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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 4.1: Multimodal alignment

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 
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Administrative Stuff
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Primary TAs

▪ Each team will have one primary TA

▪ Contact your primary TA anytime

▪ Groups were created in Piazza for each team

▪ Some projects may have a secondary TA, with 

complementary expertise

Schedule a meeting with your Primary TA this week!
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First Project Assignment

Due date: Sunday 9/24 at 8pm

 

Four main sections:

▪ Introduction

▪ Related work

▪ Experimental setup

▪ Research ideas

Follows ICML paper format

The two main sections are related work 

and research ideas

Page limit depends on team size:

• 3 students : 4 pages + references

• 4 students : 4.5 pages + references

• 5 students : 5 pages + references

• 6 students : 5.5 pages + references

# teammates = # research ideas
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Team Meetings with Instructor

▪ No lecture on Tuesday 10/3

▪ 15-mins meeting with instructor

▪ Optional, but highly suggested

▪ Not all teammates are required to attend

▪ Meetings next week: Wednesday 9/27 until Friday 9/29

▪ Signup form will be shared via Piazza
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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 4.1: Multimodal alignment

* Co-lecturer: Paul Liang. Original course co-developed 

with Tadas Baltrusaitis. Spring 2021 and 2022 editions 

taught by Yonatan Bisk. 
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Lecture objectives

▪ A quick review
▪ Connections, coordinated representations and mutual information

▪ Modality interactions and factorized representations

▪ Discrete alignment
▪ Local alignment

▪ Coordinated representations; hard and soft attention

▪ Global alignment

▪ Assignment problem and optimal transport

▪ Continuous alignment
▪ Continuous warping

▪ Dynamic time warping

▪ Discretization and segmentation



A Quick Review
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Multimodal is the scientific study of 

heterogeneous, connected and interacting data

Heterogeneous

Connected

Interacting
𝑧
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Connections between Modalities

Connections?

knowledge of one modality provides information about the other modality

“kitchen”

Image

“        ”

(associations)

unique

unique
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Co-occurrence

Correlation

Connection types:

Causality

Relationship

Modality A

Modality B

Connections are part of the data… and models will try to learn them.
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Coordinated Representations – Example: CLIP

Language

Visual

encoder

encoder

𝑓𝐿

𝑓𝑉
𝒛𝑉

𝒛𝐿

ℒ

(image)

Popular contrastive loss: InfoNCE 

ℒ = −
1

𝑁
෍

𝑖=1

𝑁

𝑙𝑜𝑔
𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑖 )

σ𝑗=1
𝑁 𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑗

)

positive pairs

and positive pairs

negative pairs
Similarity function can 

be cosine similarity

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arxiv 2021

Connected modalities:

Images

Language
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Coordinated Representations – Example: CLIP

Language

Visual

encoder

encoder

𝑓𝐿

𝑓𝑉
𝒛𝑉

𝒛𝐿

ℒ

(image)

Popular contrastive loss: InfoNCE 

ℒ = −
1

𝑁
෍

𝑖=1

𝑁

𝑙𝑜𝑔
𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑖 )

σ𝑗=1
𝑁 𝑠𝑖𝑚(𝒛𝐴

𝑖 , 𝒛𝐵
𝑗

)

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arxiv 2021

shared 𝐼( ;  )

Connected modalities:

Mutual information 𝐼 𝑋; 𝑌

CLIP focuses on 

shared connections

Images

Language

More about connections and alignment today!

𝔼𝑋,𝑌 log
𝑃𝑋𝑌 𝑥, 𝑦

𝑃𝑋 𝑥 𝑃𝑌(𝑦)
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Modality Interactions

Interactions happen 

during inference!

(from human or model)

𝑧

inputs
response

representation

ො𝑦

modality 

prediction

inference

𝑧
Modality A

Modality B

Interactions require more 

than the input modalities!

