

Language Technologies Institute

Multimodal Machine Learning

Lecture 4.1: Multimodal alignment

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Administrative Stuff

Primary TAs

- Each team will have one primary TA
- Contact your primary TA anytime
 - Groups were created in Piazza for each team
- Some projects may have a secondary TA, with complementary expertise

Schedule a meeting with your Primary TA this week!

First Project Assignment

Due date: Sunday 9/24 at 8pm

Four main sections:

- Introduction
- Related work
- Experimental setup
- Research ideas

Follows ICML paper format

The two main sections are related work and research ideas

teammates = # research ideas

- Page limit depends on team size:
- 3 students : 4 pages + references
- 4 students : 4.5 pages + references
- 5 students : 5 pages + references
- 6 students : 5.5 pages + references

- No lecture on Tuesday 10/3
- 15-mins meeting with instructor
 - Optional, but highly suggested
 - Not all teammates are required to attend
- Meetings next week: Wednesday 9/27 until Friday 9/29
- Signup form will be shared via Piazza

Language Technologies Institute

Multimodal Machine Learning

Lecture 4.1: Multimodal alignment

Louis-Philippe Morency

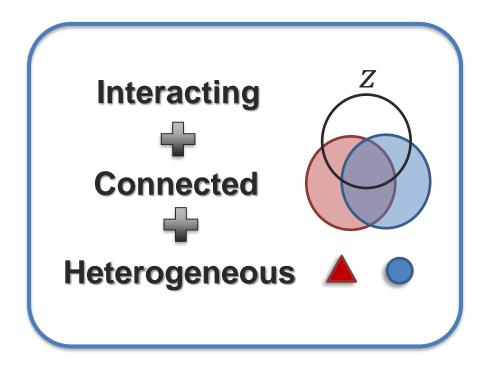
* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

- A quick review
 - Connections, coordinated representations and mutual information
 - Modality interactions and factorized representations
- Discrete alignment
 - Local alignment
 - Coordinated representations; hard and soft attention
 - Global alignment
 - Assignment problem and optimal transport
- Continuous alignment
 - Continuous warping
 - Dynamic time warping
 - Discretization and segmentation

