

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.2: Multimodal Coordination and Fission Paul Liang

* Co-lecturer: Louis-Philippe Morency. Original course codeveloped with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Objectives of today's class

- Representation coordination
 - Coordination functions
 - Kernel similarity functions
 - Canonical correlation analysis
 - Contrastive learning
 - Information, entropy and mutual information
- Representation fission
 - Factorized multimodal representations
 - Clustering and fine-grained fission

Multimodal Representation

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Representation Coordination

Sub-Challenge 1b: Representation Coordination

Definition: Learn multimodally-contextualized representations that are coordinated through their cross-modal interactions

Strong Coordination:

Partial Coordination:

Coordination Function

Coordination function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Requires paired data

Examples of coordination function:

1) Cosine similarity:

$$g(\mathbf{z}_A, \mathbf{z}_B) = \frac{\mathbf{z}_A \cdot \mathbf{z}_B}{\|\mathbf{z}_A\| \|\mathbf{z}_B\|}$$
Strong coordination!

 \implies For normalized inputs (e.g., $z_A - \overline{z_A}$), equivalent to *Pearson correlation coefficient*

Coordination Function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Examples of coordination function:

2) Kernel similarity functions:

$$g(\mathbf{z}_{A}, \mathbf{z}_{B}) = k(\mathbf{z}_{A}, \mathbf{z}_{B}) \begin{cases} \cdot \text{ Linear} \\ \cdot \text{ Polynomial} \\ \cdot \text{ Exponential} \\ \cdot \text{ RBF} \end{cases}$$

All these examples bring relatively strong coordination between modalities

A kernel function: Acts as a similarity metric between data points

 $K(x_i, x_j) = \phi(x_i)^T \phi(x_j) = \langle \phi(x_i), \phi(x_j) \rangle \implies \phi(x)$ can be high-dimensional space!

Not linearly separable in *x* space

Same data, but now linearly separable in $\phi(x)$ space

Radial Basis Function (RBF) Kernel :
$$K(x_i, x_j) = \exp -\frac{1}{2\sigma^2} ||x_i - x_j||^2$$

Coordination Function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Examples of coordination function:

3 Canonical Correlation Analysis (CCA):

 $\underset{V,U,f_A,f_B}{\operatorname{argmax}} \operatorname{corr}(\mathbf{z}_A, \mathbf{z}_B)$

Correlated Projection

Learn two linear projections, one for each view, that are maximally correlated: View \mathbf{z}_A $(\boldsymbol{u}^*, \boldsymbol{v}^*) = \operatorname{argmax} corr(\boldsymbol{u}^T \boldsymbol{X}, \boldsymbol{v}^T \boldsymbol{Y})$ u,v Y

Two views X, Y where same instances have the same color

 \implies Remember that X and Y consist of paired data

Deep Canonically Correlated Autoencoders (DCCAE)

Wang et al., On deep multi-view representation learning, PMLR 2015

Carnegie Mellon Universit

Multi-view Latent "Intact" Space

Given multiple views z_i from the same "object":

1) There is an "intact" representation which is *complete* and *not damaged*

2) The views z_i are partial (and possibly degenerated) representations of the intact representation

Xu et al., Multi-View Intact Space Learning, TPAMI 2015

Auto-Encoder in Auto-Encoder Network

Zhang et al., AE2-Nets: Autoencoder in Autoencoder Networks, CVPR 2019

Gated Coordination

Gated coordination:

$$\mathbf{z}_A = g_A(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_A$$
$$\mathbf{z}_B = g_B(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_B$$

Related to attention modules in transformers

More about it next week!

Coordination with Contrastive Learning

Paired data: $\{ \blacktriangle, \bigcirc \}$

(e.g., images and text descriptions)

Contrastive loss:

brings positive pairs closer and pushes negative pairs apart

Simple contrastive loss:

猕

Example – Visual-Semantic Embeddings

Two contrastive loss terms:

```
\max\{0, \alpha + sim(\boldsymbol{z}_L, \boldsymbol{z}_V^+) - sim(\boldsymbol{z}_L, \boldsymbol{z}_V^-)\} + \max\{0, \alpha + sim(\boldsymbol{z}_V, \boldsymbol{z}_L^+) - sim(\boldsymbol{z}_V, \boldsymbol{z}_L^-)\}
```


Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NIPS 2014

Carnegie Mellon Universit

Example – CLIP (Contrastive Language–Image Pre-training)

Positive and negative pairs:

Popular contrastive loss: InfoNCE

CLIP encoders (f_L and f_V) are great for language-vision tasks

[Radford et al., Learning Transferable Visual Models From Natural Language Supervision. ICML 2021]

Multimodal Coordination – Information Theory

Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

• ...