Interactions taxonomy:

Level 1: Response(s) and Input Modalities

Level 2: Interactions – Internal Mechanics

inference

❑ Additive

❑ Multiplicative

❑ Polynomial

❑ Nonlinear

…

❑ Co-occurrence

❑ Redundancy

❑ Dominance

❑ Emergence

…

𝑧

Level 3: Contextualized Interactions

❑ Temporal

❑ Hierarchy

❑ Multimodal

…
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Modeling Interactions – Response and Input Modalities (Level 1)

𝑌
Modality A

Modality B

𝐼  ; 𝑌  )

Task-relevant unique information

𝐼( ; 𝑌 )

Mutual information…

…but without 

Information theory as a framework 
for modeling Level 1 interactions 
between input modalities and 
responses
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Modeling Interactions – Response and Input Modalities (Level 1)

𝑌
Modality A

Modality B

Task-relevant unique information

Task-relevant unique information

𝐼  ; 𝑌  )

𝐼  ; 𝑌  )
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Modeling Interactions – Response and Input Modalities (Level 1)

𝑌
Modality A

Modality B

Task-relevant unique information

Task-relevant unique information

𝐼  ; 𝑌  )

𝐼  ; 𝑌  )

Task-relevant shared information

𝐼( ; ; 𝑌) 

…but how to compute this

3-way mutual information?
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Modeling Interactions – Response and Input Modalities (Level 1)

𝑌

Task-relevant unique information

Task-relevant unique information

𝐼  ; 𝑌  )

𝐼  ; 𝑌  )

Task-relevant shared information

𝐼( ; ; 𝑌) = 𝑅 − 𝑆 

Partial Information 

Decomposition (PID)

More about PID in future lectures 

and reading assignments

factorizes 3-way mutual 

information into:

R: redundancy

S: Synergy

𝐼( ; ; 𝑌) 

…but how to compute

3-way mutual information?
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Modality Interactions

Interactions happen 

during inference!

(from human or model)

𝑧

inputs
response

representation

ො𝑦

modality 

prediction

inference

𝑧
Modality A

Modality B

Interactions require more 

than the input modalities!

Interactions taxonomy:

Level 1: Response(s) and Input Modalities

Level 2: Interactions – Internal Mechanics

inference

❑ Additive

❑ Multiplicative

❑ Polynomial

❑ Nonlinear

…

❑ Co-occurrence

❑ Redundancy

❑ Dominance

❑ Emergence

…

𝑧

Level 3: Contextualized Interactions

❑ Temporal

❑ Hierarchy

❑ Multimodal

…
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Challenge 2: 

Alignment
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Challenge 2: Alignment

Sub-challenges: 

Definition: Identifying and modeling cross-modal connections between all 

elements of multiple modalities, building from the data structure

Discrete 

Alignment

Contextualized

Representation

Continuous 

Alignment

Discrete elements 

and connections
AlignmentSegmentation and 

continuous warping
+ representation 
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Sub-Challenge 2a: Discrete Alignment

Local Global

Definition: Identify and model discrete connections 

between elements of multiple modalities

Undirected

Directed
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Language Grounding

A woman reading newspaper

Definition: Tying language (words, phrases,…) 

to non-linguistic elements, such as the 

visual world (objects, people, …)
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Local Alignment – Coordinated Representations

A woman reading newspaper

Supervision: Paired data

1

2

1

2

3

4

3

4

Visual

Language

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵
𝒛𝐵

𝒛𝐴

Learning coordinated representations:

or contrastive learning

𝑔 𝒛𝐴, 𝒛𝐵

Similarity 

function

Common 

information
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Directed Alignment

A woman is throwing a frisbee
(query)

(key)

2 Hard attention

1 Soft attention

Modality A

Modality B Which 

object?

Attention
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Directed Alignment – Image Captioning

Should we always use the final layer of 

the CNN for all generated words?

A woman is throwing(query)

(key)

Modality A

Modality B
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Directed Alignment – Image Captioning

Distribution 

over L 

locations

Expectation over 

features: D

𝑎1

𝑠0 𝑠1

𝑧1 𝑦0

𝑎2 𝑑1

𝑠2

𝑧2 𝑦1

𝑎3 𝑑2

First word

Output 

word
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Attention Gates

Before:

   𝑝 𝑦𝑖 𝑦1, … , 𝑦𝑖−1, 𝒙 = 𝑔(𝑦𝑖−1, 𝒔𝑖 , 𝒛), 

where 𝒛 = 𝒉𝑇, last encoder state and 𝒔𝑖 is the current state of the decoder

Now:

  𝑝 𝑦𝑖 𝑦1, … , 𝑦𝑖−1, 𝒙 = 𝑔(𝑦𝑖−1, 𝒔𝑖 , 𝒛𝑖)

Have an attention “gate” 

▪ A different context 𝒛𝑖 used at each time step!

