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Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.
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The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

CLIP, VILT, VIiLBERT, etc.
All random chance

Compositional Generalization
to novel combinations outside
of training data

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’

(a) some plants (b) a lightbulb surrounding some plants 3. Inference: ‘surrounding’ — spatial relation
surrounding a 4. Knowledge: from humans!
lightbulb

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]
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Sub-Challenge 3a: Structure Modeling

Definition: Defining or learning the relationships over which reasoning occurs.
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Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

Concepts
Discrete

words

or
OO0 .
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CITT]

Continuous
* Structure
Single-step Multi-step

Language Technologies Institute )



Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

Concepts

Discrete %

B— B ., Inference

Continuous Representation

* Structure
Single-step Multi-step
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Sub-Challenge 3d: External Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

Concepts

Discrete

Inference

Causal

Knowledge

2 8

Logical

Continuous Representation

* Structure
Single-step Multi-step
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Reasoning

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
words g @ A
)\ or ./\.
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Roadmap

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal .
Last Week ) P . Continuous
Hierarchical
Today Interactive
. . Causal Knowledge
Thursday Discovery Discrete ) 9
Logical Commonsense
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Sub-Challenge 3a: Structure Modeling

Concepts
Inference
Dense Representation
» Structure
Single-step Temporal Hierarchical Interactive
L J
I
Multi-step
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Interactive Structure

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

Integrates multimodality into the reinforcement learning framework

aq a, asj ar
[IT1T1] [(LIT] [ITT1] [L1T]
A A A A
51=A @ 52=A ® 53=A ® ST=A ® Time
t=1 t=2 t=3 t=T

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. [JCAI 2019]
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Interactive Structure

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

ModalityA A A A -

><D< Policy a
ModalityB @ @ @ -
Go to the green torch
Local representation R :
+ Aligned representation easoning
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Learning a Policy — RL basics

Reinforcement learning

e Introduction to RL
e Markov Decision Processes (MDPs)
e Solving known MDPs using value and policy iteration
e Solving unknown MDPs using function approximation and Q-learning
'J Agent ||
state| |reward action

St Rt At

» R (

< i Environment ]4—
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Learning a Policy — RL basics

An MDP is defined by: :[ A ent)
g

Set of states S. o B P— it
Set of actions A. S, R, p
Transition function P(s’|s, a). R f '
Reward function r(s, a, s"). . _S.. | Environment ]4

Start state s,,. 5 \

Discount factor y. Return:

Horizon H.

Gt = Rip1 +7Rijo + ... = ZVth+k+1
k=0

o Policy: m(als) =Pr(4; =alS; =s) Vi

/=7 75
Tﬁ»z H
T e
\E\\ Goal: argmaxE nythhr
ﬁ T

t=0
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RL vs Supervised Learning

Reinforcement Learning Supervised Learning

Sequential decision making One-step decision making

Maximize cumulative reward Maximize immediate reward

Sparse rewards Dense supervision

Environment maybe unknown Environment always known

Language Technologies Institute



Intersection Between RL and Supervised Learning

state reward action
St Rl AI

Rt+l ( .
Sl Environment

Obtain expert trajectories (e.g. human driver/video demonstrations):
S0, ao,70,51,Q1,71,52,0A2,172, ...

Perform supervised learning by predicting expert action

D = {(s0,a0), (s1,01), (52,a3), .-}

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states
Sometimes not safe/possible to collect expert trajectories
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RL as Exploring a Tree

7 which action to take from each s

V7™(s) = E; [G¢|S: = ] V*(s) = max V7™(s)

State-value function: how much total reward
should | expect following = from s?

V™(sy) = 99 V™(s,) = 99
QW(S,G,) — Ew [Gt|St — SaAt — a’] Q*(Saa) — mng“(s,a,)

Action-value function: how much total reward
should | expect taking a, then following m, from s?

Q™ (s, up) =3 Q*(sy,up) = 4

Language Technologies Institute




Relationships Between State and Action Values

State value functions Action value functions

VT(s) = 7(als)Q (s, a)
V™(s) f 1Q7(s,0)

V*(s) = max V7"(s) Q*(s,a) = max Q7 (s, a)

V*(s) f 1Q"(s,0) |
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Value-based Methods

, Value Based State value functions Action value functions
- Learned Value Function VT ( 3) Q" (57 a)
- Implicit policy (e.g. e-greedy) *
V(s) Q" (s, a)

Optimal policy can be found by maximizing over Q*(s,a)
(als) = {1 — €, if a = argmax, Q*(s,a)
‘. else
Optimal policy can also be found by maximizing over V*(s’)
with one-step look ahead

. 1 —e, if @ = argmax, Ey [r(s,a,s") +yV*(s')]
m(als) = {e else
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Policy-based Methods

