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Paul Liang

Multimodal Machine Learning
Lecture 3.2: Multimodal Coordination and Fission

* Co-lecturer: Louis-Philippe Morency. Original course co-
developed with Tadas Baltrusaitis. Spring 2021 and 2022 
editions taught by Yonatan Bisk. 



2

Objectives of today’s class

§ Representation coordination
§ Coordination functions

§ Kernel similarity functions
§ Canonical correlation analysis

§ Contrastive learning
§ Information, entropy and mutual information

§ Representation fission
§ Factorized multimodal representations
§ Clustering and fine-grained fission



Multimodal 
Representation
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Challenge 1: Representation

Fusion Coordination Fission

Sub-challenges: 

Definition: Learning representations that reflect cross-modal interactions 
between individual elements, across different modalities



Representation
Coordination
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Sub-Challenge 1b: Representation Coordination

Definition: Learn multimodally-contextualized 
representations that are coordinated 
through their cross-modal interactions

Strong Coordination:

Modality A

Modality B
Closer

Partial Coordination:

Modality A

Modality B

Further
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Coordination Function

Modality A

Modality B

encoder

encoder

𝑓!

𝑓"

𝑔 𝒛!, 𝒛"

𝒛"

𝒛!
Learning with coordination function:

ℒ = 𝑔 𝑓! 	 , 𝑓" 	

with model parameters 𝜃!, 𝜃"! and 𝜃""

Coordination function

Examples of coordination function:

𝑔 𝒛!, 𝒛" =
𝒛! & 𝒛"

‖𝒛!‖ 𝒛"
Cosine similarity:1

Strong coordination!

For normalized inputs (e.g., 𝒛! − 𝒛!) , equivalent to Pearson correlation coefficient

Requires paired data
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Coordination Function

Modality A

Modality B

encoder

encoder

𝑓!

𝑓"

𝑔 𝒛!, 𝒛"

𝒛"

𝒛!

Examples of coordination function:

Kernel similarity functions:2

𝑔 𝒛!, 𝒛" = 𝑘(𝒛!, 𝒛") • Linear
• Polynomial
• Exponential
• RBF

Learning with coordination function:

ℒ = 𝑔 𝑓! 	 , 𝑓" 	

with model parameters 𝜃!, 𝜃"! and 𝜃""

Coordination function

All these examples bring 
relatively strong coordination 
between modalities
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Kernel Function

A kernel function: Acts as a similarity metric between data points

Not linearly separable in 𝑥 space Same data, but now linearly separable in 𝜙(𝒙)  space 

𝐾 𝒙$, 𝒙% = 𝜙 𝒙$ &𝜙(𝒙%) = 𝜙 𝒙$ , 𝜙(𝒙%) 𝜙 𝒙  can be high-dimensional space!

𝐾 𝑥#, 𝑥$ = exp−
1
2𝜎%

𝑥# − 𝑥$
%Radial Basis Function (RBF) Kernel : 
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Coordination Function

Modality A

Modality B

encoder

encoder

𝑓!

𝑓"

𝑔 𝒛!, 𝒛"

𝒛"

𝒛!

Examples of coordination function:

Canonical Correlation Analysis (CCA):3

argmax
𝑽,𝑼,*",*#

𝑐𝑜𝑟𝑟 𝒛!, 𝒛"

𝑓! 𝑓"

𝑼 𝑽

View 𝒛!

Vi
ew

 𝒛 "

Learning with coordination function:

ℒ = 𝑔 𝑓! 	 , 𝑓" 	

with model parameters 𝜃!, 𝜃"! and 𝜃""

Coordination function

CCA includes multiple projections, 
all orthogonal with each others
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Correlated Projection

1 Learn two linear projections, one for each view, 
that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

𝑿
𝒀

𝒖
𝒗

Two views 𝑿,𝒀 where same instances have the same color
Remember that 𝑋 and 𝑌 consist of paired data

𝑓! 𝑓"

𝑼 𝑽

View 𝒛!

