



Language Technologies Institute



## **Multimodal Machine Learning**

## Lecture 3.2: Multimodal Coordination and Fission Paul Liang

\* Co-lecturer: Louis-Philippe Morency. Original course codeveloped with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

#### **Objectives of today's class**

- Representation coordination
  - Coordination functions
    - Kernel similarity functions
    - Canonical correlation analysis
  - Contrastive learning
  - Information, entropy and mutual information
- Representation fission
  - Factorized multimodal representations
  - Clustering and fine-grained fission

# Multimodal Representation

**Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities

## Sub-challenges:



# Representation Coordination

## **Sub-Challenge 1b: Representation Coordination**



**Definition:** Learn multimodally-contextualized representations that are coordinated through their cross-modal interactions

#### Strong Coordination:



#### Partial Coordination:



#### Carnegie Mellon University

### **Coordination Function**



Coordination function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters  $\theta_g$ ,  $\theta_{f_A}$  and  $\theta_{f_B}$ 

Requires paired data

#### **Examples of coordination function:**

1) Cosine similarity:  

$$g(\mathbf{z}_A, \mathbf{z}_B) = \frac{\mathbf{z}_A \cdot \mathbf{z}_B}{\|\mathbf{z}_A\| \|\mathbf{z}_B\|}$$
Strong coordination!

 $\implies$  For normalized inputs (e.g.,  $z_A - \overline{z_A}$ ), equivalent to *Pearson correlation coefficient* 

## **Coordination Function**



Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters  $\theta_g$ ,  $\theta_{f_A}$  and  $\theta_{f_B}$ 

#### **Examples of coordination function:**

2) Kernel similarity functions:

$$g(\mathbf{z}_{A}, \mathbf{z}_{B}) = k(\mathbf{z}_{A}, \mathbf{z}_{B}) \begin{cases} \cdot \text{ Linear} \\ \cdot \text{ Polynomial} \\ \cdot \text{ Exponential} \\ \cdot \text{ RBF} \end{cases}$$

All these examples bring relatively strong coordination between modalities

A kernel function: Acts as a similarity metric between data points

 $K(x_i, x_j) = \phi(x_i)^T \phi(x_j) = \langle \phi(x_i), \phi(x_j) \rangle \implies \phi(x)$  can be high-dimensional space!



Not linearly separable in *x* space



Same data, but now linearly separable in  $\phi(x)$  space

Radial Basis Function (RBF) Kernel : 
$$K(x_i, x_j) = \exp -\frac{1}{2\sigma^2} ||x_i - x_j||^2$$

## **Coordination Function**



Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters  $\theta_g$ ,  $\theta_{f_A}$  and  $\theta_{f_B}$ 

#### **Examples of coordination function:**

3 Canonical Correlation Analysis (CCA):

 $\underset{V,U,f_A,f_B}{\operatorname{argmax}} \operatorname{corr}(\mathbf{z}_A, \mathbf{z}_B)$ 





#### **Correlated Projection**

Learn two linear projections, one for each view, that are maximally correlated: View  $\mathbf{z}_A$  $(\boldsymbol{u}^*, \boldsymbol{v}^*) = \operatorname{argmax} corr(\boldsymbol{u}^T \boldsymbol{X}, \boldsymbol{v}^T \boldsymbol{Y})$ u,v Y

Two views X, Y where same instances have the same color

 $\implies$  Remember that X and Y consist of paired data

#### **Deep Canonically Correlated Autoencoders (DCCAE)**



Wang et al., On deep multi-view representation learning, PMLR 2015

#### Carnegie Mellon Universit

#### **Multi-view Latent "Intact" Space**

Given multiple views  $z_i$  from the same "object":



1) There is an "intact" representation which is *complete* and *not damaged* 

2) The views  $z_i$  are partial (and possibly degenerated) representations of the intact representation

Xu et al., Multi-View Intact Space Learning, TPAMI 2015

#### **Auto-Encoder in Auto-Encoder Network**



Zhang et al., AE2-Nets: Autoencoder in Autoencoder Networks, CVPR 2019

## **Gated Coordination**



Gated coordination:

$$\mathbf{z}_A = g_A(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_A$$
$$\mathbf{z}_B = g_B(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_B$$

Related to attention modules in transformers

More about it next week!