‘\\, /// o probability of
4}:6,6'&; . moving UP
I\

» Policy Based

No Value Function

Learned Policy

'

SIS
ZERR =7
2N

N @

m Often 7T can be simpler than Q or V

mo(s,a) =Pla | s, 0]

= E.g., robotic grasp Q(s,a) and V(s) very high-dimensional
But policy could be just ‘open/close hand’

= V:doesn’t prescribe actions

= Would need dynamics model (+ compute 1 Bellman back-up)

= Q: need to be able to efficiently solve argmax, Q*(s,a)

= Challenge for continuous / high-dimensional action spaces”
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Value-based vs Policy-based

Q" (s,a)
i} {1—6, if a = argmax, Q*(s,a) 77'0(57 a) :P[a ’ S, 9]
m"(als) =
‘. else
Value-based Policy-based
- More sample efficient, respects MDP - Less sample efficient, more
structure akin to trial-and-error
- Easier to add human knowledge about - Harder to add human
states and actions knowledge
- More complex algorithm - Simpler algorithm
- Can’t handle continuous argmax, harder - Directly learns policy, can
to understand, sometimes values are be more interpretable

more complex than policies
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Policy-based RL in 15 minutes

Recursive definition

V(s
V*(s) = max Q*(s,a)
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Bellman Optimality for State Value Functions

Recursive definition

V*(s)

'V*(S/)
V*(s) = max Q*(s, a)
= max [E [7“(8, a, 5/) + fYV* (S,)]
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Bellman Optimality for State Value Functions

Recursive definition

V*(s)

Vi (s)
V*(s) = max Q*(s,a)

= maxE [r(s,a,s’) +yV*(s")]

= max | Y p(s'|s,)(r(s,a,8') + 7V (s")
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Bellman Optimality for Action Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition

Q*(s,a) =Ey [r(s,a,5") +yV*(s)]
=K, [rr(s, a,s’) +ymax Q" (s, G/)}

— Zp(s’|s, a) (r(s, a,s’) + Y max Q" (s, a'))
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Solving the Bellman Optimality Equations

Recursive definition

V*(s) = max Zp(s’|s, a)(r(s,a,s’) +yV*(s"))

Solve by iterative methods

Viiq(s) = max | Y p(s']s,a)(r(s,a,s") +yVi(s))

a

[Slides from Fragkiadaki, 10-703 CMU]
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Value Iteration

Algorithm:
Start with V(s) =0 foralls.
Fork=1, ..., H:

For all statessin S:

Vi (s) « mgxz P(s'|s,a) (R(s,a,s") +7Vi_1(s"))

[Slides from Fragkiadaki, 10-703 CMU]
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Value Iteration

Algorithm:
Start with V(s) =0 foralls.
Fork=1, ..., H:

For all statessin S:
Vii(s) < max »  P(s'|s,a) (R(s,a,s") + 7V, ("))

7 (s) «+ arg maxz P(s'|s,a) (R(s,a,s") +vVi_1(s))

Find the best action according to one-step look ahead
This is called a value update or Bellman update/back-up

Repeat until policy converges. Guaranteed to converge to optimal policy.

[Slides from Fragkiadaki, 10-703 CMU]
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Q-Value lteration

Q7(s,a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:

Q*(s,a) =) P(s|s,a)(R(s,a,s') + ymax Q*(s', a’))
Q-Value Iteration:

Qiy1(s,0) < ) P(s']s,a)(R(s,a,5") + ymax Q;(s', a'))

[Slides from Fragkiadaki, 10-703 CMU]
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Summary: Exact Methods

Bellman Q* (S, CL) Q-value iteration

optimalit *
Fully known eZuationZ vV (3) Value iteration
MDP
states
trferxgiggs BeIImap QW (S, CL) Q-policy iteration
expectation -
equations |4 (3) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete state and action space
Update equations require fully observable MDP and known transitions
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Unknown MDPs?

Q7(s,a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:

Q*(s,a) = ) _ P(s'|s,a)(R(s,a,8") + ymax Q*(s',a"))

Q-Value Iteration:

Qry1(s,0) | D P(s'ls,a)[R(s,a,5") + ymax Qi(s',a))

This is problematic when do not know the transitions

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

= Q-valueiteration: Qr+1(s,a) < Z P(s'|s,a)(R(s,a,s’) + Y max Qr(s',a"))

= Rewrite as expectation: Qii1 <+ Egp(s/s,a) [R(s, a,s’) +vymax Qx(s, a’)]
a/

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

= Q-valueiteration: Qi41(s,a) < > P(s'|s,a)(R(s,a,s") + max Qi(s', a’))
= Rewrite as expectation: Qii1 < Egp(s/s,a) [R(s, a,s') +ymax Qx (s, a’)]
= (Tabular) Q-Learning: replace expectation by samples

