
Paul Liang

Multimodal Machine Learning
Lecture 7.1: Multimodal Interaction

* Co-lecturer: Louis-Philippe Morency. Original course co-developed 
with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by 
Yonatan Bisk. Spring 2023 edition taught by Yonatan and Daniel Fried
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Reasoning

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Modality A

Modality B

+ Aligned representation

Reasoning 𝒚

Local representation
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The Challenge of Compositionality

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

[Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. CVPR 2022]

CLIP, ViLT, ViLBERT, etc.
All random chance 

1. Structure: <subject> <verb> <object>
2. Concepts: ‘plants’, ‘lightbulb’
3. Inference: ‘surrounding’ – spatial relation
4. Knowledge: from humans!

Compositional Generalization
to novel combinations outside 

of training data
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Sub-Challenge 3a: Structure Modeling

Structure
Single-step Temporal Hierarchical Interactive

Multi-step

Discovery

𝒚

𝒚

Definition: Defining or learning the relationships over which reasoning occurs.
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Structure

Concepts

Single-step Multi-step

Sub-Challenge 3b: Intermediate Concepts

Definition: The parameterization of individual multimodal concepts in the reasoning process.

or

or

words

Continuous

Discrete
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Structure

Concepts

Single-step Multi-step

Sub-Challenge 3c: Inference Paradigm

Definition: How increasingly abstract concepts are inferred from individual multimodal evidences.

∧

Inference

Representation

Causal

Logical

𝑡𝑟𝑢𝑒

𝑧

Continuous

Discrete
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Sub-Challenge 3d: External Knowledge

Structure

Concepts

Inference

Single-step Multi-step

Knowledge

Definition: Leveraging external knowledge in the study of structure, concepts, and inference.

Representation

Logical

Causal

Continuous

Discrete
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Reasoning

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

∧ 𝑡𝑟𝑢𝑒

𝑧
or

or

words
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Roadmap

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Causal
LogicalThursday

Last Week Temporal
Hierarchical Continuous 

InteractiveToday

Knowledge 
CommonsenseDiscrete Discovery 
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Sub-Challenge 3a: Structure Modeling

Structure
Single-step

Concepts

Inference

Dense Representation

Temporal Hierarchical Interactive

Multi-step
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Interactive Structure

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

Time
𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑 𝒕 = 𝑻...

𝑠! =

𝑎'

𝑠" = 𝑠# = 𝑠$ =

𝑎( 𝑎) 𝑎*

Integrates multimodality into the reinforcement learning framework
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Interactive Structure

Modality A

Modality B

… 

… 

Local representation
+ Aligned representation

Policy 𝒂

Structure defined through interactive environment
Main difference from temporal - actions taken at previous time steps affect future states

Reasoning
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Learning a Policy – RL basics

Reinforcement learning

● Introduction to RL
● Markov Decision Processes (MDPs)
● Solving known MDPs using value and policy iteration
● Solving unknown MDPs using function approximation and Q-learning
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Learning a Policy – RL basics

Goal:

Return:

Policy:

An MDP is defined by:

- Set of states 𝑆.
- Set of actions 𝐴.
- Transition function 𝑃(𝑠%|𝑠, 𝑎).
- Reward function 𝑟(𝑠, 𝑎, 𝑠%).	
- Start state 𝑠&.
- Discount factor 𝛾.
- Horizon 𝐻.



15

15

RL vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards
● Environment maybe unknown

● One-step decision making
● Maximize immediate reward
● Dense supervision
● Environment always known

Reinforcement Learning Supervised Learning



16

16

Intersection Between RL and Supervised Learning

Imitation learning

Perform supervised learning by predicting expert action

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states

Sometimes not safe/possible to collect expert trajectories

Obtain expert trajectories (e.g. human driver/video demonstrations):
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RL as Exploring a Tree

+1

𝑎!𝑠! 𝑠" 𝑎" 𝑠# …

+100
-1

+2

+3

+1

𝜋   which action to take from each s

State-value function: how much total reward 
should I expect following 𝜋 from s?

Action-value function: how much total reward
should I expect taking a, then following 𝜋, from s?

