CL
Can you please

pass the cow?

I

Can you please pass the cow?

Can you please Self CL Can you kindly
pass the cow? pass the cow?

Approximate task-relevance Y using multi-view data augmentations
New scalable lower and upper bounds on mutual information

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]
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Fine-Grained Fission

How to automatically discover
these internal clusters, factors?

Modality-level fission: Fine-grained fission:

Modality A A\ Modality A A\

Modality B @ Modality B @
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Fine-Grained Fission — A Clustering Approach

::> Localized activations for different objects

J

(g i SOy

i i ‘i‘} VAR Input Image Feature Maps

| E o ) # '1, '_." 1 s
PYiwT ymew Audio ConvNet

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019
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Discovers
Fine-Grained Fission — A Clustering Approach multiple

audio-visual
Unimodal Encoders Multimodal Fission correspondences

\ 5 ‘.s.. - .‘5‘
L Y, ; drumming
. - ’
Visual ConvNet ~- ) 1 ‘ " '
o
4ud1m isual
I ' >> Similarity

l" . 'I‘y' '.
o L
LRt

Audio ConvNet
Shared (} [Clustering Modlnle
Explores different
Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019 3'(] al e d Sp aCeS (CJ UusS '[erg)
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Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission

A © A © A ©
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Recap: Contrastive Learning and Connected Modalities

Language A encoder

fL

Visual . encoder
(image)
fv

Connected modalities: 1 IP focuses ¢
4 N unique
Modality A A\ - .. ‘

shared Mutual information /(X;Y)
 Modality B ’) |

unique , [log Py (x,7)

XY
Py (x)Py(y)

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

Zy
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Recap: Modality-Level Fission

Information primarily in language modality

« Syntactic structure
« Vocabulary, morphology

Language A

Information in both modalities

» Described people, objects, actions
« lllustrative gestures, motion

Visual O

(image)

Information primarily in visual modality

» Texture, visual appearance
« Depth, perspective, motion
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Recap: Partial Information Decomposition

Classical Information Theory Partial Information Decomposition
R=1(X1;X2Y) I(X1;Y[X2) I(X2;Y|X1)
Can be negative!
X1 X
Y Y
Uy = I(X1;Y|X) U2=I1(X3Y|X1)  p(Xxy;Y) I(X5;Y)
No synergy! R— S8 =1(X1;X5;Y) Explains negative!

R+U; +Us+ S =1(X1,X3Y) Task-relevant

multimodal info

[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]
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