= For an state-action pair (s,a), receive: s’ ~ P(s'|s,a) simulation and exploration

= Consider your old estimate: Q(s, a)

= Consider your new sample estimate:

target(s’) = r(s,a,s’) +ymax Qx(s’, a’)

error(s’) = (r(s, a,s") +ymax Qx(s',a’) — Qx(s, a))

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

learning
rate

|

Qri1(s,a) = Qr(s,a) + a error(s’)
= Qr(s,a) + « ('r(s, a,s') + Y max Qr(s',ad") — Qr(s, a))

Key idea: implicitly estimate the transitions via simulation
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Tabular Q-learning

Bellman optimality
Algorithm:
Start with Qo (s, a) foralls, a. Q*(s,a) =Es {T(S, a, S,) + Hg}x Q" (Sla a,)}
Get initial state s
Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s” is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s,a,s’) + Yy max Qr(s',a)
a

Qk-{-l(sa (1,) — Qk(87 CL) +Q (T(S7 a, S,) + ’)/Hlaé}X Qk(8/7 Cl/) o Qk(sa CL))
s« s

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

Algorithm:
Start with QO(S, a) foralls, a. m Choose random actions?
Get initial state s = Choose action that maximizes Qk (S, a) (i.e. greedily)?

Fork=1, 2, ... till convergence
Sample action a, get next state s’

s  &-Greedy: choose random action with prob. €, otherwise choose
action greedily

If s’ is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s,a,s’) +ymax Q(s’, a)
a
Qk+1(87 (1,) — Qk(87 CL) +Q (T(S7 a, S,) + ’)/Hlaé}X Qk(8/7 (Z/) o Qk(sa CL))
s < s

[Slides from Fragkiadaki, 10-703 CMU]
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Exploration and Exploitation

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal
region, and never explore further.

m(s) = max, Q(s,a) with probability 1 — e
| random action  otherwise

Gradually decrease epsilon as policy is learned.

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

Tabular: keep a |S| x |A| table of Q(s,a)
Algorithm: Still requires small and discrete state and action space

Start with Qo (s, @) foralls, a. How can we generalize to unseen states?
Get initial state s

Fork=1, 2, ... till convergence

e-Greedy: choose random action with prob. €, otherwise choose

I Sample action a, get next state s’ I . " dil
action greedily

If s" is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s,a,s’) + Y max Qr(s',a)
a

Qk+1(87a) - ka(87 CL) +a (T(S7 a, S,) + ’Ynza,ax Qk(8/7 Cl/) - Qk(S, CL))
s« s

[Slides from Fragkiadaki, 10-703 CMU]
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Deep Q-learning

Q-learning with function approximation to extract informative features from high-dimensional
input states.

Represent value function by Q network with weights w

Q(s,a,w) ~ Q*(s, a)

Qeaw)  Qea.w - Qsa.w T high-dimensional, continuous states
T T T + generalization to new states

~
T

[Slides from Fragkiadaki, 10-703 CMU]
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Deep Q-learning

«» Optimal Q-values should obey Bellman equation
Q*(s,a) = Eg¢ |r +v max Q(s',a')" | s, a
a0 Treat right-hand r + v max Q(s’,a’,w) as as a target
a/

=" Minimize MSE loss by stochastic gradient descent

2
| = (r + 7 max Q(s’,a',w) — Q(s, a, w))
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Deep Q-learning Challenges

= Minimize MSE loss by stochastic gradient descent

2 Q(s,aq,w) - Q(s,a,,w)
J = (r+ v max Q(s’,a’,w) — Q(s, a, w))

e Converges to Q* using table lookup representation

" But diverges using neural networks due to:
e Correlations between samples
=0 Non-stationary targets

/)
!
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Deep Q-learning: Experience Replay

e To remove correlations, build data-set from agent’s own experience

S1,4d1,M2,52

/
52,4d2,13,53 — Ss,a,I,S
S3,d3, 14,54

exploration, epsilon greedy is important!

Sty dty Nt+1, St+1

e Sample random mini-batch of transitions (s,a,r,s’) from D
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Deep Q-learning: Fixed Q-targets

51,4d1,12,52
sn Sample random mini-batch of transitions (s,a,r,s’) from D Sy, ar, I3, 53
e Compute Q-learning targets w.r.t. old fixed parameters w- S3, a3, 4, S4
=" Optimize MSE between Q-network and Q-learning targets St; At Me+1, Se+1
2
Li(w;) =Es s, s~D, (r +v max Q(s, s w; ) — Q(s, a; w,-)) ] Qs.a,w) - Qsa,

a
X J o T T
Y Y
Q-learning target Q-network /\/\
I

e" Use stochastic gradient descent
s Update w- with updated w every ~1000 iterations
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Policy-based RL in 15 minutes
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Pong from Pixels

raw pixels hidden layer
e.g., P Y

height width

[80 x 80]
array of

Network sees +1 if it scored a point, and -1 if it was scored against.
How do we learn these parameters?
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Pong from Pixels

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP) maximize:
2,DOWN
AT Y, log p(yi|xi)

raw pixels

hidden layer

[Slides from Karpathy]
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Pong from Pixels

Except, we don’t have labels...

raw pixels hidden layer

Should we go UP or DOWN?

