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Administrative Stuff
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Second Project Assignment (Due Sunday 10/8)

Main goals:

1. Help clarify and expand your research ideas

▪ Build qualitative intuitions by directly studying the original data 

▪ Perform analyses on your dataset, relevant to your research ideas

2. Understand the structure in your data and modalities

▪ Perform analyses and visualizations to understand each modality

▪ Study representations from language and visual modalities

Two types of analyses:

▪ Idea-oriented analyses

▪ Modality-oriented analyses
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Classes Tuesday Lectures Thursday Lectures
Week 1
8/29 & 8/31

Course introduction 
● Multimodal core challenges
● Course syllabus 

Multimodal applications and datasets
● Research tasks and datasets
● Team projects

Week 2 
9/5 & 9/7
Read due: 9/9

Unimodal representations
● Dimensions of heterogeneity
● Visual representations

Unimodal representations
● Language representations
● Signals, graphs and other modalities

Week 3 
9/12 & 9/14
Read due: 9/16
Proj. Due: 9/13

Multimodal representations
● Cross-modal interactions
● Multimodal fusion

Multimodal representations
● Coordinated representations
● Multimodal fission

Week 4
9/19 & 9/21
Proj. due: 9/24

Multimodal alignment and grounding
● Explicit alignment
● Multimodal grounding

Alignment and representations
● Self-attention transformer models
● Masking and self-supervised learning

Week 5 
9/26 & 9/28
Read due: 9/30

Multimodal transformers – Part 1
● Language pretraining
● Multimodal transformers 

Multimodal Reasoning
● Hierarchical and graph representations
● Modular and neuro-symbolic models

Week 6 
10/3 & 10/5
Proj. due: 10/8

Multimodal transformers – Part 2
● Image and video transformers
● Vision-language transformers

Multimodal language grounding
● Guest lecturer: Jack Hessel
● Vision, language and grounding

Lecture Schedule
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Objectives of today’s class

▪ Multimodal transformers 

▪ Modality-shift transformer (MAG-BERT)

▪ Sequence-to-sequence modeling with Transformers

▪ Going beyond sequences

▪ Graph representations

▪ Graph neural networks

▪ Hierarchical representations

▪ Modular representations

▪ Neural module networks

▪ Neuro-symbolic networks
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Language-Vision

Transformers
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Simple Solution: Contextualized Multimodal Embeddings

I really liked it this time

Language Visual Acoustic

𝒉𝑳 𝒉𝑽 𝒉𝑨

Transformer self-attention
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Multimodal Transformer – Pairwise Cross-Modal
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Reminder: Modality-Shifting Fusion

Primary 

modality

Secondary

modalities

𝒙𝐴

𝒙𝐵

𝒛

gate

𝒙𝐶

shift

Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019

Example with language modality:

Primary modality: language

Secondary modalities: acoustic and visual

word: “expectations”
Negative-shifted 

representation

Positive-shifted 

representation
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Modality-Shifting with Transformers

Transformer self-attention

Transformer self-attention

Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020

Multimodal Adaptation Gate (MAG) + BERT
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Memory for Multimodal Sequences

Memory + aligned contextualized representations

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021]

[Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

Where have I visited previously?

v
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Memory for Multimodal Sequences

Memory + aligned contextualized representations

[Chen et al., History Aware Multimodal Transformer for Vision-and-Language Navigation. NeurIPS 2021]

[Lin et al., Multimodal Transformer with Variable-length Memory for Vision-and-Language Navigation. ECCV 2022]

Where have I visited previously?

+ Contextualized representations

+ Memory mechanisms
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Sequence-to-Sequence

Using Transformer
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Sequence-to-Sequence Modeling

I do not like it

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

How can we perform seq2seq 

translation with transformer attention?

Je n' aime pas cela 

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5
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Seq2Seq with Transformer Attentions

I do not like it

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

self-attention

Je n' aime pas cela 

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5
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Seq2Seq with Transformer Attentions

I do not like it

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

self-attention

𝑦0 𝑦1 𝑦2 𝑦3 𝑦4

Je n' aime pas

S
T
A

R
T

“masked” self-attention

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5

Je n' aime pas cela 

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5
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Seq2Seq with Transformer Attentions

I do not like it

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Je n' aime pas cela 

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5

𝒉

self-attention

𝑦0 𝑦1 𝑦2 𝑦3 𝑦4

Je n' aime pas

S
T
A

R
T

“masked” self-attention

𝒈

Transformer attention

𝑊𝑣𝑊𝑘𝑊𝑞

ValueKeyQuery

How should we connect the 

encoder and decoder self-attention 

to the transformer attention?

