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Administrative Stuff
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Second Project Assignment (Due Sunday 10/8)
Main goals:

1. Help clarify and expand your research ideas
= Build qualitative intuitions by directly studying the original data
= Perform analyses on your dataset, relevant to your research ideas

2. Understand the structure in your data and modalities
= Perform analyses and visualizations to understand each modality
= Study representations from language and visual modalities

Two types of analyses:
» |dea-oriented analyses
= Modality-oriented analyses
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Second Project Assignment (Due Sunday 10/8)

Examples of idea-oriented analyses:
= What external knowledge is needed when performing the task?
= How often multimodal information is needed? How is it integrated?
= What biases may be present in the data? Which modalities?

Examples of modality-oriented analyses:
= What are the different verbs used in the VQA questions?
* What objects do not get detected? Are they important?
= Visualize face embeddings with respect of emotion labels
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Second Project Assignment (Due Sunday 10/8)

ldea-oriented analyses:

* Human simulations: Instead of a computer, try to do the same task as
a human. Gather notes on how you perform the task.

= Data analysis: study the multimodal data (e.g., using statistical
methods) to clarify your hypotheses related to your research ideas

Modality oriented analyses:

= |Language modality: explore the language structure in your dataset.
You can compare word-level and sentence-level embeddings.

= Visual modality: study visual representations for your dataset. You
visualize how your visual features successfully model your labels.
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Second Project Assignment (Due Sunday 10/8)

Number of analyses:
= Teams of 3 students: 2 analyses (4 pages)
= Teams of 4 students: 3 analyses (5 pages)
= Teams of 5 students: 4 analyses (6 pages)

» You can mix and match between idea-oriented and modality-oriented
» Be sure to talk with your TA about formalizing your analysis plan
» Each analysis need a separate discussion section

Detalled instructions on Piazza (Resources section)
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Objectives of today’s class

= Positional embeddings
= Language pre-training
= BERT: Bidirectional Encoder Representations from Transformers

= Multimodal transformers (Image and language)
= Concatenated transformers (VisualBERT, Uniter)
= Crossmodal transformers (VILBERT, LXMERT
= Modality-shift transformer (MAG-BERT)

= Seguence-to-sequence modeling with Transformers
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Positional Embeddings



Transformer Self-Attention
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Transformer Multi-Head Self-Attention

Transformer’s Multi-Head
Self-Attention Layer
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L G &
a @4 &

X1 X5 X3 X4 Xs

I do not like it
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Transformer Multi-Head Self-Attention

Transformer’s Multi-Head
Self-Attention Layer

L B I
L G &
a @4 &

X1 X5 X3 X4 Xs

not like I it do

What happens if the words are shuffled?
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Position embeddings

[ Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding
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Position embeddings

[ Position information is not encoded in a self-attention module

How can we encode position information?
f

Sum
Simple approach: one-hot encoding + linear embeddings + <
concat
.
X2 | P2 X3|P3 X4|Pa Xs5| Ps
not like I it do
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Transformer Multi-Head Self-Attention

Transformer’s Multi-Head
Self-Attention Layer
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Transformer Multi-Head Self-Attention

In vector format...

Transformer’s Multi-Head

Self-Attention Layer
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Transformer Multi-Head Attention

Transformer’s Multi-Head
Attention Layer
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Transformer — Residual Connection
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Language Pre-training



Token-level and Sentence-level Embeddings

Token-level embeddings Sentence-level embedding
hi| [hz2| |hs]| |ha| |hs hs

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

I do not like it I do not like it
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Pre-Training and Fine-Tuning

A 3 3 3 A
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xl xz x3 x4_ x5 x1 xZ X3 X4 x5

I do not like it | do not like it
Pre-training Fine-Tuning
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BERT: Bidirectional Encoder Representations from Transformers

Advantages:

@ Jointly learn representation for token-level and sentence level

@ Same network architecture for pre-training and fine-tuning

X1 X2 X3 X4 Xs

I do not like it
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BERT: Bidirectional Encoder Representations from Transformers

Advantages:
Jointly learn representation for token-level and sentence level
Same network architecture for pre-training and fine-tuning

Can be used learn relationship between sentences

A
PEEO

Models bidirectional and long-range interactions between tokens

hs hl hz h3 h4 h5 hsep hll hlz h,3 h,4 h’5

How can
we do all
this?

