

Language Technologies Institute

Multimodal Machine Learning

Lecture 5.1: Multimodal Transformers (Part 1)

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yanatan Bisk.

Administrative Stuff

Second Project Assignment (Due Sunday 10/8)

Main goals:

- 1. Help clarify and expand your research ideas
 - Build qualitative intuitions by directly studying the original data
 - Perform analyses on your dataset, relevant to your research ideas
- 2. Understand the structure in your data and modalities
 - Perform analyses and visualizations to understand each modality
 - Study representations from language and visual modalities

Two types of analyses:

- Idea-oriented analyses
- Modality-oriented analyses

Examples of **idea-oriented** analyses:

- What external knowledge is needed when performing the task?
- How often multimodal information is needed? How is it integrated?
- What biases may be present in the data? Which modalities?

Examples of **modality-oriented** analyses:

- What are the different verbs used in the VQA questions?
- What objects do not get detected? Are they important?
- Visualize face embeddings with respect of emotion labels

Idea-oriented analyses:

- Human simulations: Instead of a computer, try to do the same task as a human. Gather notes on how you perform the task.
- Data analysis: study the multimodal data (e.g., using statistical methods) to clarify your hypotheses related to your research ideas

Modality oriented analyses:

- Language modality: explore the language structure in your dataset.
 You can compare word-level and sentence-level embeddings.
- Visual modality: study visual representations for your dataset. You visualize how your visual features successfully model your labels.

Second Project Assignment (Due Sunday 10/8)

Number of analyses:

- Teams of 3 students: 2 analyses (4 pages)
- Teams of 4 students: 3 analyses (5 pages)
- Teams of 5 students: 4 analyses (6 pages)
- > You can mix and match between idea-oriented and modality-oriented
- > Be sure to talk with your TA about formalizing your analysis plan
- Each analysis need a separate discussion section

Detailed instructions on Piazza (Resources section)

Language Technologies Institute

Multimodal Machine Learning

Lecture 5.1: Multimodal Transformers (Part 1)

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

- Positional embeddings
- Language pre-training
 - BERT: Bidirectional Encoder Representations from Transformers
- Multimodal transformers (Image and language)
 - Concatenated transformers (VisualBERT, Uniter)
 - Crossmodal transformers (ViLBERT, LXMERT
 - Modality-shift transformer (MAG-BERT)
- Sequence-to-sequence modeling with Transformers

Positional Embeddings

Transformer Self-Attention

劎

Transformer Multi-Head Self-Attention

Transformer Multi-Head Self-Attention

What happens if the words are shuffled?

Position embeddings

Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding

Position embeddings

Position information is not encoded in a self-attention module How can we encode position information? Sum - or -concat Simple approach: one-hot encoding + linear embeddings + < $x_2 p_2$ $x_3 p_3$ $x_5 p_5$ $x_4 p_4$ χ_1 do like it not

Transformer Multi-Head Self-Attention

Transformer Multi-Head Self-Attention

Carnegie Mellon Universit

Transformer Multi-Head Attention

Carnegie Mellon University

Transformer – Residual Connection

Language Pre-training

Token-level and Sentence-level Embeddings

Token-level embeddings

Sentence-level embedding

Pre-Training and Fine-Tuning

Pre-training (e.g., language model)

Fine-Tuning

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- Jointly learn representation for token-level and sentence level
- Same network architecture for pre-training and fine-tuning

谢

BERT: Bidirectional Encoder Representations from Transformers

勜

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

勜

Pre-training BERT Model

1) Masked Language Model

Randomly mask input tokens and then try to predict them

What is the loss function?

瘚

Pre-training BERT Model

2 Next Sentence Prediction

Given two sentences, predict if this is the next one or not

瘚

1

Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

How?

瘚

1

Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

劎

2

Token-level classification for only one sentence

Examples: part-of-speech tagging, slot filling

How to compare two sentences?

劵

4

Question-answering: find start/end of the answer in the document

Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?" **Plausible Answer:** *later laws*

Question 2: *"What was the name of the 1937 treaty?"* **Plausible Answer:** *Bald Eagle Protection Act*

勜

4 Question-answering: find start/end of the answer in the document

劎

Other Fine-tuning Approaches

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Carnegie Mellon Universit

Language-Vision Transformers

Multimodal Embeddings

Option 1: Concatenate modalities and learn BERT transformer

Carnegie Mellon Universit

Simple Solution: Contextualized Multimodal Embeddings

Carnegie Mellon University

VisualBERT

A person hits a ball with a tennis racket

Li, Liunian Harold, et al. "Visualbert: A simple and performant baseline for vision and language." *arXiv* (2019).

UNITER

Similar Transformer architecture to BERT and VisualBERT... but with slightly different optimization

Chen, Yen-Chun, et al. "Uniter: Universal image-text representation learning." European conference on computer vision. 2020.

勜

Multimodal Embeddings

Option 2: Look at pairwise interactions between modalities

Carnegie Mellon Universit

Multimodal Transformer – Pairwise Cross-Modal

Cross-Modal Transformer Module ($V \rightarrow L$ **)**

Carnegie Mellon University

Cross-Modal Transformer Module ($V \rightarrow L$ **)**

Cross-Modal Transformer Module ($\beta \rightarrow \alpha$ **)**

Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

ViLBERT

Lu, Jiasen, et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." arXiv (August 6, 2019).

LXMERT

Tan, Hao, and Mohit Bansal. "Lxmert: Learning cross-modality encoder representations from transformers." arXiv (August 20, 2019).

Reminder: Modality-Shifting Fusion

Example with language modality:

Primary modality: language

Secondary modalities: acoustic and visual

Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019

Modality-Shifting with Transformers

Multimodal Adaptation Gate (MAG) + BERT

Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020

Carnegie Mellon Universit

Sequence-to-Sequence Using Transformer

Sequence-to-Sequence Modeling

Carnegie Mellon University

劎

How should we connect the encoder and decoder self-attention to the transformer attention?

劎