[Slides from Karpathy]
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Pong from Pixels

Let’s just act according to our current policy...

raw pixels hidden layer

robability of Rollout the policy
and collect an
episode

WIN

[Slides from Karpathy]
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Pong from Pixels

Collect many rollouts...

4 rollouts:

DOWN DOWN uP

-0 .0 .0 wWIN
* .o LOSE
DOWN’. UP -® LOSE
* .o WIN

[Slides from Karpathy]
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Pong from Pixels

Not sure whatever we did here, but
apparently it was good.

+@ 20N, gDOWN, o WP o | WIN
@ LOSE
uP
- 4 - J LOSE
@ WIN

[Slides from Karpathy]
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Pong from Pixels

-0 @ WIN
LOSE

-® LOSE
WIN

[Slides from Karpathy]

Language Technologies Institute




Pong from Pixels

Pretend every action we took here Pretend every action we took
was the correct label. here was the wrong label.

maximize:  10g p(y; | Xi) maximize: (—1) * log p(y; | xi)
o @0 g UP g UP  GDOWN o DOWN JDOWN o UP o | \viy
0 WP g UP gDOWNG UP o UP o (OSE
o " .o P . g DOWN g DOWN JDOWN o DOWN o WP o ¢ s
@20V g UP ».L‘DOWN* P .o " .o WIN

E E N

[Slides from Karpathy]
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Pong from Pixels

Discounting

Blame each action assuming that its effects have
exponentially decaying impact into the future.

~.

Discounted rewards 2.ilAi] * log p(yi|xi)
0.21 024 0.27 -0.81 -0.9 -1 0 0

® uP s DOWN 3 UP & uP .DOWN 2 DOWN .DOWN a uP s

Reward +1.0 Reward -1.0
\gamma =0.9

[Slides from Karpathy]
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Pong from Pixels

n(a|s)

1. Initialize a policy network at random

[Slides from Karpathy]
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Pong from Pixels

n(als)

1. Initialize a policy network at random
2. Repeat Forever:

3. Collect a bunch of rollouts with the policy ep5||on greedy!
UP DOWN UP UP DOWN DOWN DOWN UP WIN
DOWN o UP UP DOWN UP UP LOSE
° UP -0 UP r® DOWN>‘ DOWN=.DOWN>’ DOWN>' UP -® LOSE

‘ DOWN UP UP DOWN UP UP

HE NN

WIN

[Slides from Karpathy]
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Pong from Pixels

n(a|s)

1 Initialize a policy network at random
2. Repeat Forever:
3
4

Collect a bunch of rollouts with the policy epsilon greedy!
Increase the probability of actions that worked well

Pretend every action we took here
was the correct label.

maximize: logp(yz | xi)

Pretend every action we took
here was the wrong label.

e oo | 20 Ap % 1og p(yi|x)

UP o DOWN o UP UP__ 2 DOWN_ DOWN_ o DOWN_ o UP WIN

DOWNGUP o UP S DOWN o WP o UP LOSE Does not require transition
o .@ P .g DOWN g DOWN JDOWN o DOWN o WP o LOSE probabi“ties

DOWN o UP UP__o DOWN o UP up

; : WIN Does not estimate Q(), V()

- . Predicts policy directly

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Policy Gradients

Why does this work?

Initialize a policy network at random
Repeat Forever:
Collect a bunch of rollouts with the policy

S w NN

Increase the probability of actions that worked well

> Ai = log p(yi|xi)

[Slides from Karpathy]
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Policy Gradients

Formally, let’s define a class of parameterized policies IT = {mg,80 € R™}

For each policy, define its value:

J(O)=E | +'rilme
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Policy Gradients

Writing in terms of trajectories 7 = (Sg, @g, 70, S1, a1, 71, ---)

Probability of a trajectory Reward of a trajectory
p(7;6) = mo(aolso)p(s1]s0, ao) r(T) = Z ’Yt’l”t
x mo(a1|s1)p(s2]s1,a1) >0
x T (az|s2)p(s3|s2, az)
X ...
= Hp(5t+1|5taat)779(at|3t)
t>0

J(Q) =FE [Z 'Ytrt'”@:| — ETNp(T;Q) [T<T)]

>0
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Policy Gradients

Formally, let’s define a class of parameterized policies II = {7y,0 € R™}

For each policy, define its value:

JO)=E |Y +'rilmg| = Erpirio) [r(7)]

>0

We want to find the optimal policy #* = arg max J(0)

How can we do this?