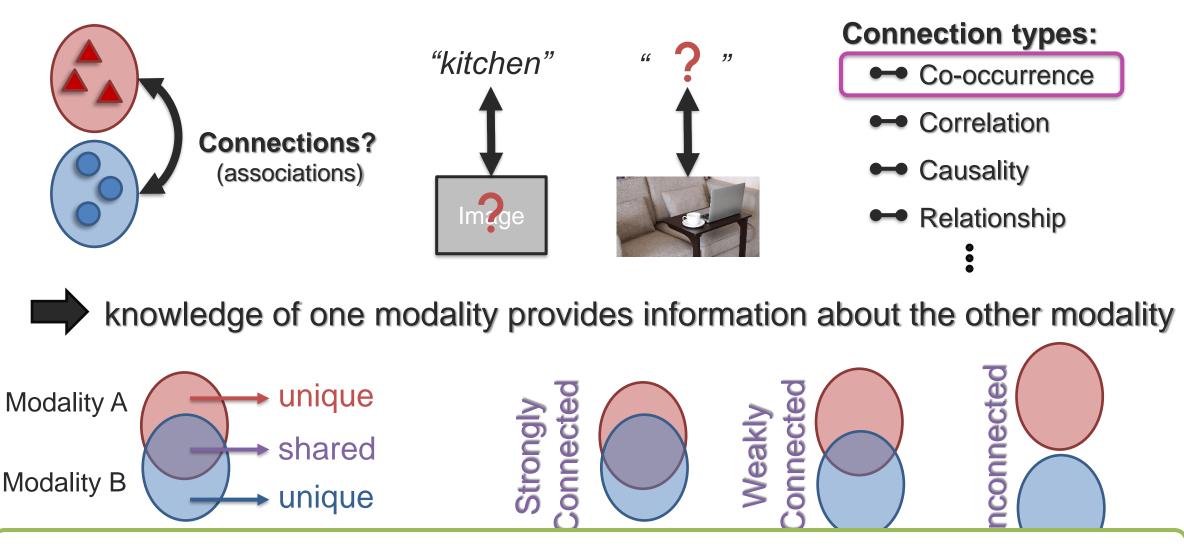
A Quick Review

Multimodal is the scientific study of

heterogeneous, connected and interacting data

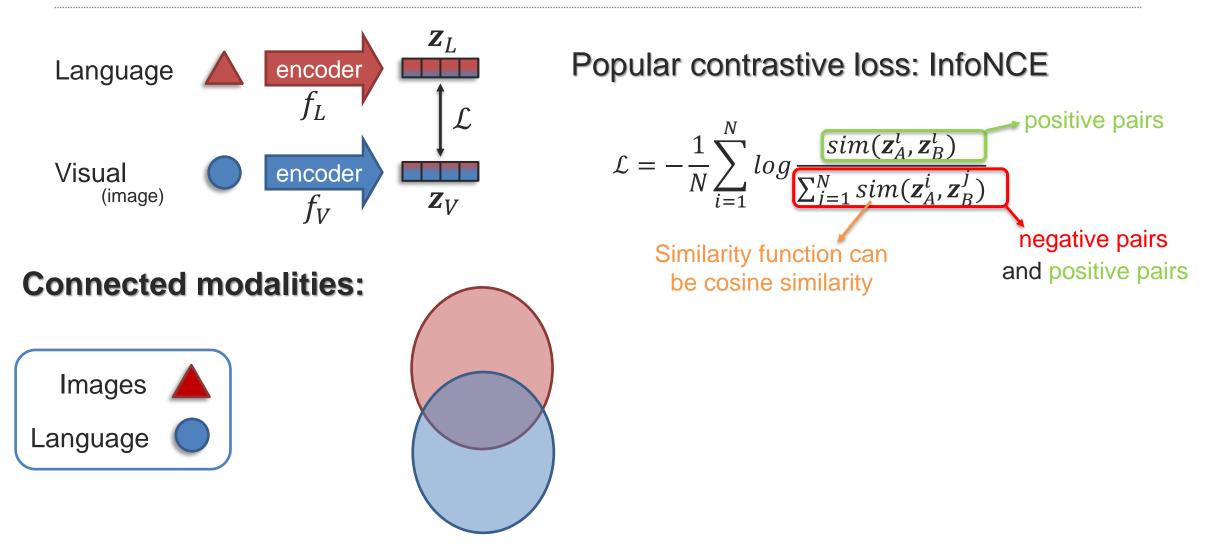


Connections between Modalities



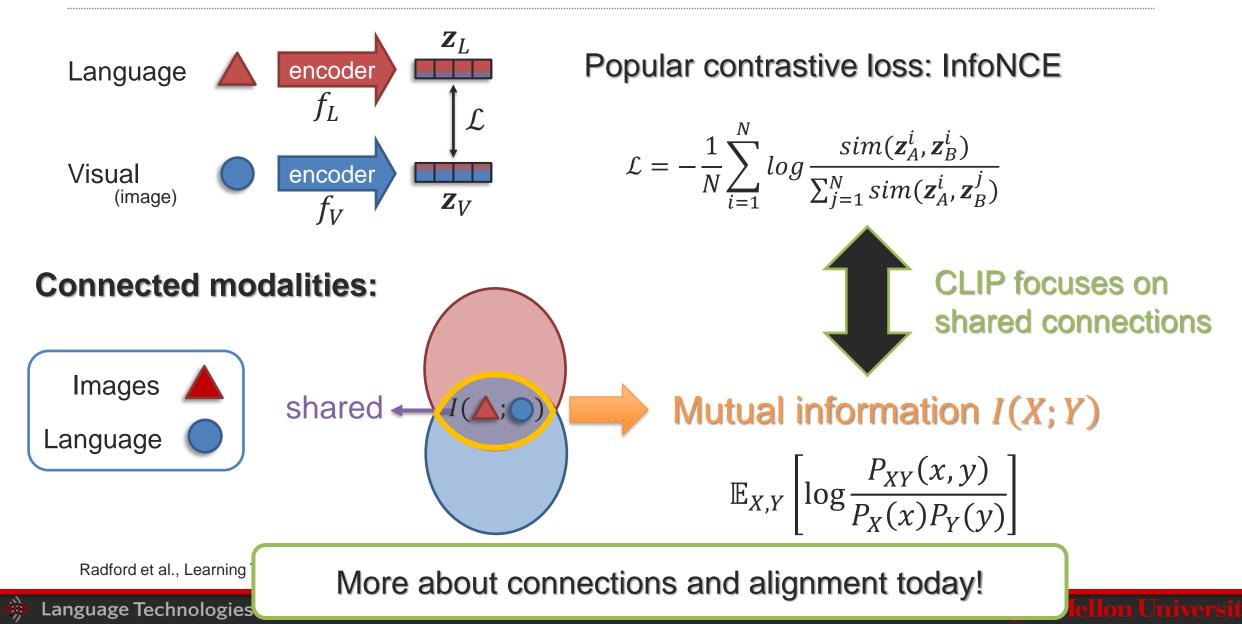
Connections are part of the data... and models will try to learn them.

Coordinated Representations – Example: CLIP

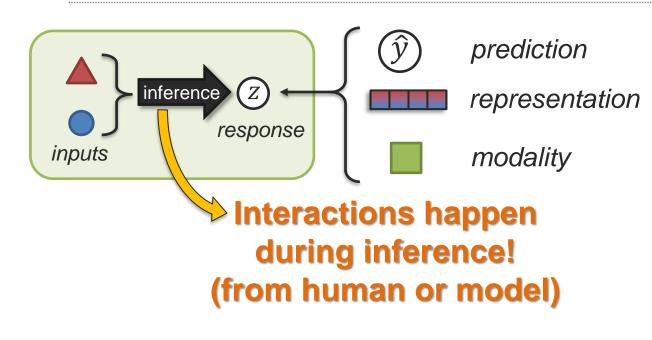


Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arxiv 2021

Coordinated Representations – Example: CLIP



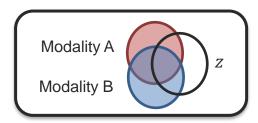
Modality Interactions



Interactions require more than the input modalities!

Interactions taxonomy:

Level 1: Response(s) and Input Modalities



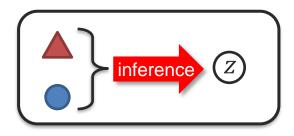
Co-occurrence

- Redundancy
- Dominance

Emergence

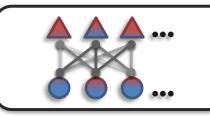
. . .

Level 2: Interactions – Internal Mechanics



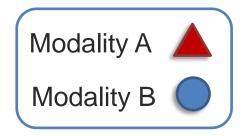
Additive
Multiplicative
Polynomial
Nonlinear

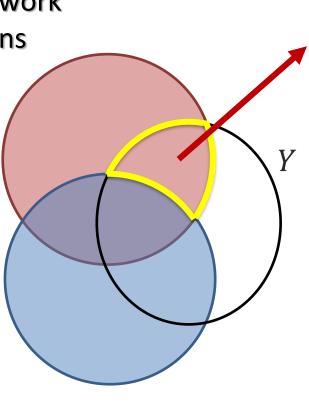
Level 3: Contextualized Interactions



. . .

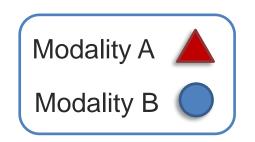
Information theory as a framework for modeling Level 1 interactions between input modalities and responses