Vi
ew

 𝒛
"
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Deep Canonically Correlated Autoencoders (DCCAE)

· · ·
Text
𝑿

𝑼
· · ·𝑯𝒙

View 𝐻#

Vi
ew

 𝐻
$

· · ·
𝑾𝒙

· · ·

· · ·
Text
𝑿′

· · ·
Image
𝒀

𝑽
· · · 𝑯𝒚

· · ·
𝑾𝒚

· · ·

· · ·
Image
𝒀′

Wang et al., On deep multi-view representation learning, PMLR 2015

argmax
𝑽,𝑼,𝑾𝒙,𝑾𝒚

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚
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Multi-view Latent “Intact” Space

Given multiple views 𝑧# from the same “object”:

1) There is an “intact” representation which is complete and not damaged
2) The views 𝑧# are partial (and possibly degenerated) representations 

of the intact representation
Xu et al., Multi-View Intact Space Learning, TPAMI 2015
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Lo
ss

Loss

Auto-Encoder in Auto-Encoder Network

· · · · · ·
Input Text Input Image

𝑿(𝟐)𝑿(𝟏)

· · · · · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

Reconstructed Text Reconstructed Image
𝒁(𝑴,𝟏)

· · 
·

Latent Intact 
Representation

𝑯

· · ·

· · ·

· · · · · 
·

· · 
·

· · 
·

Transformation 
network

Transformation 
network

Loss Loss

𝒁(𝑴,𝟐)

𝒁(
𝑴
𝟐 ,𝟏) 𝒁(

𝑴
𝟐 ,𝟐)

𝑮(𝑳,𝟏) 𝑮(𝑳,𝟐)

Zhang et al., AE2-Nets: Autoencoder in Autoencoder Networks, CVPR 2019
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Gated Coordination

Modality A

Modality B

𝒙!

𝒙"

gate

gate

Gated coordination:

𝒛! = 𝑔! 𝒙!, 𝒙" ( 𝒙!

Related to attention modules in transformers𝒛"

𝒛!

𝒛" = 𝑔" 𝒙!, 𝒙" ( 𝒙"

More about it next week!
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Coordination with Contrastive Learning

Modality A

Modality B

encoder

encoder

𝑓!

𝑓" 𝒛"

𝒛!

Paired data: {     ,     }
(e.g., images and text descriptions)

1

2

1

2

3

4

5

3

4

5

Positive pairs
Negative pairs

Contrastive loss:
brings positive pairs closer and 
pushes negative pairs apart

Simple contrastive loss:

positive pairs negative pair

Similarity functions are 
often cosine similarity

max 0, 𝛼 + 𝑠𝑖𝑚 𝒛!, 𝒛"7 − 𝑠𝑖𝑚(𝒛!, 𝒛"8)

Similar to hinge loss
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Example – Visual-Semantic Embeddings 

Language

Visual

encoder

encoder

𝑓9

𝑓: 𝒛:

𝒛9

ℒ

(image)

Two contrastive loss terms:

max 0, 𝛼 + 𝑠𝑖𝑚 𝒛9, 𝒛:7 − 𝑠𝑖𝑚(𝒛9, 𝒛:8)

+	max 0, 𝛼 + 𝑠𝑖𝑚 𝒛:, 𝒛97 − 𝑠𝑖𝑚(𝒛:, 𝒛98)

Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NIPS 2014
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Example – CLIP (Contrastive Language–Image Pre-training)

Language

Visual

encoder

encoder

𝑓9

𝑓: 𝒛:

𝒛9

ℒ

Positive and negative pairs:

C
on

tra
st

iv
e 

pr
e-

tra
in

in
g CLIP encoders (𝑓9 and 𝑓:) are 

great for language-vision tasks

𝒛9 and 𝒛: are coordinated but not 
identical representation spaces

(image)

Popular contrastive loss: InfoNCE 

ℒ = −
1
𝑁-
#-.

/

log
sim(𝒛!# , 𝒛"# )

∑$-./ sim(𝒛!# , 𝒛"
$ )

positive pairs

and positive pairs
negative pairsSimilarity function can 

be cosine similarity

[Radford et al., Learning Transferable Visual Models From Natural Language Supervision. ICML 2021]
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Multimodal Coordination – Information Theory

Language

Visual
(image)

Information in both modalities
• Described people, objects, actions
• Illustrative gestures, motion
• …
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Information and Entropy – Information Theory

Language How much information in the modality?