Main intuition: "Information value" of a communicated message x depends on how random its content is

x: "1,1,1,1,1,1,1,1,1,1,1"
 ➡ Not very random... So, low information
 x: "0,1,0,1,0,0,1,1,1,0,0,1"

More random... So, higher information

Information content
$$I(x)$$

 $I(x) \sim \frac{1}{p(x)}$
 $I(x) = \log\left(\frac{1}{p(x)}\right) = -\log(p(x))$

Shannon, A Mathematical Theory of Communication, 1948

Information and Entropy – Information Theory

How much information in the modality?

Information Theory (Shannon, 1948)

Information content $I(X) = -\log(p(X))$

 \Rightarrow For discrete alphabet \mathcal{X} , then X is discrete random variable

Entropy: weighted average of all possible outcomes from ${\mathcal X}$

$$H(X) = \mathbb{E}[I(X)] = \mathbb{E}[-\log(p(X))] = -\sum_{x \in \mathcal{X}} p(X)\log(p(X))$$

Entropy can also be defined for continuous random variables

勜

Carnegie Mellon University

Carnegie Mellon Universit

Conditional entropy H(Y|X)

 $H(Y|X) = -\mathbb{E}_{X,Y}[\log p(y|x)]$

$$= -\mathbb{E}_{X,Y}\left[\log\frac{p(x,y)}{p(x)}\right]$$

If X and Y independent, H(Y|X) = H(Y). If X fully determines Y, then H(Y|X) = 0.

using KL-divergence $I(X;Y) = D_{KL}(P_{XY}(x,y) \parallel P_X(x)P_Y(y))$

Multimodal Fusion with Mutual Information

Assumption?

Information present in both modalities is most important for the downstream task

Colombo et al., Improving Multimodal Fusion via Mutual Dependency Maximization, EMNLP 2021

Contrastive Learning and Connected Modalities

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

Contrastive Learning and Mutual Information

InfoNCE: $\mathcal{L} = -\mathbb{E}\left[\log \frac{f(\boldsymbol{x}_{A}^{i}, \boldsymbol{x}_{B}^{i})}{\sum_{j=1}^{N} f(\boldsymbol{x}_{A}^{i}, \boldsymbol{x}_{B}^{j})}\right]$ critic function

Critic function *f* is trained to be a binary classifier distinguishing x_A , $x_B \sim p(x_A, x_B)$ vs x_A , $x_B \sim p(x_A)p(x_B)$

InfoNCE/CL:

- 'Captures' mutual information
- Optimizes a lower bound on mutual information

At optimal loss,
$$f^*(\mathbf{x}_A, \mathbf{x}_B) = \frac{p(\mathbf{x}_A, \mathbf{x}_B)}{p(\mathbf{x}_A)p(\mathbf{x}_B)}$$
.

Plugging f^* back into \mathcal{L} gives:

$$\mathcal{L}^* \geq \mathbb{E}\left[\log \frac{p(\mathbf{x}_A)p(\mathbf{x}_B)}{p(\mathbf{x}_A, \mathbf{x}_B)}N\right] = -I(X_A, X_B) + \log N$$

In other words:

 $I(X_A, X_B) \ge \log N - \mathcal{L}^*$

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

Multiview Redundancy and Contrastive Learning

[Tian et al., What makes for Good Views for Contrastive Learning? NeurIPS 2020] [Tosh et al., Contrastive Learning, Multi-view Redundancy, and Linear models. ALT 2021]

Just right

Multi-view redundancy may not hold for multimodal problems!

transfer

performance

captured info

 $I(\mathbf{v_1}; \mathbf{v_2}) = I(\mathbf{x}; \mathbf{y})$

 $I(\mathbf{v_1};\mathbf{v_2})$

 $I(\mathbf{v_1};\mathbf{v_2})$

Sweet Spot

missing info

bits 🕯

Multi-view redundancy: $I(X_1; X_2) = I(X_1; Y)$

How much information should be shared?