Gradient ascent on policy parameters
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REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(’r)p(T;H) dr

T
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REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(T)p(T;O) dr p(;0) = | [ p(st41lse, ar)mo(arlsy)

t>0

Now let’s differentiate this: VOJ(Q) — /T(T)vep(’r; 9) dT Intractable

T
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REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(T)p(T;O) dr p(;0) = | [ p(st41lse, ar)mo(arlsy)

t>0

Now let’s differentiate this: VOJ(Q) — /T(T)vep(’r; 9) dT Intractable

T

Vop(T;0)
p(7;0)

However, we can use a nice trick: Vyp(7;0) = p(7;0)

Y

= p(7;0)Velogp(T; 0)
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REINFORCE Algorithm

Expected reward: J(@) = ETNp(T;e) [7“(7')]

= /r(T)p(T;O) dr p(;0) = | [ p(st41lse, ar)mo(arlsy)

t>0

Now let's differentiate this: Vy.J(0) = /T(T)vep(’r; 0) dr Intractable

T

However, we can use a nice trick: Vyp(7;0) = p(7;0) Vop(7; 9) = p(7;0)Vylogp(T;0)

If we inject this back: p(7;0)
VoI (6) = / (+(7) Vg log p(r: 6)) p(7; 6) dr

= Erp(r;) [r(7)Vglog p(7;0)]
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(3t+1 ‘Sta a,t)’]T@(a,t’St)
t>0
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(3t+1 ‘Sta a,t)’]T@(a,t’St)
t>0

Thus: logp(7;0) = Z (logp(st+1]st, ar) + log mg(ar|se))
>0
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(3t+1 ‘Sta Cl,t)’]T@(a,t’St)

t>0
Thus: logp(7;0) = Z (log p(st+1]|st, ar) + logmg(a|st))
t>0
: I Doesn’t depend on
And when differentiating: V@ logp 75 9 Z V@ log 7T9(CLt |St) transition probabilities

t>0
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(']—, 9) o Hp(3t+1 ‘Sh Cl,t)’]TQ(CLt’St)
t>0

Thus: logp(7;0) = Z (log p(st+1]s¢, at) + log mg(alst))

t>0
. e Doesn’t depend on
And when differentiating: V@ logp 75 9 Z V9 log We(at |St) transition probabilities

t>0
Therefore when sampling a trajectory, we can estimate gradients:

VoJ(0) = Erpirio) [r(7)Vologp(r;0)] = > r(7) Vg log me(ay|se)

>0
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Policy Gradients

Gradient estimator: V@J(Q) ~ Z T(T)V@ log W@(at|8t)

Interpretation: t>0

If r(trajectory) is high, push up the probabilities of the actions seen
If r(trajectory) is low, push down the probabilities of the actions seen

Pretend every action we took here Pretend every action we took raw pixels hidden layer
was the correct label. here was the wrong label. .
maximize: logp(yi | Xi) maximize: (—1) * log p(y; | x;) ‘\'// probablllty of
. moving UP
- XA &
UP DOWN uP UP DOWN_ o DOWN_ o DOWN UP WIN V‘,:i}
DOWN o UP UP DOWN UP UP LOSE '/ V .
UP UP DOWN o DOWN_ o DOWN_ o DOWN UP LOSE ~ .
DOWN o UP UP DOWN UP UP WIN
! !
H = 2 Ai * log p(yi|xi)
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Policy Gradients

Gradient estimator: VHJ(Q) ~ Z T(T)V@ log 7T9(a,t|8t)

Interpretation: t>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als, 0),Va € A,s € §,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry,...,57-1,A1r—1, RTl following 7 (-|-, 0)|
For each step of the episode t =0,...,7 — 1:
Gy + return from step ¢
0 0+ CY’YthVO 10g7T(At|St, 9)

epsilon greedy

[Slides from Fragkiadaki, 10-703 CMU]
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Policy Gradients

Gradient estimator: VHJ(Q) ~ Z T(T)V@ log 7T9(a,t|8t)

Interpretation: t>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really
hard - can we help this estimator?

[Slides from Fragkiadaki, 10-703 CMU]
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Variance Reduction with a Baseline

Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an
estimator:

Vo (0) = Y (r(r) — b(s:)) Vo log mo(ay|s:)

e.g. exponential moving average of the rewards.

[Slides from Fragkiadaki, 10-703 CMU]
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Actor-Critic Methods

A better baseline: want to push the probability of an action from a state, if this
action was better than the expected value of what we should get from that state

Recall: Q and V - action and state value functions!