#### **Coordination with Contrastive Learning**



## Paired data: $\{ \blacktriangle, \bigcirc \}$

(e.g., images and text descriptions)





#### Contrastive loss:

➡ brings positive pairs closer and pushes negative pairs apart

#### Simple contrastive loss:



猕

#### **Example – Visual-Semantic Embeddings**



#### Two contrastive loss terms:

```
\max\{0, \alpha + sim(\boldsymbol{z}_L, \boldsymbol{z}_V^+) - sim(\boldsymbol{z}_L, \boldsymbol{z}_V^-)\} + \max\{0, \alpha + sim(\boldsymbol{z}_V, \boldsymbol{z}_L^+) - sim(\boldsymbol{z}_V, \boldsymbol{z}_L^-)\}
```



Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NIPS 2014

#### Carnegie Mellon University

## Example – CLIP (Contrastive Language–Image Pre-training)



#### Positive and negative pairs:



[Radford et al., Learning Transferable Visual Models From Natural Language Supervision. ICML 2021]

Popular contrastive loss: InfoNCE





CLIP encoders ( $f_L$  and  $f_V$ ) are great for language-vision tasks



#### **Multimodal Coordination – Information Theory**



#### Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion



• ...



Main intuition: "Information value" of a communicated message x depends on how random its content is

*x*: "1,1,1,1,1,1,1,1,1,1,1"
 ➡ Not very random... So, low information
 *x*: "0,1,0,1,0,0,1,1,1,0,0,1"

 $\Rightarrow$  More random... So, higher information

Information content 
$$I(x)$$
  
 $I(x) \sim \frac{1}{p(x)}$   
 $I(x) = \log\left(\frac{1}{p(x)}\right) = -\log(p(x))$ 

Shannon, A Mathematical Theory of Communication, 1948

## **Information and Entropy – Information Theory**



How much information in the modality?

Information Theory (Shannon, 1948)

**Information content**  $I(X) = -\log(p(X))$ 

 $\Rightarrow$  For discrete alphabet  $\mathcal{X}$ , then X is discrete random variable

**Entropy**: weighted average of all possible outcomes from  $\mathcal{X}$ 

$$H(X) = \mathbb{E}[I(X)] = \mathbb{E}[-\log(p(X))] = -\sum_{x \in \mathcal{X}} p(X)\log(p(X))$$

Entropy can also be defined for continuous random variables



勜

#### Carnegie Mellon University



#### Carnegie Mellon Universit



Conditional entropy H(Y|X)

 $H(Y|X) = -\mathbb{E}_{X,Y}[\log p(y|x)]$ 

$$= -\mathbb{E}_{X,Y}\left[\log\frac{p(x,y)}{p(x)}\right]$$

If X and Y independent, H(Y|X) = H(Y). If X fully determines Y, then H(Y|X) = 0.



using KL-divergence  $I(X;Y) = D_{KL}(P_{XY}(x,y) \parallel P_X(x)P_Y(y))$ 

#### **Multimodal Fusion with Mutual Information**



#### **Assumption?**

Information present in both modalities is most important for the downstream task

Colombo et al., Improving Multimodal Fusion via Mutual Dependency Maximization, EMNLP 2021

#### **Contrastive Learning and Connected Modalities**



[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

#### **Contrastive Learning and Mutual Information**



## InfoNCE: $\mathcal{L} = -\mathbb{E}\left[\log \frac{f(\mathbf{x}_{A}^{i}, \mathbf{x}_{B}^{i})}{\sum_{j=1}^{N} f(\mathbf{x}_{A}^{i}, \mathbf{x}_{B}^{j})}\right]$ critic function

Critic function *f* is trained to be a binary classifier distinguishing  $x_A$ ,  $x_B \sim p(x_A, x_B)$  vs  $x_A$ ,  $x_B \sim p(x_A)p(x_B)$ 

## InfoNCE/CL:

- 'Captures' mutual information
- Optimizes a lower bound on mutual information

At optimal loss, 
$$f^*(\mathbf{x}_A, \mathbf{x}_B) = \frac{p(\mathbf{x}_A, \mathbf{x}_B)}{p(\mathbf{x}_A)p(\mathbf{x}_B)}$$
.

Plugging  $f^*$  back into  $\mathcal{L}$  gives:

$$\mathcal{L}^* \geq \mathbb{E}\left[\log \frac{p(\mathbf{x}_A)p(\mathbf{x}_B)}{p(\mathbf{x}_A, \mathbf{x}_B)}N\right] = -I(X_A, X_B) + \log N$$

In other words:

 $I(X_A, X_B) \ge \log N - \mathcal{L}^*$ 

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

## **Multiview Redundancy and Contrastive Learning**

[Tian et al., What makes for Good Views for Contrastive Learning? NeurIPS 2020] [Tosh et al., Contrastive Learning, Multi-view Redundancy, and Linear models. ALT 2021]



29

# bits 🕯

Sweet Spot

missing info



 $I(\mathbf{v_1};\mathbf{v_2})$ 

info  $I(\mathbf{x}; \mathbf{y})$ 

excess

captured info

Multi-view redundancy may not hold for multimodal problems!

Not enough signal

Y



Open

challenges

How much information should be shared?

Multi-view redundancy:  $I(X_1; X_2) = I(X_1; Y)$ 

# **Representation Fission**

#### **Sub-Challenge 1c: Representation Fission**



**Definition:** Learning a new set of representations that reflects multimodal internal structure such as data factorization or clustering

#### Modality-level fission:



#### Fine-grained fission:



#### **Modality-Level Fission**



#### Information primarily in language modality

Syntactic structure

. . . .