▪ 𝒛𝑖 = σ𝑗=𝑖
𝑇𝑥 𝛼𝑖𝑗𝒉𝑗

𝛼𝑖𝑗 is the (scalar) attention for word j at generation step i
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Attention Gates

So how do we determine 𝛼𝑖𝑗?

 𝛼𝑖,𝑗 =
exp(𝑒𝑖𝑗)

σ
𝑘=1
𝑇𝑥 exp(𝑒𝑖𝑘)

            =>  softmax, making sure they sum to 1

where:

  𝑒𝑖𝑗 = 𝒗𝑇 𝜎 𝑊𝑠𝑖−1 + 𝑈ℎ𝑗

  a feedforward network that can tell us how important the current encoding is

𝒗, 𝑊, 𝑈– learnable weights

 

 𝑧𝑖 = σ𝑗=𝑖
𝑇𝑥 𝛼𝑖𝑗ℎ𝑗

expectation of the context (a fancy way to 

say it’s a weighted average)
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Example – Image Captioning

[Show, Attend and Tell: Neural 

Image Caption Generation with 

Visual Attention, Xu et al., 2015] 
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Hard attention - Example
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Hard Attention – Recurrent Model of Visual Attention

location

what

where

image



32

32

Global Alignment

Visual

Language

Modality A

Modality B

encoder

encoder

𝑓𝐴

𝑓𝐵
𝒛𝐵

𝒛𝐴

(representation)

𝑔 𝒛𝐴, 𝒛𝐵

Coordination 

function

(global alignment)

Jointly optimize representation + global alignment:

𝑔 𝒛𝐴, 𝒛𝐵

Latent pairing information
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Assignment Problem

𝑔 𝒛𝐴, 𝒛𝐵

Bipartite Graph

𝐵𝐴

Similarity weights:

Assignment: 𝑓: 𝐴 → 𝐵

𝑤(𝑖,𝑓 𝑖 ) = 𝑔(𝒛𝐴
𝑖 , 𝒛𝐵

𝑓(𝑖)
)

max
𝑓∈Perm(𝑁)

෍

𝑖=1

𝑁

𝑤𝑖,𝑓 𝑖Maximize:

Initial assumptions: 

• Same number of elements in A and B modalities 

• 1-to-1 “hard” alignment between elements

• All elements assigned (aka “perfect matching”)

(vector of indices)

How to solve?

Naive solution: check all assignments

Better solution: Linear Programming

𝑥𝑖𝑗 = 1 when matching connection, otherwise 0

𝑤(𝑖,𝑗) = 𝑔(𝒛𝐴
𝑖 , 𝒛𝐵

𝑗
)

max
{𝑥𝑖𝑗}

෍

(𝑖,𝑗)∈𝐴×𝐵

𝑤𝑖,𝑗𝑥𝑖𝑗
Can be solved with 

simplex algorithm
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Optimal transport

𝑔 𝒛𝐴, 𝒛𝐵

Bipartite Graph

𝐵𝐴

New assumptions: 

• Different number of elements in A and B modalities 

• Many-to-many “soft” alignment between elements

Similarity weights:

Assignments:

Maximize:

𝑤(𝑖,𝑗) = 𝑔(𝒛𝐴
𝑖 , 𝒛𝐵

𝑗
)

𝑥(𝑖,𝑗): soft alignment between 𝒛𝐴
𝑖  and 𝒛𝐵

𝑗

max
{𝑥𝑖𝑗}

෍

(𝑖,𝑗)∈𝐴×𝐵

𝑤𝑖,𝑗𝑥𝑖𝑗

It can be seen as “transporting” elements 

from modality A to modality B (and vice-versa) 

Wassertein distance 

gives optimal transport
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Continuous 

Alignment
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Challenge 2b: Continuous Alignment

