

Language Technologies Institute

Multimodal Machine Learning

Lecture 6.1: Multimodal Transformers (Part 2)

Mehul Agarwal, Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Administrative Stuff

Second Project Assignment (Due Sunday 10/8)

Main goals:

- 1. Help clarify and expand your research ideas
 - Build qualitative intuitions by directly studying the original data
 - Perform analyses on your dataset, relevant to your research ideas
- 2. Understand the structure in your data and modalities
 - Perform analyses and visualizations to understand each modality
 - Study representations from language and visual modalities

Two types of analyses:

- Idea-oriented analyses
- Modality-oriented analyses

Lecture Schedule

Classes	Tuesday Lectures	Thursday Lectures
Week 1	Course introduction	Multimodal applications and datasets
8/29 & 8/31	Multimodal core challenges	Research tasks and datasets
	Course syllabus	Team projects
Week 2	Unimodal representations	Unimodal representations
9/5 & 9/7	 Dimensions of heterogeneity 	 Language representations
Read due: 9/9	Visual representations	 Signals, graphs and other modalities
Week 3	Multimodal representations	Multimodal representations
9/12 & 9/14	Cross-modal interactions	Coordinated representations
Proj. Due: 9/13	Multimodal fusion	Multimodal fission
Week 4	Multimodal alignment and grounding	Alignment and representations
9/19 & 9/21	Explicit alignment	 Self-attention transformer models
Proj. due: 9/24	 Multimodal grounding 	 Masking and self-supervised learning
Week 5	Multimodal transformers – Part 1	Multimodal Reasoning
9/26 & 9/28	Language pretraining	Structured and hierarchical models
Read due: 9/30	Multimodal transformers	Memory models
Week 6	Multimodal transformers – Part 2	Multimodal language grounding
10/3 & 10/5	 Image and video transformers 	Guest lecturer: Jack Hessel
Proj. aue: 10/8	 Vision-language transformers 	Vision, language and grounding

Language Technologies Institute

Multimodal Machine Learning

Lecture 6.1: Multimodal Transformers (Part 2)

Mehul Agarwal, Louis-Philippe Morency

* Co-lecturer: Paul Liang. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk.

Objectives of today's class

- Visual transformers
 - Vision transformer (VIT)
 - Masked Auto-Encoder (MAE)
- Visual-language transformers:
 - ViLT = VIT+BERT
 - Vision-Language Caption (MAE+BERT)
- Video transformers

Vision Transformers

Recap: CNNs vs Transformers

Convolutions h_1 h_2 h_3 h_4 h_5 h_1 h_2 h_3 h_4 h_5 Sequential Computation

 x_4

 x_5

Can be parallelized! But modeling long-range dependencies requires many layers. And convolutional kernels are static.

 x_3

Can be parallelized! Long-range dependencies Dynamic attention weights No inductive bias toward locality

 x_1

 x_2

Replacing a CNN w/ Self-Attention

Replacing a CNN w/ Self-Attention

Image patch

Position embedding is added to the key:

	-1, -1	-1, 0	-1, 1	-1, 2
2D relative	0, -1	<mark>0, 0</mark>	<mark>0,</mark> 1	0, 2
embedding	1, -1	1, 0	1 , 1	1, 2
	2, -1	2, 0	2, 1	<mark>2,</mark> 2

$$y_{ij} = \sum_{a,b \in \mathcal{N}_k(i,j)} \texttt{softmax}_{ab} \left(q_{ij}^\top k_{ab} + q_{ij}^\top r_{a-i,b-j} \right) v_{ab}$$

https://arxiv.org/abs/1906.05909

Pixel-Based Image Generation via Transformers

Produce 32x32 images, one channel of each pixel at a time. 3 x 32 x 32 = 3072 positions

Vision Transformer (ViT)

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." *arXiv* (2020).

Vision Transformer (ViT)

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv (2020).

Carnegie Mellon Universit

Filters

🚸 Language Technologies Institute

Learning Location

Carnegie Mellon University

🚸 Language Technologies Institute

Learning Location

Language Technologies Institute

劎

Which is the best?