Vector format
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Seq2Seq with Transformer Attentions

I do not like it

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Je n' aime pas cela 

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5

𝒉

self-attention

𝑦0 𝑦1 𝑦2 𝑦3 𝑦4

Je n' aime pas

S
T
A

R
T

“masked” self-attention

𝒈

Transformer attention

𝑊𝑣𝑊𝑘𝑊𝑞

ValueKeyQuery

“encoder-decoder”

transformer
“encoder”

transformer

“decoder”

transformer



Going Beyond Sequences: 

Graph Representations
*slides adapted from Leskovec, Representation Learning on Networks. WWW 2018
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Transformers – Fully-Connected Sequences

I

𝑥1

do

𝑥2

not

𝑥3

like

𝑥4

it

𝑥5

𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞

𝑞1 𝑘1 𝑞2 𝑘2 𝑞3 𝑘3 𝑞4 𝑘4 𝑞5 𝑘5

Should everything be connected to everything?

What if we have domain knowledge about connections?
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Tree and Graph Networks

From linear chain models to tree and graph-structured models

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graphs – Supervised Task

Human 

or bot?

e.g., an online social network 

Goal: Learn from labels associated with a 

subset of nodes (or with all nodes)

? ?

?

?

?

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]



24

Graphs – Unsupervised Task

Goal: Learn an embedding space where

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Assume we have a graph G:
 V is the set of vertices

 A is the binary adjacency matrix

 X is a matrix of node features:

• Categorical attributes, text, image data

e.g. profile information in a social network

• …

Y is a vector of node labels (optional)

Graph Neural Nets

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets 

Key idea: Generate node embeddings 

based on local neighborhoods

in a recursive manner

Neural 

network

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 27

Every node defines a unique 

computation graph!

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets 

Neural 

network

Neural 

network

Neural 

network

And multiple layers!
Layer 2 Layer 1 Layer 0

“layer-0” is the input feature xu

Shared parameters within a 

specific layer

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Graph Neural Nets – Neighborhood Aggregation

How to 

aggregate 

multiple 

neighbors?

Average pooling

Graph Convolution Network

Graph Attention Network

(Scarselli et al., 2005)

(Kipf et al., 2017)

(Velickovic et al., 2018)

Different weights 

for neighbors 

and self

Same weights
Different 

normalization

Very similar to a self-attention transformer

It can be efficiently implemented

𝛼𝑢𝑣

Attention 

weights

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]

K is num layers



30

Graph Neural Nets – Supervised Training

output node 

embedding

classification 

weights

node class label

[Leskovec. Representation Learning on Networks. WWW 2018; Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]



Going Beyond Sequences: 

Hierarchical Structure
*slides adapted from Leskovec, Representation Learning on Networks. WWW 2018
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 

in red jacket.

Parse

Object 

detection
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 

in red jacket.

Parse

Object 

detection
Coordination
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 

in red jacket.

Parse

Object 

detection

Coordination
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 

in red jacket.

Parse

Object 

detection

Composition
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Hierarchical Structure

Leverage syntactic structure of language

[Hong et al., Learning to Compose and Reason with Language Tree Structures for Visual Grounding. IEEE TPAMI 2019]

Skis of man 

in red jacket.

Parse

Object 

detection

Composition



Going Beyond Sequences: 

Modular Structure
*slides adapted from Leskovec, Representation Learning on Networks. WWW 2018
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Neural Module Network

Is the bus full of passengers?

root

subj.det. mod.

cop

Attend

(bus)

Attend

(full)

Combine

(and)

Measure

(is)

Computation layout

Each module work on the attention map(s):

“tie”

Attend

(tie)

Rules

Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016
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Predefined Set of Modules

1) Analyze the image:

2) Make a prediction

Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016
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CLEVR: Dataset for Visual Reasoning

Perfect for a neural module network!

Johnson et al., CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning, CVPR 2017
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Module Network V2: End-to-End Learning

Is the bus full of passengers?

Attend

(bus)

Attend

(full)

Combine

(and)

Measure

(is)

Computation layout

RNN

No need to parse the question!

No rule-based creation of the layout!

Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering, 2017
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Module Network V3: Neural-symbolic VQA

1) Image Attributes

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Previously trained in a supervised way
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2) Parsing questions into programs

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Similar to neural 

module networsk

Module Network V3: Neural-symbolic VQA
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3) Program execution

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Execution of the program is somewhat 

easier given the “symbolic” 

representation of the image

Module Network V3: Neural-symbolic VQA
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

1. Given an image, generate a probabilistic 

scene graph that captures the semantic 

concepts.

2. Treat the graph as a state machine and 

simulate iterative computation over it to 

answer questions or draw inferences.

3. Natural language questions are translated 

into soft instructions and used to perform 

sequential reasoning over the scene 

graph/state machine.

How to solve this question 

using visual reasoning?
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Module Networks V4: The Neural State Machine 

Detect objects and create proximity graph

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019
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Module Networks V4: The Neural State Machine 

Pre-trained an alphabet of concepts
(Visual Genome)

Manually grouped 

by “properties”

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Probabilities 

computed at 

runtime for each 

object instance
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Predefined an alphabet of relations

and compute probabilities for each directed edges
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Translate each word in a concept-based representation

and group in a fixed number of instruction steps
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Finally, perform reasoning using instructions 

and state machine to answer question
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