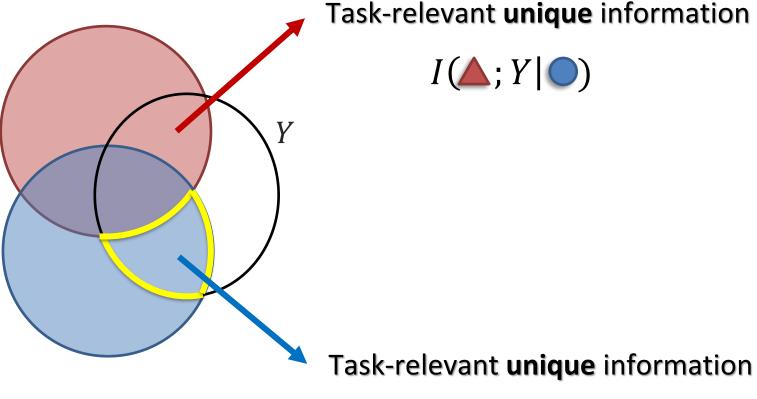


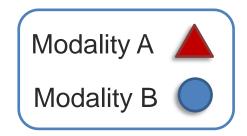


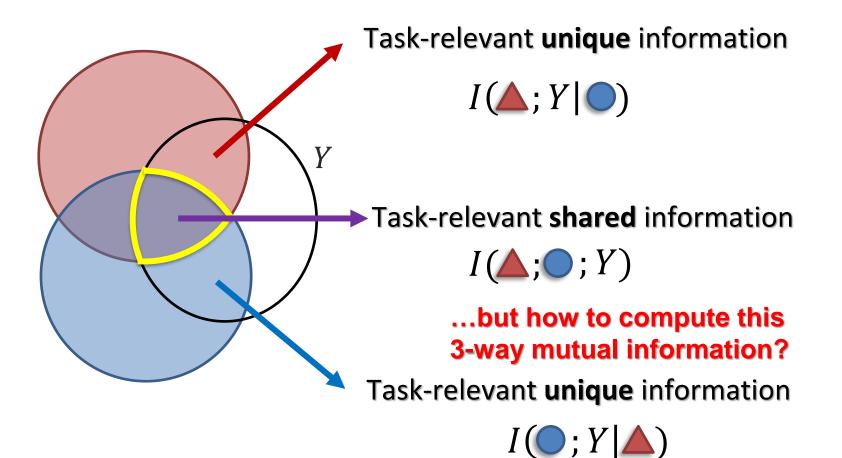
Task-relevant unique information

Mutual information
$I(\triangle; Y)$
but without 🔵



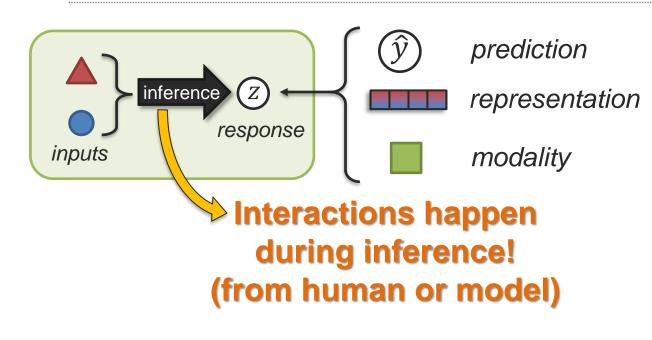






Partial Information Task-relevant **unique** information **Decomposition (PID)** $I(\triangle; Y|\bigcirc)$ $I(\triangle; \bigcirc; Y) = R - S$ Yfactorizes 3-way mutual Task-relevant shared information information into: $I(\triangle; \bigcirc; Y)$ R: redundancy ...but how to compute **3-way mutual information?** S: Synergy Task-relevant **unique** information More about PID in future lectures $I(\bigcirc; Y | \blacktriangle)$ and reading assignments

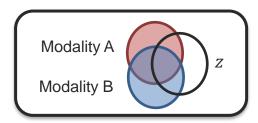
Modality Interactions



Interactions require more than the input modalities!

Interactions taxonomy:

Level 1: Response(s) and Input Modalities

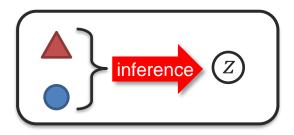


Co-occurrenceRedundancy

□ Emergence

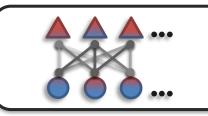
. . .

Level 2: Interactions – Internal Mechanics



Additive
Multiplicative
Polynomial
Nonlinear

Level 3: Contextualized Interactions



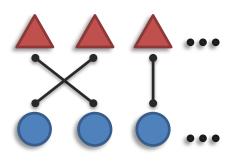
. . .

Challenge 2: Alignment

Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

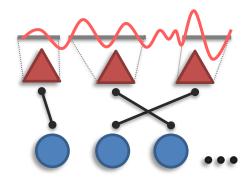
Sub-challenges:

Discrete Alignment



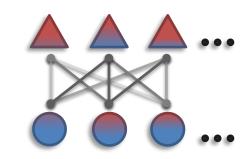
Discrete elements and connections

Continuous Alignment



Segmentation and continuous warping

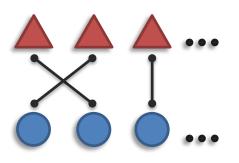
Contextualized Representation



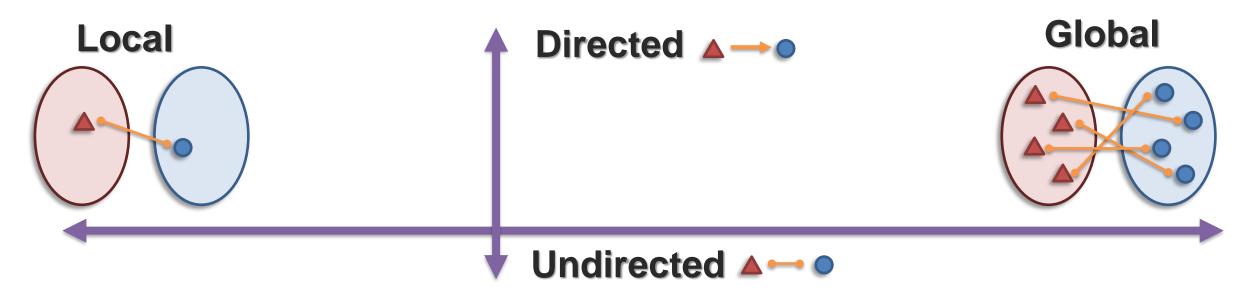
Alignment + representation

勜

Sub-Challenge 2a: Discrete Alignment

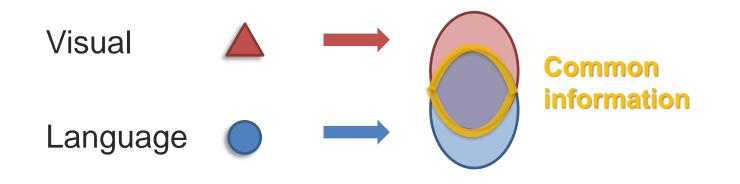


Definition: Identify and model discrete connections between elements of multiple modalities

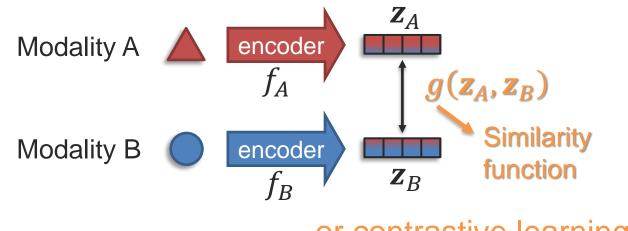


Definition: Tying language (words, phrases,...) to non-linguistic elements, such as the visual world (objects, people, ...)