Shannon, A Mathematical Theory of Communication, 1948

𝑥 Information Theory

Main intuition: “Information value” of a communicated message 𝑥 
depends on how random its content is

(Shannon, 1948)

𝑥: “1,1,1,1,1,1,1,1,1,1,1,1”

𝑥: “0,1,0,1,0,0,1,1,1,0,0,1”

Not very random… So, low information

More random… So, higher information

𝐼(𝑥)~
1

𝑝(𝑥)

Information content 𝐼(𝑥)

𝐼 𝑥 = log
1

𝑝(𝑥) = −log 𝑝(𝑥)
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Information and Entropy – Information Theory

Language
𝑥

How much information in the modality?

Information Theory (Shannon, 1948)

Information content   𝐼 𝑋 = −log 𝑝(𝑋)

For discrete alphabet 𝒳, then 𝑋 is discrete random variable

Entropy: weighted average of all possible outcomes from 𝒳 

𝐻 𝑋 = 𝔼 𝐼(𝑋) = 𝔼 −log 𝑝(𝑋) = −T
;∈𝒳

𝑝(𝑋)log 𝑝(𝑋)

𝐻 𝑋

Entropy can also be defined for continuous random variables
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Entropy with Two Modalities

Modality A

Modality B

𝐻(	 )

𝐻(	 )

If no overlapping 
information

But in most real-world scenarios, 
modalities are inter-connected

A teacup on the right of a laptop
in a clean room.

Statistical

Association Dependency
=

Semantic

Correspondence Relationship
laptop used for
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Entropy with Two Modalities

Modality A

Modality B

𝐻(	 )

𝐻(	 )
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Entropy with Two Modalities

Modality A

Modality B

𝐻(	 )

𝐻(	 )

𝐻 	 )

𝐻 	 )

Conditional entropy  𝐻(𝑌|𝑋) 

𝐻 𝑌|𝑋 = −𝔼>,? log 𝑝(𝑦|𝑥)

= −𝔼>,? log
𝑝(𝑥, 𝑦)
𝑝(𝑥)

If X and Y independent, 𝐻 𝑌 𝑋 = 𝐻 𝑌 .
If X fully determines Y, then 𝐻 𝑌 𝑋 = 0.
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Entropy with Two Modalities

Modality A

Modality B

𝐻(	 )

𝐻(	 )

𝐻 	 )

𝐻 	 )

Mutual information 𝐼 𝑋; 𝑌

𝐼 𝑋; 𝑌 = 𝐷@9 𝑃>?(𝑥, 𝑦) ∥ 𝑃>(𝑥)𝑃?(𝑦)

𝐼(	 ; 	 )

𝐼 𝑋; 𝑌 = 𝔼>,? log
𝑃>? 𝑥, 𝑦
𝑃> 𝑥 𝑃?(𝑦)

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

= 𝔼>,? log
1

𝑃> 𝑥
+ log

𝑃>? 𝑥, 𝑦
𝑃?(𝑦)

using KL-divergence
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Multimodal Fusion with Mutual Information

Modality A

Modality B

𝐼(	 ; 	 )Add
𝒛

Fusion

\𝒚

Pr
ed

ic
tio

n

Colombo et al., Improving Multimodal Fusion via Mutual Dependency Maximization, EMNLP 2021

ℒAB

ℒCDEF

Assumption?

Information present in both 
modalities is most important 

for the downstream task
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Contrastive Learning and Connected Modalities

Language

Visual

encoder

encoder

𝑓9

𝑓: 𝒛:

𝒛9

ℒ

(image)

Popular contrastive loss: InfoNCE 

ℒ = −
1
𝑁-
#-.

/

log
sim(𝒛!# , 𝒛"# )

∑$-./ sim(𝒛!# , 𝒛"
$ )

unique

unique
shared 𝐼(	 ; 	 )

Connected modalities:

Mutual information 𝐼 𝑋; 𝑌

𝔼>,? log
𝑃>? 𝑥, 𝑦
𝑃> 𝑥 𝑃?(𝑦)

CLIP focuses on 
shared connections

Modality A

Modality B

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]
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Contrastive Learning and Mutual Information

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

ℒ = −𝔼 log
𝑓(𝒙!# , 𝒙"# )

∑$-./ 𝑓(𝒙!# , 𝒙"
$ )

Language

Visual

encoder

encoder

𝑓9

𝑓: 𝒛:

𝒛9

ℒ

(image)