ImageNet	ImageNet ReaL	CIFAR-10	CIFAR-100	Pets	Flowers	exaFLOPs
80.73	86.27	98.61	90.49	93.40	99.27	164
84.15	88.85	99.00	91.87	95.80	99.56	743
84.37	88.28	99.19	92.52	95.83	99.45	574
86.30	89.43	99.38	93.46	96.81	99.66	2586
87.12	89.99	99.38	94.04	97.11	99.56	5172
88.08	90.36	99.50	94.71	97.11	99.71	12826
77.54	84.56	97.67	86.07	91.11	94.26	150
82.12	87.94	98.29	89.20	93.43	97.02	592
80.67	87.07	98.48	89.17	94.08	95.95	285
81.88	87.96	98.82	90.22	94.17	96.94	427
84.97	89.69	99.06	92.05	95.37	98.62	1681
85.56	89.89	99.24	91.92	95.75	98.75	3362
87.22	90.15	99.34	93.53	96.32	99.04	10212
84.90	89.15	99.01	92.24	95.75	99.46	315
85.58	89.65	99.14	92.63	96.65	99.40	855
85.68	89.04	99.24	92.93	96.97	99.43	725
86.60	89.72	99.18	93.64	97.03	99.40	2704
87.12	89.76	99.31	93.89	97.36	99.11	5165

🚸 Language Technologies Institute

Carnegie Mellon Universit

Curves

Carnegie Mellon University

DALL-E's Discrete Variational Autoencoder

https://arxiv.org/abs/2102.12092

劎

Visual Tokens

BeIT: BERT Pre-Training of Image Transformers

Language Technologies Institute

劎

Carnegie Mellon University

Masked Auto-Encoder (MAE)

He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022

劎

Carnegie Mellon University

Masked Auto-Encoder (MAE)

He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022

Carnegie Mellon Universit

Vision-Language Transformers

Visual Transformers for Multimodal Learning

https://arxiv.org/abs/2102.03334

Carnegie Mellon Universit

Visual Transformers for Multimodal Learning

Modality Interaction Text Usual Embed Text Image (a) VE > TE > MI

> Visual Embed

Image

(c) VE > MI > TE

e.g. LXMERT

Text

Embed

Text

Carnegie Mellon University

🐞 Language Technologies Institute

DETR / MDETR (CNN+BERT)

Predicting bounding boxes from images (and text)

Carnegie Mellon University

"" / a h a / 0 0 0 5 4 0 0 7 (

Visual-and-Language Transformer (ViLT) (≈ BERT + ViT)

https://arxiv.org/abs/2102.03334

Carnegie Mellon Universit

Visual-and-Language Transformer (ViLT)

Example of alignment between modalities:

https://arxiv.org/abs/2102.03334

勜

Carnegie Mellon Universit

ViLT: Faster Inference?

Visual	Model	Time	VQAv2	NLV	/R2
Embed		(ms)	test-dev	dev	test-P
Region	w/o VLP SOTA ViLBERT VisualBERT-Base LXMERT UNITER-Base OSCAR-Base [†] VinVL-Base ^{†‡}	~900 ~920 ~1000 ~910 ~900 ~900 ~1000	70.63 70.55 70.80 72.42 72.70 73.16 75.95	54.80 - 67.40 74.90 75.85 78.07 82.05	53.50 67.00 74.50 75.80 78.36 83.08
Grid	Pixel-BERT-X152	~120	74.45	76.50	77.20
	Pixel-BERT-R50	~60	71.35	71.70	72.40
Linear	ViLT-B/32	~15	70.34	74.56	74.66
	ViLT-B/32 ^(a)	~15	70.94	75.24	76.21

ALBEF: Align Before Fusion (≈ BERT + ViT + CLIP-ish)

Li et al., Align before Fuse: Vision and Language Representation Learning with Momentum Distillation, Neurips 2021

Vision-Language from Captions (VLC)

Add language into MAE

Vision-Language from Captions (VLC)

What are we learning?