Definition: Model alignment between modalities with 

continuous signals and no explicit elements

Continuous 

warping
Discretization

(segmentation)
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Continuous Warping – Example 

Aligning video sequences
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Dynamic Time Warping (DTW)

We have two unaligned temporal unimodal signals

▪ 𝐗 = 𝒙1, 𝒙2, … , 𝒙𝑛𝑥
∈ ℝ𝑑×𝑛𝑥

▪ 𝐘 = 𝒚1, 𝒚2, … , 𝒚𝑛𝑦
∈ ℝ𝑑×𝑛𝑦

𝐿(𝒑𝑥, 𝒑𝑦) = ෍

𝑡=1 

𝑙

𝒙𝒑𝑡
𝑥 − 𝒚𝒑𝑡

𝑦

2

2

Find set of indices to minimize the alignment difference:

Dynamic Time Warping is designed to find these index vectors!

where 𝒑𝑥and 𝒑𝑦are index vectors of same length
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Dynamic Time Warping (DTW)

(𝒑1
𝑥, 𝒑1

𝑦
)

(𝒑𝑙
𝑥, 𝒑𝒍

𝑦
)

(𝒑𝑡
𝑥 , 𝒑𝒕

𝑦
)

Lowest cost path in a cost matrix

▪ Restrictions?
▪ Monotonicity – no going back in time

▪ Continuity  - no gaps

▪ Boundary conditions - start and end at the 

same points

▪ Warping window - don’t get too far from 

diagonal

▪ Slope constraint – do not insert or skip too 

much

Solved using dynamic programming 

while respecting the restrictions
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DTW alternative formulation

Replication doesn’t change the objective!

𝐿(𝒑𝑥 , 𝒑
𝑦

) = ෍

𝑡=1 

𝑙

𝒙𝒑𝑡
𝑥 − 𝒚𝒑𝑡

𝑦

2

2

= 𝐗𝐖𝑥
=

= 𝐘𝐖y

Alternative objective:

𝐿(𝑾𝒙, 𝑾𝒚) = 𝑿𝑾𝑥 − 𝒀𝑾𝑦 𝐹

2
𝑿, 𝒀 – original signals (same #rows, possibly 

different #columns) 

𝑾𝑥, 𝑾𝑦 - alignment matrices

Frobenius norm 𝑨 𝐹
2 = σ𝑖 σ𝑗 𝑎𝑖,𝑗

2

𝑾𝒙

𝑾𝒚

A differentiable version of DTW also exists… 

https://arxiv.org/pdf/1703.01541.pdf 

https://arxiv.org/pdf/1703.01541.pdf
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Canonical Correlation Analysis – Reminder 

CCA loss can also be re-written as:

𝐿(𝑼, 𝑽) = 𝐔𝑇𝐗 − 𝐕𝑇𝐘 𝐹
2

· · · · · ·

Text Image

𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·

𝑯𝒙 𝑯𝒚subject to:

𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎
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Canonical Time Warping

Dynamic Time Warping + Canonical Correlation Analysis = Canonical Time 

Warping

Allows to align multi-modal or multi-view (same modality but from a different 

point of view)

▪ 𝑾𝒙, 𝑾𝒚 – temporal alignment

▪ 𝑼, 𝑽 – cross-modal (spatial) alignment

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]

𝐿(𝑼, 𝑽, 𝑾𝒙, 𝑾𝒚) = 𝐔𝑇𝐗𝐖𝐱 − 𝐕𝑇𝐘𝐖𝐲 𝐹

2
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Premise: we have paired video sequences 

that can be be temporally aligned 

Temporal Alignment and Neural Representation Learning

How can we define a loss function to enforce 

the alignment between sequences while at the 

same time learning good representations?
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Solution: Representation learning by enforcing Cycle consistency

Temporal Cycle-Consistency Learning

Main idea: My closest neighbor also views me as their closest neighbor
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Compute “soft” / “weighted” nearest neighbour:

Temporal Cycle-Consistency Learning

distances: Soft nearest neighbor:

Find the nearest neighbor the other way and then penalize the distance:

penalty!
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Discretization (aka Segmentation)

objects

Common assumptions: Segmented elements1

Images

? ? ?