At optimal loss, 𝑓∗ 𝒙!, 𝒙" = 1(𝒙#,𝒙$)
1 𝒙# 1(𝒙$)

.

critic function

Critic function 𝑓 is trained to be a binary classifier 
distinguishing 𝒙!, 𝒙"~𝑝(𝒙!, 𝒙") vs 𝒙!, 𝒙"~𝑝 𝒙! 𝑝(𝒙") 

Plugging 𝑓∗ back into ℒ gives: 

ℒ∗ ≥ 𝔼 log
𝑝 𝒙! 𝑝 𝒙"
𝑝 𝒙!, 𝒙"

𝑁 = −𝐼 𝑋!, 𝑋" + log𝑁

In other words: 𝐼 𝑋!, 𝑋" ≥ log𝑁 − ℒ∗

InfoNCE/CL:
- ‘Captures’ mutual information
- Optimizes a lower bound on 

mutual information

InfoNCE:
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Multiview Redundancy and Contrastive Learning

[Tian et al., What makes for Good Views for Contrastive Learning? NeurIPS 2020]
[Tosh et al., Contrastive Learning, Multi-view Redundancy, and Linear models. ALT 2021] 

How much information should be shared?

Multi-view redundancy:

Just right

Too much noise

Not enough signal 

Multi-view redundancy 
may not hold for 

multimodal problems!

Open
challenges



Representation
Fission
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Sub-Challenge 1c: Representation Fission

Definition: Learning a new set of representations that 
reflects multimodal internal structure such 
as data factorization or clustering

Modality-level fission:

Modality A

Modality B

Fine-grained fission:

Modality A

Modality B
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Modality-Level Fission

Language

Visual
(image)

Information primarily in language modality

Information primarily in visual modality

• Syntactic structure
• Vocabulary, morphology
• …

• Texture, visual appearance
• Depth, perspective, motion
• …

Information in both modalities
• Described people, objects, actions
• Illustrative gestures, motion
• …
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Recall Taxonomy of Interactions

R
ed

un
da

nc
y

N
on

re
du

nd
an

cy

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

a

b

a

b

a+b Equivalence

a+b Enhancement

a+b and Independence

a+b Dominance

a+b Modulation

a+b

(or    )

Emergence

Multimodal Communication

signal response signal response

𝑧

inputs
response

inference
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Representation Fission via Information Theory

Unique to modality 2
and task Y

Redundancy: Shared by 
both modalities and task 

Synergy: Emerging information 
from multimodal interaction 

Unique to modality 1
and task Y
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Classical Information Theory Partial Information Decomposition

Explains negative!

Task-relevant 
multimodal info

Partial Information Decomposition

Can be negative!

No synergy!

[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]
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Task-relevant 
multimodal info

Partial Information Decomposition

[Bertschinger et al., Quantifying Unique Information, Entropy 2014]

Unimodal marginal-matching distributions:

Task-relevant multimodal 
info without synergy:

One type of information decomposition
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Partial Information Decomposition

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]

Unimodal marginal-matching distributions:

Only need unimodal marginals to infer redundancy and uniqueness:

One type of information decomposition

+ consistency equations relating interactions with information theory:

Can be solved efficiently as a convex optimization problem
Scales to high-dimensional continuous modalities via neural networks
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Quantifying Interactions

Is there a 
red shape 
above a 
circle?

Also matches human judgment of interactions, and other sanity checks on synthetic datasets
Can also be used to choose most appropriate models – can they be used to better train/design new models?

Sentiment Sarcasm VQA

Language/Agreement Multimodal Transformer Multiplicative/Transformer

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework. arXiv 2023]

These interactions can be efficiently estimated – gives a path towards understanding interactions

Open
challenges
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Quantifying Interactions

[Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]

Open
challenges

Lower and upper bounds for interactions in a semi-supervised setting:

Idea 2: min-entropy couplings

Task-relevant 
multimodal info

Task-relevant
multimodal info
without synergy

Efficient approximation algorithms 
[Cicalese et al., 2002, Compton 2022]

Idea 1: disagreement

𝑦G
𝑦H

𝑓G:
𝑓H:

Lower bound:

Upper bound:

Gives theoretical results on estimating interactions and model performance for semi-
supervised multimodal learning
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On Agreement, Disagreement, and Synergy

Agreement

Disagreement

Disagreement uniqueness
Feature selection

𝑦G
𝑦H

𝑓G:
𝑓H:

[Blum and Mitchell. Combining Labeled and Unlabeled Data with Co-training. COLT 1998 
[Peng et al., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. TPAMI 2005]
[Liang et al., Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications, arXiv 2023]

Disagreement synergy
Future work?