We are happy with an action a in a state s if Q(s,a) - V(s) is large.
Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:

Vo (0) = Y (Q™ (st,ar) — V™ (1)) Vo log mo(as|s:)

t>0
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Actor-Critic Methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning Exploration + experience replay

. . .re . Decorrelate samples
by training both an actor (the policy) and a critic (the Q function) Fixed targets

Critic: evaluates how good the action is

____________________________________________________

: 2
A3C Policy Learning Module - ﬁi(Wi) . Es,a,r,s'~Df (r + v max Q(S’, a/; Wi_) o Q(s, a; Wi)) ]
: a’
l (1 unit) \ e & & 2 J
Value Function
! Q-learning target Q-network
Q(S7 a’) ' ( | )
~ —> T\ A|S
Policy Function : 0
Fully I (3 units) 71 (a|8) Actor: decides what actions to take
connected LSTM
. layer (256 units) 5
(256 units) ; Vo J(0) ~ E (Q7 (st,at) — V™ (st)) Vo log mg(at|st)

Variance reduction with a baseline
[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]
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Summary: RL Methods

» Value Based
Value iteration - Learned Value Function
Policy iteration

(Deep) Q-learning Implicit policy (e.g. e-greedy) P

> Policy Based Value Fung¢tion Policy

Policy gradients - No Value Function

Learned Policy

Actor
Critic

| Value-Based | Policy-Based |

» Actor-Critic

Actor (policy) Learned Value Function

Critic (Q-values)

Learned Policy

[Slides from Fragkiadaki, 10-703 CMU]
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Back to Reasoning: Interactive Reasoning

Task-independent Task-dependent

Language-assisted

Key Opens a door of the same color as
the key.

Skull They come in two varieties, rolling
skulls and bouncing skulls ... you must
jump over rolling skulls and walk under
bouncing skulls.

[...] having the correct key can open the lock [...]
[...] known lock and key device was discovered [...]
[...] unless the correct key is inserted [...]

Pre—trainingl

Pre-trained

y—»

State, Reward

Language-conditional

Go down the ladder and walk right im-
mediately to avoid falling off the conveyor
Vkey  Vskull Viadder Vrope belt, jump to the yellow rope and again
to the platform on the right.

Agent Environment

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. [JCAI 2019]
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Language-conditional RL: Instruction Following

Language specifies the task

Train

Fusion

Go to the short red torch .

Go to the blue keycard Allgn ment

Go to the largest yellow object

Go to the green object Ground |anguage
Recognize objects
Navigate to objects

Test

Generalize to unseen objects

Go to the tall green torch

Go to the red keycard
Go to the green torch Go to the smallest blue object

[Misra et al., Mapping Instructions and Visual Observations to Actions with Reinforcement Learning. EMNLP 2017]
[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Instruction Following

e Gated attention via element-wise product

Image Representation

= Gated-Attention Multimodal Fusion Unit
xI f( tr canv) et e R R 1
Mga(xp,x,) = M(a,)Ox, :
1
To policy
A'G/L learning
‘ e Fusion

Alignment
Ground language
Recognize objects

Instruction 5 v
Representation a; = h(x) (a)
Attention Vector

L R W e e

-

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Instruction Following

EASY | | MEDIUM HARD

Go to the armor

O O
00000 O o ®
'Q O . O
&0 ot O O

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Instruction Following

Representation *

blug «--- ;- - =% x, = g(L; Ogry)
red « oo Grounding is
green important for
yellow *T | generalization
il ELI==—MF— armor  blue armor, red pillar
H i -> blue pillar
L] E pillar
i B
i----*', » torch

skullkey

OV 3601 SIS ANADPPPHIAPHHHPARANANARSRAORRES

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Embodied QA

Q: What color is the car?

FORWARD FORWARD ?
_— ) : () T
©® ) &
A3 -& a&

=

[Das et al., Embodied Question Answering. CVPR 2018]
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Language-assisted RL: Language to Rewards

JetBlue ‘ Delta

% % longest stop 2h longest stop 2h
§ g price $100 price $10
“I prefer JetBlue,
even if it’s
expensive”
o , ‘Jump over the skull Pr.eferences
build an L-like shape while going to the (Lin et al. 2022)
from red blocks” left”
(B i%al spec[[flclatlz%r: 9) Reward shaping https://arxiv.org/abs/1806.01946,
andaanau et al. https://arxiv.org/abs/1902.07742,
(Goyal et al. 201 9) https://www.ijcai.org/proceedings/2019/331,

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019]  https:/arxiv.org/abs/2204.02515
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Language-assisted RL: Language to Rewards

Language specifies the rewards rather than actions

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

<« “Jump over the skull while going to the left”

from Amazon Mturk :-(
asked annotators to play the
game and describe entities

)
Montezuma's Intermediate rewards to speed up learning
revenge

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. I[JCAI 2019]
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Language-assisted RL: Domain knowledge

Game Kingdom Miew Orders Advisors World Cheat Civilopedia

13 ] Grovny bilap

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

Figure 1: An excerpt from the user manual of the game
Civilization II.