X1 Xy X3 X4 X5 sep x’]_ x,2 x,3 x,4_ x’5

| do not like it | enjoy my time here
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BERT: Bidirectional Encoder Representations from Transformers

Advantages:
Jointly learn representation for token-level and sentence level
Same network architecture for pre-training and fine-tuning

Can be used learn relationship between sentences

®EOOO

Models bidirectional interactions between tokens

hs hl hZ h3 h4 h5 hsep hll hlz h,3 h,4 hIS

Special . But how to train
e evel Transformer Self-Attention self-supervised?
token
A

*=aua cls X1 Xy X3 X4 X5 sep .X'Il x,2 x,3 x,4_ x’5

| do not like it | enjoy my time here
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Pre-training BERT Model

1) Masked Language Model
Randomly mask input tokens and then try to predict them

What is the loss function?

like enjoy

hs hy h, h3 ﬁ h5 hsep hll hlz h,3 h,4 hIS

a a a a a a a a a a a a

a a a a a a a a a a a a

! ! !

cls X1 X2 X3 |mask X5 sep X |mask X3l X4 |Xs

I do not it I my time here
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Pre-training BERT Model

2 ) Next Sentence Prediction
Given two sentences, predict if this is the next one or not

IsNext

NotNext

@ hy| [ho] [hs] [ha] [Bs] [hsen [R3] [B2] [R3] [Wd] [A%s

a a a a a a a a a a a a

! ! ! ! !

cls X1 Xy X3 X4 X5 sep X1 X 2 X 3 X 4 X 5

| do not like it | enjoy my time here
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Fine-Tuning BERT

@ Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

How?

hs hl h2 h3 h4 h5 hsep hll hlz h,3 h,4 hIS

a a a a a a a a a a a a

a a a a a a a a a a a a

! ! ! ! !

cls X1 Xy X3 X4 X5 sep X1 X 2 X 3 X 4 X 5

| do not like it | enjoy my time here
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Fine-Tuning BERT

@ Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

A\

¥y And if we have a label for each token?

t

softmax

|
hs| | ha| |h2| [hs| [ha] [hs

a a a a a
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Transformer
Self-Attention

a A

cls x1 Xz x3 x4 x5

I do not like it
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Fine-Tuning BERT

@ Token-level classification for only one sentence

Examples: part-of-speech tagging, slot filling

3;1 yf 2 3;3 3;4 3}5 How to compare two
sentences?
t 1 t 1
hS hl hZ h3 h4- h5
Transformer

Self-Attention

cls x1 Xz x3 x4 x5

I do not like it
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Fine-Tuning BERT

@ Question-answering: find start/end of the answer in the document

Paragraph: ... Other legislation followed, including
the Migratory Bird Conservation Act of 1929, a 1937
treaty prohibiting the hunting of right and gray whales,
and the Bald Eagle Protection Act of 1940. These later — Question 2: “What was the name of the 1937 treaty?”
laws had a low cost to society—the species were rela-  Plausible Answer: Bald Eagle Protection Act

tively rare—and little opposition was raised.”

Question 1: “Which laws faced significant opposition?”
Plausible Answer: [ater laws

hs hl hZ h3 h4 h5 hsep hll hlz h,3 h,4 hIS

a a a a a a a a a a a a

Transformer Self-Attention How?

a a a a a a a a a a a a

! ! ! ! !

cls X1 Xy X3 X4 X5 sep X1 X 2 X 3 X 4 X 5

How old is the man He IS 25 years old
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Fine-Tuning BERT

@ Question-answering: find start/end of the answer in the document

-~
_Same t ottt 4
architecture softmax

for the end ™ é! é’é)!
time
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Transformer Self-Attention
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! ! ! ! !

cls X1 Xy X3 X4 X5 sep X1 X 2 X 3 X 4 X 5

How old is the man He IS 25 years old
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Other Fine-tuning Approaches

Classification Start Text Extract }* Transformer (—{ Linear
Entailment Start Premise Delim | Hypothesis | Extract }» Transformer | Linear
Start Text 1 Delim Text 2 Extract }» Transformer
Similarity = Linear
Start Text 2 Delim Text 1 Extract | = Transformer
Start Context Delim Answer 1 | Extract | > Transformer [~ Linear [
Multiple Choice | Start Context Delim | Answer 2 | Extract | > Transformer — Linear {
Start Context Delim Answer N Extract | > Transformer > Linear

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
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Multimodal Embeddings

How to learn contextualized
representations from multiple modalities?