???

SignalsMedical imaging

Examples:
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t  ah  m  aa  t  ow

Discretization – Example 

Spectogram

Phonemes

How can we predict the sequence 

of phoneme labels?

Sequence Labeling and Alignment
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Discretization – Example 

t  ah  m  aa  t  ow

Spectogram

Phonemes Challenge: many-to-1 alignment

t   ah       m   aa 

How can we predict the sequence 

of phoneme labels?

Sequence Labeling and Alignment
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Discretization – A Classification Approach

t  ah  m  aa  t  ow

Spectogram (𝒙)

Phonemes (𝒛)

softmax1 Output activations (distribution):

C
T

C

𝑦1
𝑡

… … … … …𝑦𝐿
𝑡

𝑦𝐿+1
𝑡

2 Path 𝝅 over the activations:

3 Predicted labels 𝒍

𝒍
4 Most probable sequence labels

for ‘blank’ or no label

Connectionist Temporal Classification

Grave et al., Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, ICML 2006
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Discretization and Representation – Cluster-based Approaches

Self-attention Transformer

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

K-mean

clustering

𝑐1 𝑐2 𝑐1 𝑐3 𝑐2

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

linearlinear

HUBERT: Hidden-Unit BERT

Hsu et al., HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units, arxiv 2021

Speech



51

51

Challenge 2: Alignment

Sub-challenges: 

Definition: Identifying and modeling cross-modal connections between all 

elements of multiple modalities, building from the data structure

Discrete 

Alignment

Contextualized

Representation

Continuous 

Alignment

Discrete elements 

and connections

AlignmentSegmentation and 

continuous warping + representation 

Thursday!


	Default Section
	Slide 1
	Slide 2
	Slide 3: Primary TAs
	Slide 4: First Project Assignment
	Slide 5: Team Meetings with Instructor
	Slide 6
	Slide 7: Lecture objectives
	Slide 8: A Quick Review
	Slide 9
	Slide 10: Connections between Modalities
	Slide 11: Coordinated Representations – Example: CLIP
	Slide 12: Coordinated Representations – Example: CLIP
	Slide 13: Modality Interactions
	Slide 14: Modeling Interactions – Response and Input Modalities (Level 1)
	Slide 15: Modeling Interactions – Response and Input Modalities (Level 1)
	Slide 16: Modeling Interactions – Response and Input Modalities (Level 1)
	Slide 17: Modeling Interactions – Response and Input Modalities (Level 1)
	Slide 18: Modality Interactions
	Slide 19: Challenge 2: Alignment
	Slide 20: Challenge 2: Alignment
	Slide 21: Sub-Challenge 2a: Discrete Alignment
	Slide 22: Language Grounding
	Slide 23: Local Alignment – Coordinated Representations
	Slide 24: Directed Alignment
	Slide 25: Directed Alignment – Image Captioning
	Slide 26: Directed Alignment – Image Captioning
	Slide 27: Attention Gates
	Slide 28: Attention Gates
	Slide 29: Example – Image Captioning
	Slide 30: Hard attention - Example
	Slide 31: Hard Attention – Recurrent Model of Visual Attention
	Slide 32: Global Alignment
	Slide 33: Assignment Problem
	Slide 34: Optimal transport
	Slide 35: Continuous Alignment
	Slide 36: Challenge 2b: Continuous Alignment
	Slide 37: Continuous Warping – Example 
	Slide 38: Dynamic Time Warping (DTW)
	Slide 39: Dynamic Time Warping (DTW)
	Slide 40: DTW alternative formulation
	Slide 41: Canonical Correlation Analysis – Reminder 
	Slide 42: Canonical Time Warping
	Slide 43: Temporal Alignment and Neural Representation Learning
	Slide 44: Temporal Cycle-Consistency Learning
	Slide 45: Temporal Cycle-Consistency Learning
	Slide 46: Discretization (aka Segmentation)
	Slide 47: Discretization – Example 
	Slide 48: Discretization – Example 
	Slide 49: Discretization – A Classification Approach
	Slide 50: Discretization and Representation – Cluster-based Approaches
	Slide 51: Challenge 2: Alignment