A (mini) taxonomy of interactions

Open
challenges

Agreement redundancy
Contrastive learning

Agreement synergy
Future work?
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Factorized Learning of Shared + Unique Information

Modality A

Modality B

unique

unique
shared 𝐼(	 ; 	 )

𝐻 	 )

𝐻 	 ) 1 Maximize the mutual information 
𝐼(𝒛;	 ) 𝐼(𝒛;	 )and

2 Minimize the conditional entropy

𝐻(𝒛|	 ) 𝐻(𝒛|	 )and

Modeling unique information

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2021]
[Wang et al., Rethinking Minimal Sufficient Representation in Contrastive Learning, CVPR 2022]
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Factorized Multimodal Representations

Modality A

Modality B

encoder

encoder

encoder 𝑦prediction

ℒ

But how to ensure 
proper factorization?

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019
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A Generative-Discriminative Approach

Modality A

Modality B

encoder

encoder

encoder

decoder

decoder

𝑦prediction

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

ℒI

ℒI

ℒH

ℒH

ℒG

ℒ = ℒG + ℒH + ℒI

ℒI: no overlap

ℒH: generative

ℒG: discriminative

𝑧!

𝑧?

𝑧"

Independent priors 
for 𝑧!, 𝑧" and 𝑧?
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Learning Task-relevant Unique Information

𝐼(𝒁;	 ; 𝑌) 𝐼(𝒁;	 ; 𝑌)and

1 Maximize task-relevant shared information 

3 Maximize task-relevant unique information
𝐼 𝒁; 𝑌 	 )

𝐼 𝒁; 𝑌 	 )
2 Maximize task-relevant unique information

Modeling task-relevant unique information

𝑌

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]
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Learning Task-relevant Unique Information

Approximate task-relevance 𝑌 using multi-view data augmentations
New scalable lower and upper bounds on mutual information

Modeling task-relevant unique information

𝑌

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, arxiv 2023]

Can you please 
pass the cow?

Can you please 
pass the cow?

Can you kindly 
pass the cow?

Cross-
modal CL

Self CL

Self CL
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Fine-Grained Fission

Modality-level fission:

Modality A

Modality B

Fine-grained fission:

Modality A

Modality B

How to automatically discover 
these internal clusters, factors?
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Fine-Grained Fission – A Clustering Approach

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Unimodal Encoders

Localized activations for different objects
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Fine-Grained Fission – A Clustering Approach

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Unimodal Encoders Multimodal Fission

Explores different 
shared spaces (clusters)

Discovers
multiple 

audio-visual 
correspondences
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Challenge 1: Representation

Fusion Coordination Fission

Sub-challenges: 

Definition: Learning representations that reflect cross-modal interactions 
between individual elements, across different modalities
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Recap: Contrastive Learning and Connected Modalities

Language

Visual

encoder

encoder

𝑓9

𝑓: 𝒛:

𝒛9

ℒ

(image)

Popular contrastive loss: InfoNCE 

ℒ = −
1
𝑁-
#-.

/

log
sim(𝒛!# , 𝒛"# )

∑$-./ sim(𝒛!# , 𝒛"
$ )

unique

unique
shared 𝐼(	 ; 	 )

Connected modalities:

Mutual information 𝐼 𝑋; 𝑌

𝔼>,? log
𝑃>? 𝑥, 𝑦
𝑃> 𝑥 𝑃?(𝑦)

CLIP focuses on 
shared connections

Modality A

Modality B

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]
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Recap: Modality-Level Fission

Language

Visual
(image)

Information primarily in language modality

Information primarily in visual modality

• Syntactic structure
• Vocabulary, morphology
• …

• Texture, visual appearance
• Depth, perspective, motion
• …

Information in both modalities
• Described people, objects, actions
• Illustrative gestures, motion
• …
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Classical Information Theory Partial Information Decomposition

Explains negative!

Task-relevant 
multimodal info

Recap: Partial Information Decomposition

Can be negative!

No synergy!

[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]