A pitcher at a baseball game who has just **thrown** the ball.

ViLT (supervised with ImageNet) Ours (no BBox/class supervision)

Caption w	ith <mark>focus</mark>	
-----------	------------------------	--

Original Image	ViLT	VLC
----------------	------	-----

A person on a beach holding a kite string and a kite is in the air

勜

Vision-Language from Captions (VLC)

What are we learning?

	Image Retrieval					
Model		Flic	cr30K	(1K)	MSCOC	O (5K)
	Params	@1	@5	@10	@1 @5	5 @10
ViLT [23]	86M	64.4	88.7	93.8	42.7 72	2.9 83.1
VLC-Base (ours – 5.6M)	86M	72.4	93.4	96.5	50.7 78	8.9 88.0
Model			V	QAv2	NL	VR ²
	Parar	ns te	est-dev	v test-st	d dev	test
ViLT [23]	861	M 7	71.26	-	75.70	76.13
No supervised classes or boun	ding boxes					
VLC-Base (ours – 4M)	861	M 7	72.98	73.03	77.04	78.51

Video Transformers

Video-based Representation and Alignment

HowTo100M benchmark dataset

Category	Tasks	Videos	Clips
Food and Entertaining	11504	497k	54.4M
Home and Garden	5068	270k	29.5M
Hobbies and Crafts	4273	251k	29.8M
Cars & Other Vehicles	810	68k	7.8M
Pets and Animals	552	31k	3.5M
Holidays and Traditions	411	27k	3.0M
Personal Care and Style	181	16k	1.6M
Sports and Fitness	205	16k	2.0M
Health	172	15k	1.7M
Education and Communications	239	15k	1.6M
Arts and Entertainment	138	10k	1.2M
Computers and Electronics	58	5k	0.6M
Total	23.6k	1.22M	136.6M

https://www.di.ens.fr/willow/research/howto100m/

Visual Representations from Uncurated Instructional Videos

Goal: Learn better visual representations...

... by taking advantage of large-scale video+language resources

Instructional videos (weakly-paired data				
how to make pasta	Q			
辈 Filter				
101	The Best Homemade Pasta You'll Ever Eat 42M traver. 2 years ago Image: Tasky @ Onek us of or Facebookt -facebook.com/buzzfeedhasky Oredits: https://www.buzzfeed.com/birrp/videos/14508 MUBC Ucensed			
BASICS WITH BABISH PASTA	Pasta Basics with Babish 4.2M views - 2 years ago			
	Learn To Cook: How to Make Fresh Pasta (Homernade Fettuccine) 1.1M revers = 9 years ago Marine Stret Richen S Warts the best pasta maker? Read our review: http://cooks.aiv/pdtxdp LEARN TO COOK with ust			
Basic Pasta	How to Make Pasta - Without a Machine 134K views - 7 months ago C for distuice Leam how to make pasta WITHOUT a machine. Homemade pasta is easy to make with a firer ingredients you already have at 4K			

it's turning into a much thicker mixture

The biggest mistake is not kneading it enough

. . .

End-to-End Learning of Visual Representations from Uncurated Instructional Videos Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman – CVPR 2020

Weakly Paired Data

Data point: "a short 3.2 seconds video clip (32 frames at 10 FPS) together with a small number of words (not exceeding 16)"

How to handle this misalignment?

How to do it self-supervised?

Multi-instance learning!

Contrastive learning!

End-to-End Learning of Visual Representations from Uncurated Instructional Videos Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman – CVPR 2020

Carnegie Mellon Universit

Another Approach for Weakly-Paired Video Data

How do we get visual words now?

K-mean clustering + centroid

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, Cordelia Schmid; VideoBERT: A Joint Model for Video and Language Representation Learning ICCV, 2019

ActBERT

Global stacked frames Local object regions

Zhu and Yang, ActBERT: Learning Global-Local Video-Text Representations, CVPR 2020