Not enough signal

Y

勜

Open challenges

 $I(\mathbf{v_1};\mathbf{v_2})$

Representation Fission

Sub-Challenge 1c: Representation Fission

Definition: Learning a new set of representations that reflects multimodal internal structure such as data factorization or clustering

Modality-level fission:

Fine-grained fission:

Modality-Level Fission

Information primarily in language modality

Syntactic structure

. . .

. . .

. . .

• Vocabulary, morphology

Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

Information primarily in visual modality

- Texture, visual appearance
- Depth, perspective, motion

猕

Recall Taxonomy of Interactions

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

Representation Fission via Information Theory

Partial Information Decomposition

[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]

Partial Information Decomposition

One type of information decomposition

Unimodal marginal-matching distributions:

[Bertschinger et al., Quantifying Unique Information, Entropy
Partial Information Decomposition

One type of information decomposition

Unimodal marginal-matching distributions:

$$\Delta_p = \{q(x_1, x_2, y) : q(x_1, y) = p(x_1, y), q(x_2, y) = p(x_2, y)\}$$

$$S = I_p(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$$

+ consistency equations relating interactions with information theory:

Only need unimodal marginals to infer redundancy and uniqueness:

$$R = \max_{q \in \Delta_p} I_q(X_1; X_2; Y) \quad U_1 = \min_{q \in \Delta_p} I_q(X_1; Y | X_2) \quad U_2 = \min_{q \in \Delta_p} I_q(X_2; Y | X_1)$$

Can be solved efficiently as a convex optimization problem Scales to high-dimensional continuous modalities via neural networks

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]

Quantifying Interactions

These interactions can be efficiently estimated – gives a path towards understanding interactions

Vision:

Acoustic:

Sentiment

 $R U_{\ell} U_{av} S$

Language/Agreement

Multimodal Transformer

Multiplicative/Transformer

Also matches human judgment of interactions, and other sanity checks on synthetic datasets Can also be used to choose most appropriate models – can they be used to better train/design new models?

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]

Lower and upper bounds for interactions in a semi-supervised setting: $p(x_1, y), p(x_2, y), p(x_1, x_2)$

Efficient approximation algorithms Idea 2: min-entropy couplings [Cicalese et al., 2002, Compton 2022] Upper bound: $\overline{S} = c_2 - \min_{r \in \Delta_p} H_r(X_1, X_2, Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$ $\overline{S} = \max_{r \in \Delta_p} I_r(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$ Idea 1: disagreement $S = I_p(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y)$ Lower bound: $\underline{S} = \alpha(f_1, f_2) \cdot c_1 - \max(U_1, U_2)$ Tack-relevant Task-relevant $f_1 : \bigwedge \longrightarrow y_1$ $\longrightarrow y_2$ multimodal info multimodal info Gives theoretical results on estimating interactions and model performance for semisupervised multimodal learning

[Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]

Open

challenges

On Agreement, Disagreement, and Synergy

 $I(X_1; X_2) > I(X_1; X_2|Y)$ Agreement redundancy Contrastive learning

Open

challenges

 $I(X_1; X_2) < I(X_1; X_2|Y)$ Agreement synergy Future work?

Disagreement uniqueness Feature selection

Disagreement synergy Future work?

[Blum and Mitchell. Combining Labeled and Unlabeled Data with Co-training. COLT 1998 [Peng et al., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. TPAMI 2005] [Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]

Factorized Learning of Shared + Unique Information

Modeling unique information

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2021] [Wang et al., Rethinking Minimal Sufficient Representation in Contrastive Learning, CVPR 2022]

Factorized Multimodal Representations

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

A Generative-Discriminative Approach

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

Learning Task-relevant Unique Information

Modeling task-relevant unique information

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]

Learning Task-relevant Unique Information

Modeling task-relevant unique information

Approximate task-relevance Y using multi-view data augmentations New scalable lower and upper bounds on mutual information

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]

How to automatically discover these internal clusters, factors?

Modality-level fission:

Fine-grained fission:

勜

Fine-Grained Fission – A Clustering Approach

Unimodal Encoders

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

🗰 Language Technologies Institute

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

勜

Recap: Contrastive Learning and Connected Modalities

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

Recap: Modality-Level Fission

Information primarily in language modality

Syntactic structure

. . .

. . .

. . .

• Vocabulary, morphology

Information in both modalities

- Described people, objects, actions
- Illustrative gestures, motion

Information primarily in visual modality

- Texture, visual appearance
- Depth, perspective, motion

獤

Recap: Partial Information Decomposition

Partial Information Decomposition

[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]