Local Alignment – Coordinated Representations

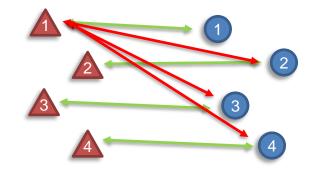


Learning coordinated representations:



or contrastive learning

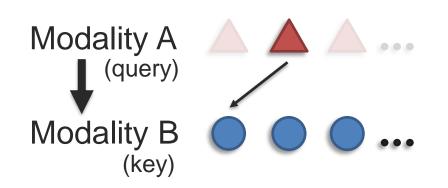
Supervision: Paired data

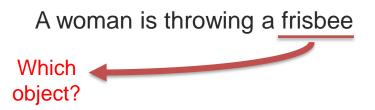


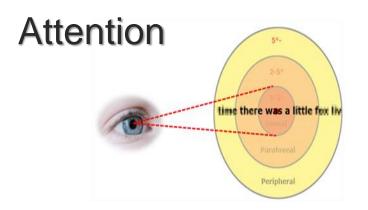
劎

Carnegie Mellon University

Directed Alignment

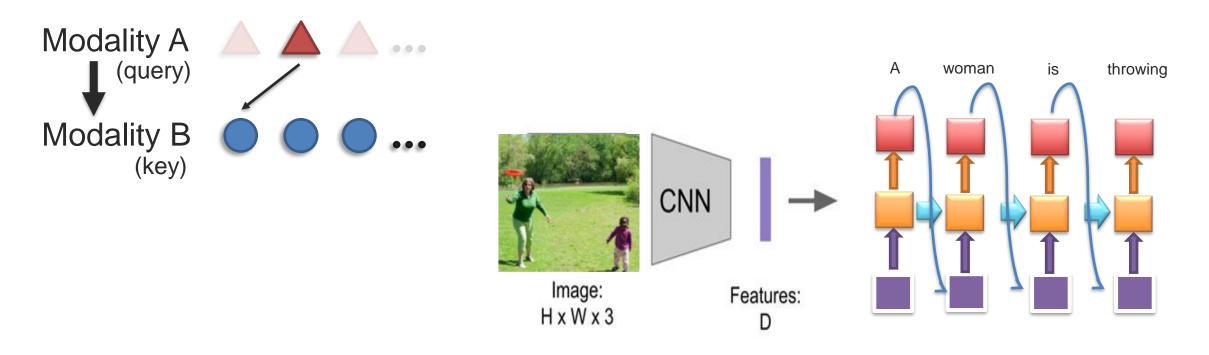






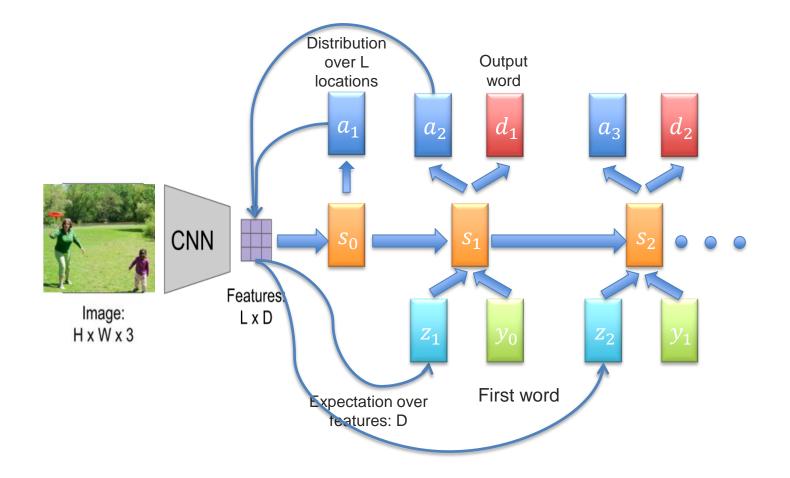
瘚

Directed Alignment – Image Captioning



Should we always use the final layer of the CNN for all generated words?

Directed Alignment – Image Captioning



Attention Gates

Before:

$$p(y_i|y_1,\ldots,y_{i-1},\boldsymbol{x}) = g(y_{i-1},\boldsymbol{s_i},\boldsymbol{z}),$$

where $z = h_T$, last encoder state and s_i is the current state of the decoder Now:

$$p(y_i|y_1, ..., y_{i-1}, x) = g(y_{i-1}, s_i, z_i)$$

Have an attention "gate"

• A different context z_i used at each time step!

$$\mathbf{z}_i = \sum_{j=i}^{T_{\mathcal{X}}} \alpha_{ij} \mathbf{h}_j$$

 α_{ij} is the (scalar) attention for word j at generation step i

Attention Gates

So how do we determine α_{ij} ?

$$\alpha_{i,j} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_{\chi}} \exp(e_{ik})} \implies \text{softmax, making sure they sum to 1}$$

where:

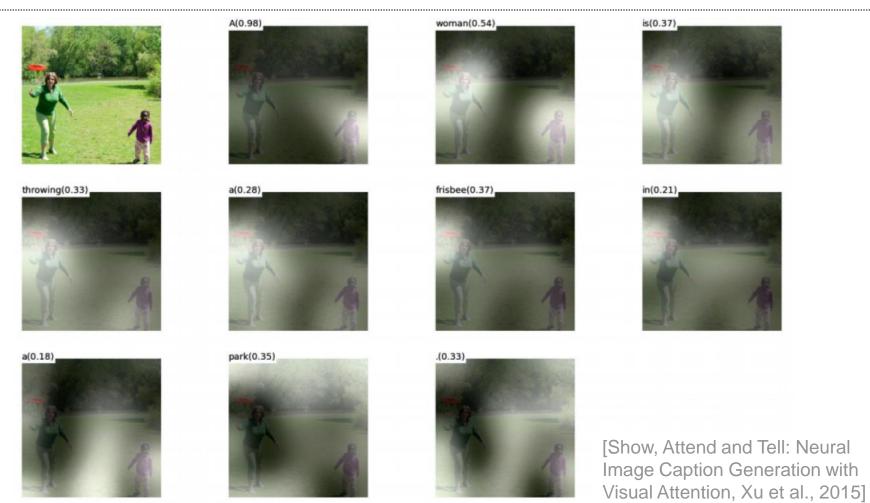
$$e_{ij} = \boldsymbol{v}^T \, \sigma \big(W \boldsymbol{s_{i-1}} + U \boldsymbol{h_j} \big)$$