. . .

. . .

• Vocabulary, morphology

#### Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

#### Information primarily in visual modality

- Texture, visual appearance
- Depth, perspective, motion

猕

## **Recall Taxonomy of Interactions**



Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

#### **Representation Fission via Information Theory**



#### **Partial Information Decomposition**



[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]

## **Partial Information Decomposition**

#### One type of information decomposition

Unimodal marginal-matching distributions:

[Bertschinger et al., Quantifying Unique Information, Entropy

### **Partial Information Decomposition**

#### One type of information decomposition

Unimodal marginal-matching distributions:

$$\Delta_p = \{q(x_1, x_2, y) : q(x_1, y) = p(x_1, y), q(x_2, y) = p(x_2, y)\}$$

$$S = I_p(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$$

+ consistency equations relating interactions with information theory:

Only need unimodal marginals to infer redundancy and uniqueness:



$$R = \max_{q \in \Delta_p} I_q(X_1; X_2; Y) \quad U_1 = \min_{q \in \Delta_p} I_q(X_1; Y | X_2) \quad U_2 = \min_{q \in \Delta_p} I_q(X_2; Y | X_1)$$

#### Can be solved efficiently as a convex optimization problem Scales to high-dimensional continuous modalities via neural networks

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]

## **Quantifying Interactions**



#### These interactions can be efficiently estimated – gives a path towards understanding interactions



Vision:



Acoustic:

Sentiment

 $R U_{\ell} U_{av} S$ 



Language/Agreement

Multiplicative/Transformer

Also matches human judgment of interactions, and other sanity checks on synthetic datasets Can also be used to choose most appropriate models – can they be used to better train/design new models?

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]

Lower and upper bounds for interactions in a semi-supervised setting:  $p(x_1, y), p(x_2, y), p(x_1, x_2)$ 

Efficient approximation algorithms Idea 2: min-entropy couplings [Cicalese et al., 2002, Compton 2022] Upper bound:  $\overline{S} = c_2 - \min_{r \in \Delta_p} H_r(X_1, X_2, Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$  $\overline{S} = \max_{r \in \Delta_p} I_r(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$ Idea 1: disagreement  $S = I_p(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$ Lower bound:  $\underline{S} = \alpha(f_1, f_2) \cdot c_1 - \max(U_1, U_2)$ Tack-relevant Task-relevant  $f_1 : \bigwedge \longrightarrow y_1$  $\longrightarrow y_2$ multimodal info multimodal info Gives theoretical results on estimating interactions and model performance for semisupervised multimodal learning

[Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]

Open

challenges

#### **On Agreement, Disagreement, and Synergy**



 $I(X_1; X_2) > I(X_1; X_2|Y)$ Agreement redundancy Contrastive learning

Open

challenges



**Disagreement uniqueness** Feature selection

Disagreement synergy Future work?

[Blum and Mitchell. Combining Labeled and Unlabeled Data with Co-training. COLT 1998 [Peng et al., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. TPAMI 2005] [Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]

## **Factorized Learning of Shared + Unique Information**

#### Modeling unique information



[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2021] [Wang et al., Rethinking Minimal Sufficient Representation in Contrastive Learning, CVPR 2022]

#### **Factorized Multimodal Representations**



Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

#### Carnegie Mellon University

#### **A Generative-Discriminative Approach**



Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

#### Carnegie Mellon University

## **Learning Task-relevant Unique Information**

#### Modeling task-relevant unique information



Maximize task-relevant **unique** information  $I(Z; Y | \bullet)$ 1 Maximize task-relevant **shared** information  $I(Z; \bullet; Y)$  and  $I(Z; \bullet; Y)$ 3 Maximize task-relevant **unique** information  $I(Z; Y | \bullet)$ 

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]

## **Learning Task-relevant Unique Information**

#### Modeling task-relevant unique information



#### Approximate task-relevance Y using multi-view data augmentations New scalable lower and upper bounds on mutual information

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]

## How to automatically discover these internal clusters, factors?

#### Modality-level fission:



Fine-grained fission:



## **Fine-Grained Fission – A Clustering Approach**

#### **Unimodal Encoders**



Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

#### Carnegie Mellon Universit



#### 🗰 Language Technologies Institute

#### Larnegie Mellon University

**Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities

## Sub-challenges:



## **Recap: Contrastive Learning and Connected Modalities**



[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

#### **Recap: Modality-Level Fission**



#### Information primarily in language modality

Syntactic structure

. . .

. . .

. . .

• Vocabulary, morphology

#### Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

#### Information primarily in visual modality

- Texture, visual appearance
- Depth, perspective, motion

獤

#### **Recap: Partial Information Decomposition**





**Partial Information Decomposition** 

[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]

#### Carnegie Mellon University