|

| really liked it this time

|

Language Visual Acoustic

Option 1: Concatenate modalities and learn BERT transformer
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Simple Solution: Contextualized Multimodal Embeddings

Transformer self-attention

| | |

| really liked it this time

Language Visual Acoustic
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VisualBERT

Objective 2 Objective 1
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UNITER

Similar Transformer architecture to BERT and VisualBERT... but with slightly different optimization

(Image Embedder ) UNITER Model ( Text Embedder )
Image Feat ( ' s = h Text Feat
ge reature e eature
A -Transformer : , | 3
A A A A A A L ? A A A A 4
@< ‘ _—®
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- L . MASK] man with his dog - man with his dog [CLS]
Word Region Alignment (WRA)
Masked Language Modeling (MLM) Masked Region Modeling (MRM) Image-Text N-Il-atch'ng (IT™)
: . -Tex i
Masking words Masking images s the sentence matches the image?
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Multimodal Embeddings

How to learn contextualized
representations from multiple modalities?

|

| really liked it this time

|

Language Visual Acoustic

Option 2: Look at pairwise interactions between modalities
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Multimodal Transformer — Pairwise Cross-Modal
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Cross-Modal Transformer Module (V — L)
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Visually contextualizing
the verbal modality

‘I like...”
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Visually contextualizing

Cross-Modal Transformer Module (V - L)

—
=
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Similarities:
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the verbal modality
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Cross-Modal Transformer Module (f - a)

Q“K; T.xd
softmax( NG )VJ R
A
T NN CMpo (X0 X0) ™
NOVNNNNNN :
NNNNNNN
QuK]
Tsoftmax( dk‘ )T
Qa c RTaxdk KB = RTB Xdj, I/B c RTB X d,

Modality « Modality
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VILBERT

Cross-Modal Transformer Modules

f
vO P |
= Embed H<*{Co-TRM—{{ TRM ]—.—»[mo,h,,l,---,hﬂ]
<IMG> Prdad | |
Ty L |
. e I I
(<CLS> Man shopping for fruit __ <SEP> | , |
< an shopping for fruit _ | 5 N . ( ]
o 5 S W W }-{ Embed »{TRM_r+{eo TRV TRV }— 39 .

Unimodal Transformer

Lu, Jiasen, et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." arXiv (August 6, 2019).
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LXMERT
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Cross-Modality Encoder
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Reminder: Modality-Shifting Fusion

Primary shift
X4 Z
\
[(TTT1
Secondary Xg .
it
modalities 0T
xC ~

Example with language modality:
Primary modality: language

Secondary modalities: acoustic and visual

Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019
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Modality-Shifting with Transformers

Multimodal Adaptation Gate (MAG) + BERT

"""""""""
Transformer self-attention [ Shittng
A 2 2 2 .
Multimodal Multimodal Multimodal ﬁ
Shifting Gate Shifting Gate Shifting Gate |
h Attention
E, V, E, V, e E, Vi Gating
T ? t \\\\\
Transformer self-attention | ™ i ..
. T . T . . _T_\ ,—1—\ \\\\ Egzg(zgdhlg Eﬁ;;gcllic;.:flg Eglrtifel:ia(llmg
lersy [ 1, ] L] e (L

Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020
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Seguence-to-Sequence
Using Transformer
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Seguence-to-Sequence Modeling

Je n' aime pas cela
YVi| | V2 Y3| |Va| |Vs
a a a a a

How can we perform seq2seq
translation with transformer attention?

X1 X2 X3 X4 X5

I do not like it
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Seg2Seq with Transformer Attentions

Je n" aime pas cela
Vil | V2| (D3| |Va| |Fs
r 1t t 1t 1

AR RE

self-attention

X1 X2 X3 X4 X5

I do not like it
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Seg2Seq with Transformer Attentions

Je n" ame
| | V2| | I3
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self-attention “masked” self-attention
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<
(0))]

Language Technologies Institute




Seg2Seq with Transformer Attentions

Je n' aime
Y1 Y2 Y3
a2 a a

How should we connect the

encoder and decoder self-a.ttentlon Transformer attention
to the transformer attention? E E
KeyT ValueT
Vector format —> h g
self-attention “masked” self-attention

X1 X2 X3 X4 X5

<
o

V1 Y2

Je n'

I do not like it

START
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Seg2Seq with Transformer Attentions

Je n' aime
Vil | V2| | V3
“encoder-decoder” | Transformer attention
transformer ‘ i
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" Key Value
i transformer Y
1
1
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