a feedforward network that can tell us how important the current encoding is

v, W, U- learnable weights

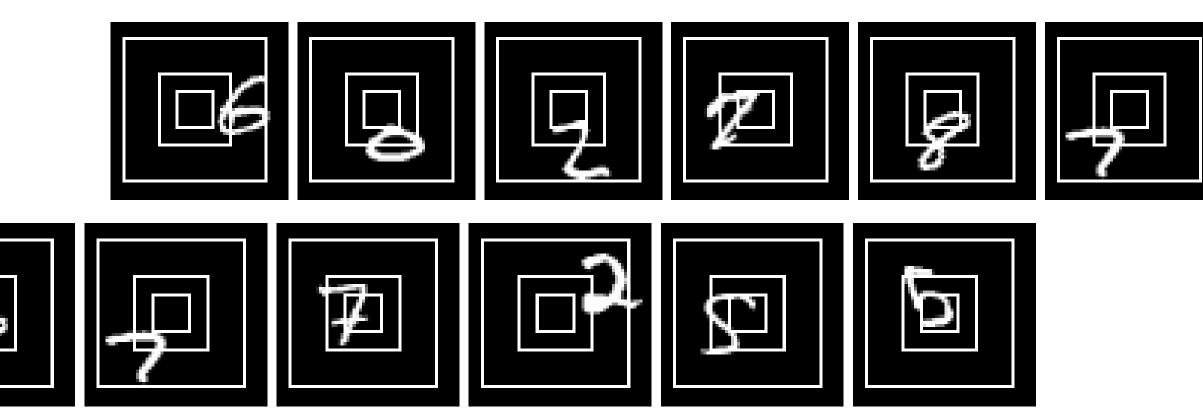
$$z_i = \sum_{j=i}^{T_x} \alpha_{ij} h_j$$
 expectation of the context (a fancy way to say it's a weighted average)

Example – Image Captioning

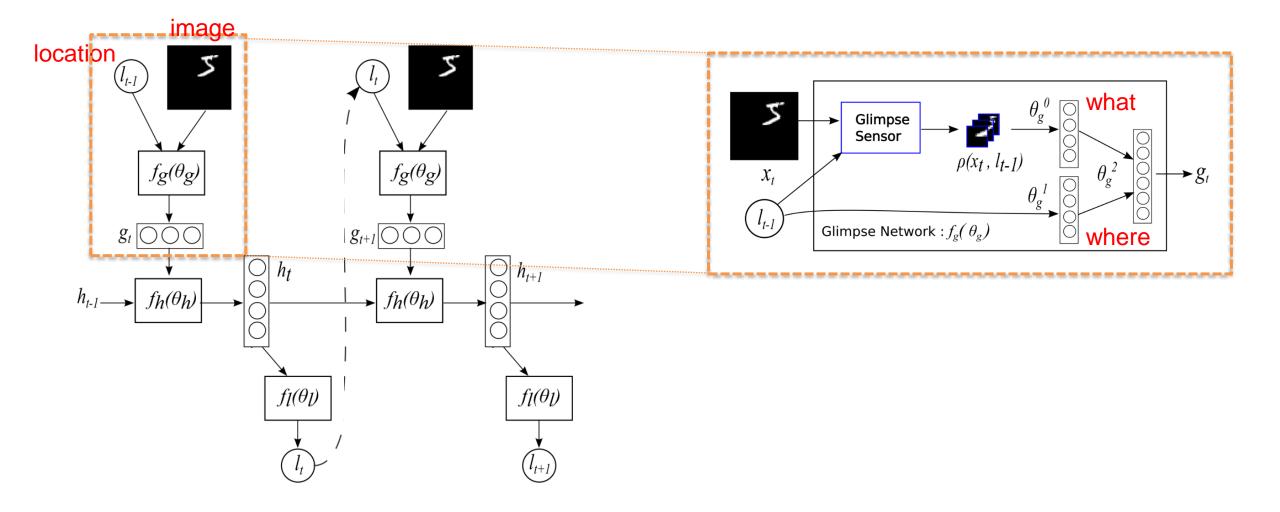


瘚

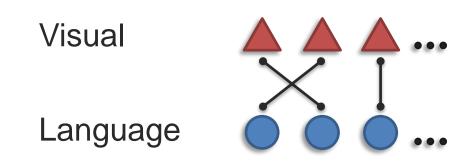
Hard attention - Example

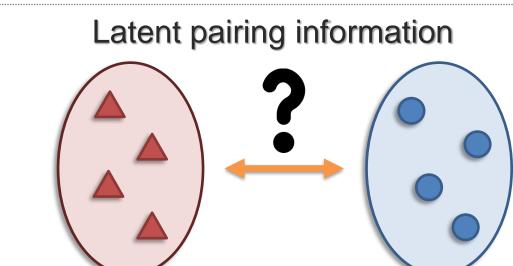


Hard Attention – Recurrent Model of Visual Attention

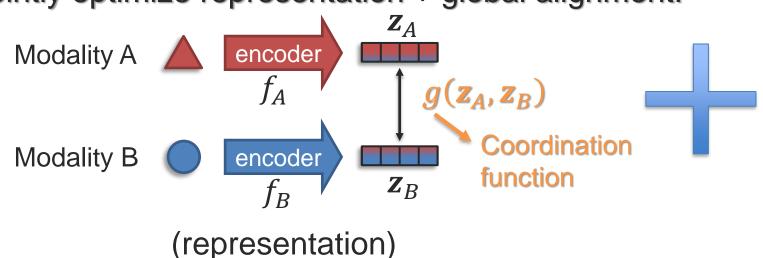


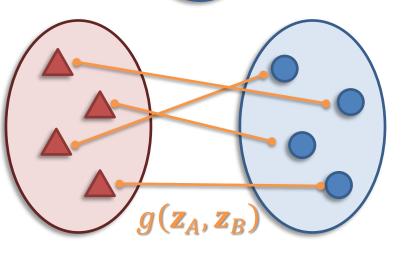
Global Alignment





Jointly optimize representation + global alignment:

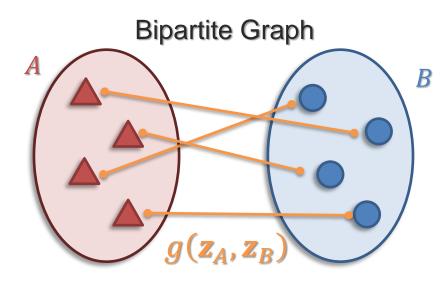




(global alignment)

Carnegie Mellon University

Assignment Problem



Initial assumptions:

- Same number of elements in A and B modalities
- 1-to-1 "hard" alignment between elements
- All elements assigned (aka "perfect matching")

Naive solution: check all assignments

Better solution: Linear Programming

 $x_{ii} = 1$ when matching connection, otherwise 0

(vector of indices)

Assignment:

Maximize:

勜

Similarity weights:

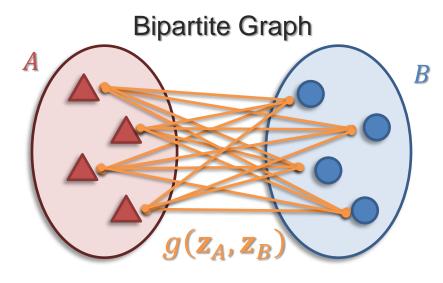
W(l,f(l)) =max $f \in \operatorname{Perm}(N)$

$$w_{(i,j)} = g(\mathbf{z}_A^i, \mathbf{z}_B^j)$$

$$\max_{\{x_{ij}\}} \sum_{(i,j)\in A\times B} w_{i,j} x_{ij}$$



Optimal transport



New assumptions:

- Different number of elements in A and B modalities
- Many-to-many "soft" alignment between elements

It can be seen as "transporting" elements from modality A to modality B (and vice-versa)

Assignments:

 $x_{(i,j)}$: soft alignment between \mathbf{z}_A^i and \mathbf{z}_B^j

Similarity weights:

$$w_{(i,j)} = g(\mathbf{z}_A^i, \mathbf{z}_B^j)$$

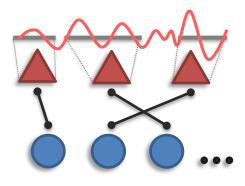
Maximize:

勜



Continuous Alignment

Challenge 2b: Continuous Alignment



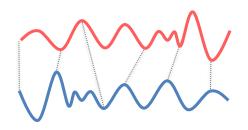
Definition: Model alignment between modalities with continuous signals and no explicit elements

Continuous warping

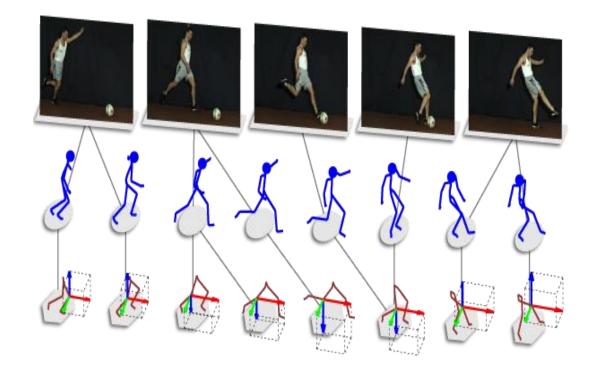
Discretization (segmentation)

劎

Continuous Warping – Example



Aligning video sequences



Dynamic Time Warping (DTW)

We have two unaligned temporal unimodal signals

•
$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n_x}] \in \mathbb{R}^{d \times n_x}$$

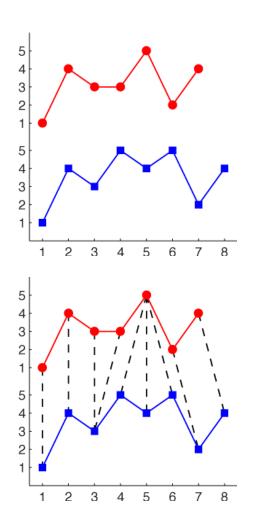
• $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{n_y}] \in \mathbb{R}^{d \times n_y}$

Find set of indices to minimize the alignment difference:

$$L(\boldsymbol{p}^{\boldsymbol{x}}, \boldsymbol{p}^{\boldsymbol{y}}) = \sum_{t=1}^{l} \left\| \boldsymbol{x}_{\boldsymbol{p}_{t}^{\boldsymbol{x}}} - \boldsymbol{y}_{\boldsymbol{p}_{t}^{\boldsymbol{y}}} \right\|_{2}^{2}$$

where p^{x} and p^{y} are index vectors of same length

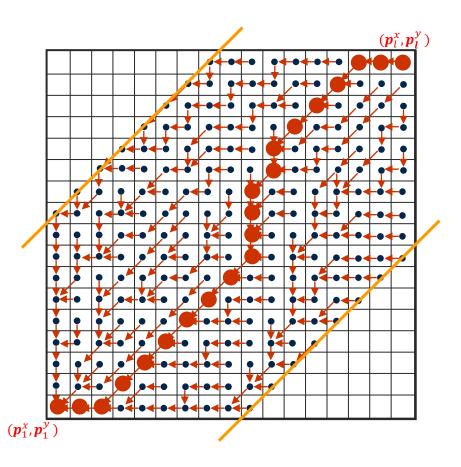
Dynamic Time Warping is designed to find these index vectors!