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]
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Language-assisted RL: Domain knowledge

Language as domain knowledge — instruction manuals

Map tile attributes:

yuntain, etc)

The natural resources available where a population - Tile resources (&7g™ o, wildlife, etc)
settles affects its ability to pgadice food and goods. City attributes:
: : i : - City population
Bu:jd your C{ty on a plalqs 0 grasslandjsquare with e L e Y
a river running through it if possible. Unit attributes:

- Unit type (e.g., worker, explorer, archer, etc)
- Isunitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-
description, or background

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]
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Language-assisted RL: Domain knowledge

e Phalanxes are twice as effective at defending cities as warriors. /
e Build the city on plains or grassland with a river running through it. /
e You can rename the city if you like, but we'll refer to it as washington. Relevant sentences

e There are many different strategies dictating the order in which
advances are researched

e After the road is built, use the settlers to start improving the terrain.

5 5 B A A A A A
e When the settlers becomes active, chose build road. A: action-d escription
S S S A A A

e Use settlers or engineers to improve a terrain square within me C|_ty radius S state-descrlptlon

A S¥ A A S Ax S S S S

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]
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Summary: Interactive Reasoning

Instruction following Embodied QA

Q: What color is the car?

Train 5
Go to the short red torch . X C] ann '. [:] ? t I T t ' tHt ¢
Go to the blue keycard 0 ©©‘ | ni = 1 =
Go to the largest yellow object A = & i &
Go to the green object ]

Test

A 4 15 i
Go to the green torch Go to the smallest blue object )P 1‘"“IHH"““”'""

Reward shaping

The natural resources available where a population
settles affects its ability to produce food and goods.
o Build your city on a plains or grassland square with
«— Jum p over the a river running through it if possible.
skull while going

to the left”

Figure 1: An excerpt from the user manual of the game
Civilization II.

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. [JCAI 2019]
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Interactive Reasoning Challenges

ALIEN
20th Century Fox
Games of the Century
(picture of the ALIEN movie poster)
"In space no one can hear you scream"
Game Instructions
Fox Video Games

ALIEN

TO SET UP: Set up your video computer system and left joystick controller as
instructed in your manufacturer owner's manual. Move the Color/B-W lever to
the correct setting. Turn the power OFF and insert the Alien game cartridge.

(Screen shot of the ALIEN maze setup: Alien, Alien Egg, Human, Pulsar and
Play Level-demo mode only)

TO BEGIN: Turn the power ON. Use the Game Select lever and Difficulty
switches to choose a play level. Press the Game Reset lever and get ready
to run for your life.

THE OBJECTIVE: Your job is to run through the hallways of your space ship
and crush all the Alien Eggs which have been placed there. You must also
avoid or destroy the adult Aliens and snatch up as many prizes as possible.

THE CONTROLS: Tilt the joystick forward, backward, left and right to
maneuver through the hallways. To smash Eggs, simply run over them. You
may travel off one side of the maze and back into the other using the
"Hyperwarp Passage.” Each Human is equipped with a Flame Thrower that is
activated by the joystick button (see below).

SCREEN DISPLAY: The Play Level and Humans allowed per Play Level are
displayed in the bottom left corner of the screen when Alien is not in play.
During the game, the current score and Humans remaining are shown there.

LEVELS OF PLAY/DIFFICULTY SWITCHES/BONUS ROUNDS: Each game of Alien lasts
until you run out of Humans. If you can clear all of the Eggs out of a
playing screen, you get the chance to earn extra points in a "Bonus Round"
and then are returned to a new and more difficult playing screen. All
points and Humans remaining are carried over to the new screens.

Bonus Rounds: The object of the Bonus Round is to travel STRAIGHT UP to the
top of the screen and grab the prize shown there. You have only eight

seconds to do so. You do not lose a human if you fail, but you earn the

point value of the prize if you succeed.

Left Difficulty Switch A: Aliens travel in random order about the screen.

Left Difficulty Switch B: Aliend travel in fixed patterns about the screen.
Right Difficult Switch B: Capturing a Pulsar has standard effect on the Aliens.
Right Difficulty Switch A: Capturing a Pulsar has no effect on the Aliens.

