

Language Technologies Institute

Multimodal Machine Learning

Lecture 5.2: Structured Representations and Reasoning

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Administrative Stuff

Second Project Assignment (Due Sunday 10/8)

Main goals:

- 1. Help clarify and expand your research ideas
 - Build qualitative intuitions by directly studying the original data
 - Perform analyses on your dataset, relevant to your research ideas
- 2. Understand the structure in your data and modalities
 - Perform analyses and visualizations to understand each modality
 - Study representations from language and visual modalities

Two types of analyses:

- Idea-oriented analyses
- Modality-oriented analyses

Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures
Week 1	Course introduction	Multimodal applications and datasets
8/29 & 8/31	Multimodal core challenges	Research tasks and datasets
	Course syllabus	Team projects
Week 2	Unimodal representations	Unimodal representations
9/5 & 9/7 Read due: 9/9	 Dimensions of heterogeneity 	 Language representations
	 Visual representations 	 Signals, graphs and other modalities
Week 3	Multimodal representations	Multimodal representations
9/12 & 9/14 Read due: 9/16 Proj. Due: 9/13	Cross-modal interactions	Coordinated representations
	Multimodal fusion	Multimodal fission
Week 4 9/19 & 9/21 Proj. due: 9/24	Multimodal alignment and grounding	Alignment and representations
	 Explicit alignment 	 Self-attention transformer models
	 Multimodal grounding 	 Masking and self-supervised learning
Week 5	Multimodal transformers – Part 1	Multimodal Reasoning
9/26 & 9/28 Read due: 9/30	Language pretraining	Hierarchical and graph representations
	Multimodal transformers	Modular and neuro-symbolic models
Week 6	Multimodal transformers – Part 2	Multimodal language grounding
10/3 & 10/5 Proj. due: 10/8	 Image and video transformers 	Guest lecturer: Jack Hessel
	 Vision-language transformers 	Vision, language and grounding

Language Technologies Institute

Multimodal Machine Learning

Lecture 5.2: Structured Representations and Reasoning

Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

- Multimodal transformers
 - Modality-shift transformer (MAG-BERT)
- Sequence-to-sequence modeling with Transformers
- Going beyond sequences
 - Graph representations
 - Graph neural networks
 - Hierarchical representations
 - Modular representations
 - Neural module networks
 - Neuro-symbolic networks

Language-Vision Transformers

Simple Solution: Contextualized Multimodal Embeddings

Carnegie Mellon University

Multimodal Transformer – Pairwise Cross-Modal

Reminder: Modality-Shifting Fusion

Example with language modality:

Primary modality: language

Secondary modalities: acoustic and visual

Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019

Modality-Shifting with Transformers

Multimodal Adaptation Gate (MAG) + BERT

Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020

Carnegie Mellon Universit

Memory for Multimodal Sequences

Memory + aligned contextualized representations

Where have I visited previously?

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021] [Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

Memory for Multimodal Sequences

Memory + aligned contextualized representations

Where have I visited previously?

+ Contextualized representations

+ Memory mechanisms

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021] [Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

Carnegie Mellon Universit

Sequence-to-Sequence Using Transformer

Sequence-to-Sequence Modeling

Carnegie Mellon University

劎

How should we connect the encoder and decoder self-attention to the transformer attention?

瘚

Going Beyond Sequences: Graph Representations

*slides adapted from Leskovec, Representation Learning on Networks. WWW 2018

Transformers – Fully-Connected Sequences

Should everything be connected to everything? What if we have domain knowledge about connections?

Tree and Graph Networks

From linear chain models to tree and graph-structured models

Graphs – Supervised Task

Goal: Learn from labels associated with a subset of nodes (or with all nodes)

e.g., an online social network

Graph Neural Nets

Assume we have a graph **G**:

- \boldsymbol{V} is the set of vertices
- A is the binary adjacency matrix
- X is a matrix of node features:
 - Categorical attributes, text, image data e.g. profile information in a social network

Y is a vector of node labels (optional)

Graph Neural Nets

Graph Neural Nets

Graph Neural Nets – Neighborhood Aggregation

Language Technologies Institute

Graph Neural Nets – Supervised Training

Going Beyond Sequences: Hierarchical Structure

*slides adapted from Leskovec, Representation Learning on Networks. WWW 2018

Leverage syntactic structure of language

Going Beyond Sequences: Modular Structure

*slides adapted from Leskovec, Representation Learning on Networks. WWW 2018

Neural Module Network

Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016

Predefined Set of Modules

1) Analyze the image:

combine: Attention imes Attention o Attention

2) Make a prediction

Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016

CLEVR: Dataset for Visual Reasoning

Perfect for a neural module network!

Q: Are there an equal number of large things and metal spheres? Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere? Q: There is a sphere with the same size as the metal cube; is it made of the same material as the small red sphere? Q: How many objects are either small cylinders or metal things?

Johnson et al., CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning, CVPR 2017

Module Network V2: End-to-End Learning

No need to parse the question!

No rule-based creation of the layout!

Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering, 2017

Module Network V3: Neural-symbolic VQA

1) Image Attributes

Previously trained in a supervised way

Kexin Yi, et al. "Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding." Neurips 2018

Module Network V3: Neural-symbolic VQA

2) Parsing questions into programs

Similar to neural module networsk

Kexin Yi, et al. "Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding." Neurips 2018

Module Network V3: Neural-symbolic VQA

3) Program execution

Execution of the program is somewhat easier given the "symbolic" representation of the image

Kexin Yi, et al. "Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding." Neurips 2018

How to solve this question using visual reasoning?

What is the **red fruit** inside the **bowl** to the right of the **coffee maker**?

- 1. Given an **image**, generate a probabilistic **scene graph** that captures the semantic concepts.
- 2. Treat the graph as a **state machine** and simulate iterative computation over it to *answer questions* or *draw inferences*.
- 3. Natural language questions are translated into *soft instructions* and used to perform sequential reasoning over the scene graph/state machine.

Detect objects and create proximity graph

What is the **red fruit** inside the bowl to the right of the **coffee maker**?

勜

Carnegie Mellon Universit

and group in a fixed number of instruction steps