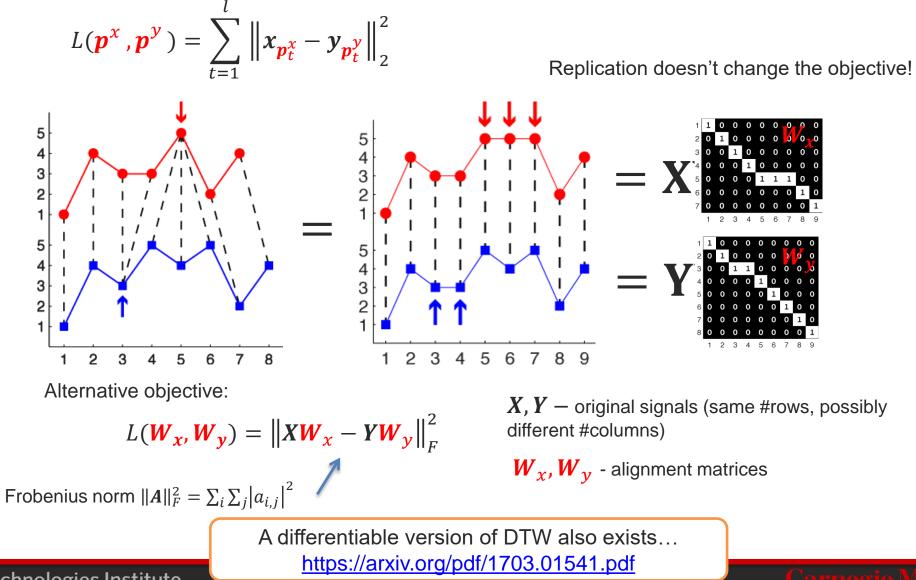
Lowest cost path in a cost matrix

- Restrictions?
 - Monotonicity no going back in time
 - Continuity no gaps
 - Boundary conditions start and end at the same points
 - Warping window don't get too far from diagonal
 - Slope constraint do not insert or skip too much

Solved using dynamic programming while respecting the restrictions



DTW alternative formulation



勜

Carnegie Mellon University

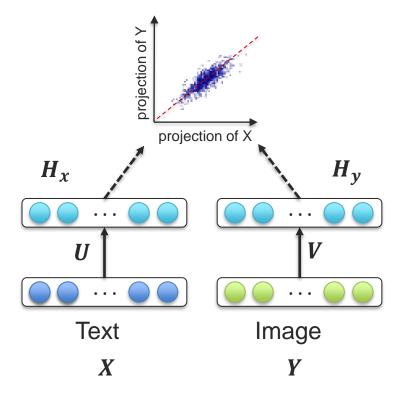
Canonical Correlation Analysis – Reminder

CCA loss can also be re-written as:

 $L(\boldsymbol{U},\boldsymbol{V}) = \|\boldsymbol{U}^T\boldsymbol{X} - \boldsymbol{V}^T\boldsymbol{Y}\|_F^2$

subject to:

$$\boldsymbol{U}^T \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}} \boldsymbol{U} = \boldsymbol{V}^T \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}} \boldsymbol{V} = \boldsymbol{I}, \ \boldsymbol{u}_{(j)}^T \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{v}_{(i)} = \boldsymbol{0}$$



瘚

Dynamic Time Warping + Canonical Correlation Analysis = Canonical Time Warping

$$L(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}_{\boldsymbol{x}}, \boldsymbol{W}_{\boldsymbol{y}}) = \left\| \boldsymbol{U}^{T} \boldsymbol{X} \boldsymbol{W}_{\boldsymbol{x}} - \boldsymbol{V}^{T} \boldsymbol{Y} \boldsymbol{W}_{\boldsymbol{y}} \right\|_{F}^{2}$$

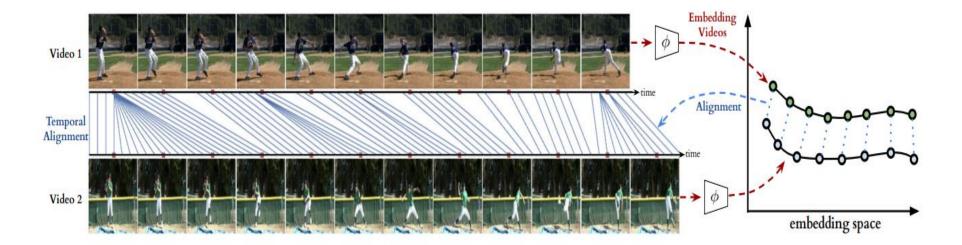
Allows to align multi-modal or multi-view (same modality but from a different point of view)

- W_x, W_y temporal alignment
- *U*, *V* cross-modal (spatial) alignment

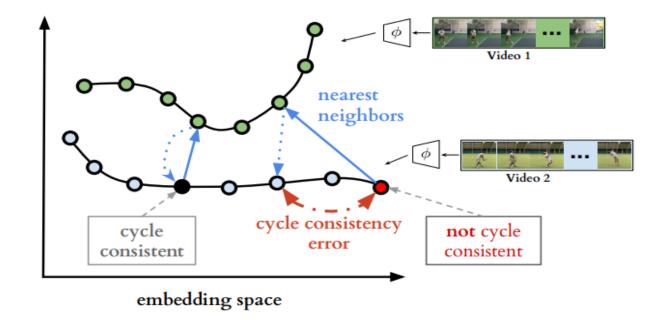
[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]

Temporal Alignment and Neural Representation Learning

Premise: we have paired video sequences that can be be temporally aligned

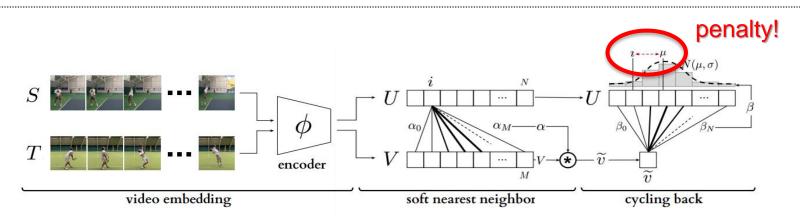


How can we define a loss function to enforce the alignment between sequences while at the same time learning good representations? Solution: Representation learning by enforcing Cycle consistency



Main idea: My closest neighbor also views me as their closest neighbor

Temporal Cycle-Consistency Learning



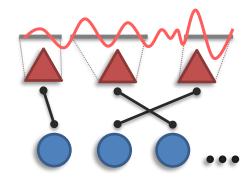
Compute "soft" / "weighted" nearest neighbour:

distances:
$$\alpha_j = \frac{e^{-||u_i - v_j||^2}}{\sum_k^M e^{-||u_i - v_k||^2}}$$
 Soft nearest neighbor: $\tilde{v} = \sum_j^M \alpha_j v_j$,

Find the nearest neighbor the other way and then penalize the distance:

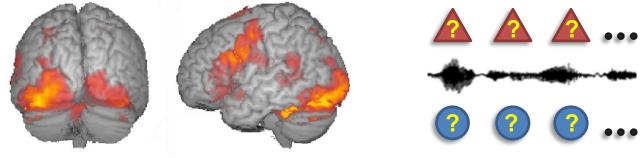
$$\beta_k = \frac{e^{-||\tilde{v} - u_k||^2}}{\sum_j^N e^{-||\tilde{v} - u_j||^2}} \qquad \qquad L_{cbr} = \frac{|i - \mu|^2}{\sigma^2} + \lambda \log(\sigma)$$