(Screen shot of ALIEN maze: Flame Thrower, Prize, Hyperwarp Passages, Humans
Remaining and Current Score)

LEVEL 1 - NORMAL GAME PLAY: You begin with three Humans and receive a bonus
Human after successfully clearing the second screen. Prizes appear in chart
order.

Open
challenges

LEVEL 2 - ADVANCED GAME PLAY: You begin with two Humans and receive no bonus
Humans. Prizes appear in chart order.

LEVEL 3 - FOR EXPERTS ONLY: You begin with three Humans and receive no bonus
Human after clearing the first screen. All Prizes in Level 3 are Saturns.

LEVEL 4 - EASY PRACTICE GAME: You begin with six Humans and receive 1 bonus
Human after clearing the first sceen. All Prizes in Level 4 are also Saturns.

OBJECTS/SCORING: Each time an Alien catches you, one Human is lost. You
score points for smashing Eggs and frying Aliens with the aid of your Flame
Thrower or Pulsar. In addition, you can gain points for picking up Prizes.
Be sure to record your high scores on the back of this booklet!

(Screen shot of the bonus round with the human at the bottom of the screen,
the prize at the top of the screen and the horizontal moving Aliens in the
centre portion -- similar to the road portion of Frogger.)

FLAME THROWER - 1 PER HUMAN: A spurt of flam from this contraption cause
Aliens to turn away from you or become immobilized for a short period of
time. Use the Throwers carefully. Each has only four secons of flame and
the Thrower will not operate in the extreme left or right areas of the
screen. You can also use the Flame Thrower to run over a Pulsar without
picking it up, allowing you to save the Pulsar to use at a later time.

PULSARS - 3 PER MAZE: Capturing a Pulsar causes the Aliens to weaken and
turn blue. Then, for a short period of time, you can destroy them by
running over and touching them. The instant the Aliens return to their
original colr, however, they once again become deadly.

PRIZES - 2 PER MAZE: Prizes appear in all levels of play and in the Bonus
Rounds.

POINT CHART:

OBJECT POINTS PRIZES POINTS

Eggs 10 Rocket 500

Pulsar 100 Saturn 1,000

1st Alien 500 Star Ship 2,000
2nd Alien 1,000 1st Surprise 2,000-3,000
3rd Alien 2,000 2nd Surprise 3,000

Completed Screen 1 3rd Surprise 5,000

HINTS FROM DALLAS NORTH.
A good playing strategy is to crush all of the Eggs in one area at a time,
keeping within easy readh of a Pulsar. The best way to destroy Aliens is to
sit near a Pulsar until the Aliens are almost upon you. Then grab that
Pulsar and go get 'em !

Use the Hyperwarp Passage to ditch Aliens. Many times they won't follow you in.

If you're having trouble with the Bonus Rounds, try going between the Alien
pairs rather than around them.

SUPER SMASHERS (a place to enter your high scores)
Name Level Score

[Atari Learning Environment]
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Interactive Reasoning Challenges

Open
challenges

Xl e e P e s e e e e e e e e
e e e s e e e e e e e s e s e e s s e s e e et
You facing the direction marked by x. Choose the number corresponding to the direction you want to move in.
Colour key:

5 A 5 , fence, pole, traffic light, traffic sign, , terrain, ’ ’

’ ’

JOINT TEXT

Turn and move the same direction as traffic. When you get to an intersection, turn left. After you turn the corner building on t
he right has a green awning. Go straight one block. Turn left again then immediately stop. The road ahead of you should curve. L
ook to the left corner and you will see a trashcan between a stop light post and a tree.

Reward: 0 Cumulative reward: @ Steps: 0 Done: False Your historical scores
Type to choose action. Type ? to see action list.

[Zhong et al., SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark. NeurlPS 2021]

Language Technologies Institute 92




. . Open
Interactive Reasoning Challenges challenges
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Interactive Reasoning Challenges

[Habitat Rearrangement Challenge 2022]

Language Technologies Institute

Open
challenges



Summary

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal .
Last Thursday Hierarpchical Continuous

Today / Interactive

/

RL basics
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Summary: RL Methods

Epsilon greedy + exploration
Experience replay
Decorrelate samples

Fixed targets » Value Based
Value iteration - Learned Value Function
Policy iteration

(Deep) Q-learning Implicit policy (e.g. e-greedy)

» Policy Based
Policy gradients - No Value Function

- Learned Policy
Variance reduction with a baseline

» Actor-Critic

Actor (policy) Learned Value Function

Critic (Q-values)
- Learned Policy

[Slides from Fragkiadaki, 10-703 CMU]
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Summary

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure.

Structure e Intermediate Inference External
modeling concepts paradigm knowledge
Temporal .
Last Thursday rempor Continuous
Hierarchical
Today Interactive
. Causal Knowledge
Thursda Discover Discrete )
y scovery Logical Commonsense
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