Discretization (aka Segmentation)



Common assumptions: (1) Segmented elements

Examples:



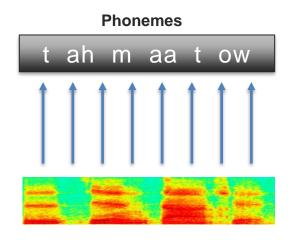
Medical imaging

Signals

Images

Discretization – Example

Sequence Labeling and Alignment



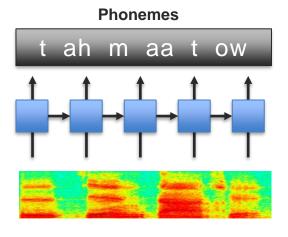
Spectogram

How can we predict the sequence of phoneme labels?

Carnegie Mellon University

Discretization – Example

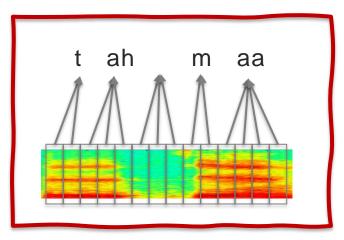
Sequence Labeling and Alignment



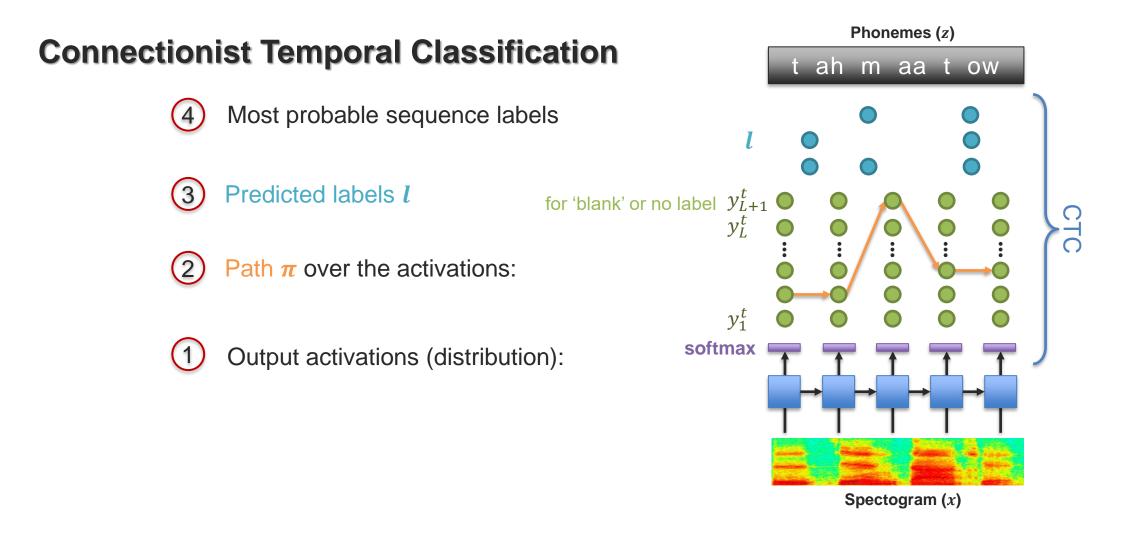
Spectogram

How can we predict the sequence of phoneme labels?

Challenge: many-to-1 alignment



Discretization – A Classification Approach

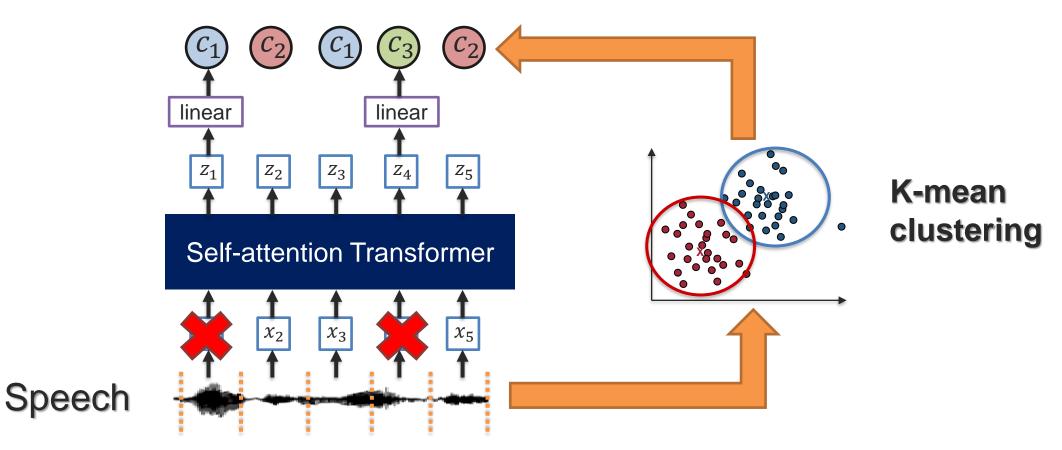


Grave et al., Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, ICML 2006

Carnegie Mellon University

Discretization and Representation – Cluster-based Approaches

HUBERT: Hidden-Unit BERT

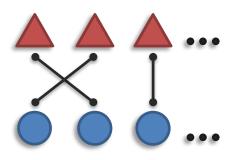


Hsu et al., HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units, arxiv 2021

Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

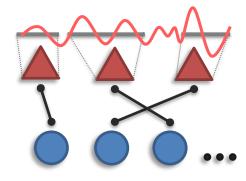
Sub-challenges:

Discrete Alignment



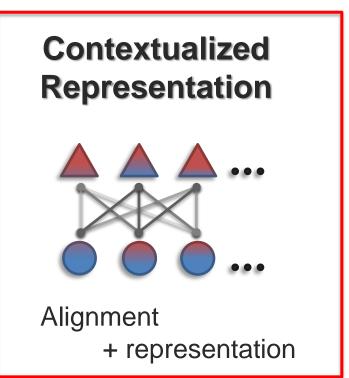
Discrete elements and connections

Continuous Alignment



Segmentation and continuous warping

Thursday!



勜