𝑉& 𝑠' = 99

𝑄& 𝑠', 𝑢𝑝 = 3

𝑉& 𝑠' = 99

𝑄∗ 𝑠', 𝑢𝑝 = 4
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Relationships Between State and Action Values

State value functions Action value functions
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Value-based Methods

Optimal policy can be found by maximizing over Q*(s,a) 

Optimal policy can also be found by maximizing over V*(s’) 
with one-step look ahead

State value functions Action value functions
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Policy-based Methods

Q(s,a) and V(s) very high-dimensional
But policy could be just ‘open/close hand’
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Value-based vs Policy-based

Value-based
- More sample efficient, respects MDP 
structure
- Easier to add human knowledge about 
states and actions
- More complex algorithm
- Can’t handle continuous argmax, harder 
to understand, sometimes values are 
more complex than policies

Policy-based
- Less sample efficient, more 
akin to trial-and-error
- Harder to add human 
knowledge
- Simpler algorithm
- Directly learns policy, can 
be more interpretable
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Policy-based RL in 15 minutes

Recursive definition
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Bellman Optimality for State Value Functions

Recursive definition
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Bellman Optimality for State Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition
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Solving the Bellman Optimality Equations

Solve by iterative methods

Recursive definition

[Slides from Fragkiadaki, 10-703 CMU]
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Value Iteration

[Slides from Fragkiadaki, 10-703 CMU]
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Value Iteration

Find the best action according to one-step look ahead

Repeat until policy converges. Guaranteed to converge to optimal policy.

[Slides from Fragkiadaki, 10-703 CMU]
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Q-Value Iteration

[Slides from Fragkiadaki, 10-703 CMU]
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Fully known 
MDP
states

transitions
rewards

Bellman 
optimality
equations

Bellman 
expectation
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete state and action space

Update equations require fully observable MDP and known transitions

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact Methods
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Unknown MDPs?

This is problematic when do not know the transitions

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

simulation and exploration

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

learning 
rate

Key idea: implicitly estimate the transitions via simulation
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Tabular Q-learning

Bellman optimality

[Slides from Fragkiadaki, 10-703 CMU]



38

38

Tabular Q-learning

[Slides from Fragkiadaki, 10-703 CMU]
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Exploration and Exploitation

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal 
region, and never explore further.

Gradually decrease epsilon as policy is learned.

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

[Slides from Fragkiadaki, 10-703 CMU]
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Deep Q-learning

Represent value function by Q network with weights w

+ high-dimensional, continuous states
+ generalization to new states

Q-learning with function approximation to extract informative features from high-dimensional
input states.

[Slides from Fragkiadaki, 10-703 CMU]
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Deep Q-learning

- Optimal Q-values should obey Bellman equation

- Treat right-hand     as as a target

- Minimize MSE loss by stochastic gradient descent



43

43

Deep Q-learning Challenges

- Minimize MSE loss by stochastic gradient descent

- Converges to Q* using table lookup representation

- But diverges using neural networks due to:
- Correlations between samples
- Non-stationary targets



44

44

Deep Q-learning: Experience Replay

- To remove correlations, build data-set from agent’s own experience

- Sample random mini-batch of transitions (s,a,r,s’) from D

exploration, epsilon greedy is important!
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Deep Q-learning: Fixed Q-targets

- Sample random mini-batch of transitions (s,a,r,s’) from D
- Compute Q-learning targets w.r.t. old fixed parameters w-

- Optimize MSE between Q-network and Q-learning targets

- Use stochastic gradient descent
- Update w- with updated w every ~1000 iterations
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Policy-based RL in 15 minutes
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Pong from Pixels

Network sees +1 if it scored a point, and -1 if it was scored against.
How do we learn these parameters?
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Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]



50

50

Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Pong from Pixels

epsilon greedy!

[Slides from Karpathy]
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Pong from Pixels

epsilon greedy!

Does not require transition 
probabilities

Does not estimate Q(), V()
Predicts policy directly

[Slides from Karpathy]
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Pong from Pixels

[Slides from Karpathy]
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Policy Gradients

Why does this work?

[Slides from Karpathy]
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Policy Gradients

Formally, let’s define a class of parameterized policies

For each policy, define its value:
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Policy Gradients

Writing in terms of trajectories

Probability of a trajectory     Reward of a trajectory
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Policy Gradients

Formally, let’s define a class of parameterized policies

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters
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REINFORCE Algorithm
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REINFORCE Algorithm

Intractable
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REINFORCE Algorithm

Intractable
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REINFORCE Algorithm

Intractable
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have:
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have:

Thus:
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have:

Thus:

And when differentiating: Doesn’t depend on 
transition probabilities
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory, we can estimate gradients:

Doesn’t depend on 
transition probabilities
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Policy Gradients

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen
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Policy Gradients

epsilon greedy

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

[Slides from Fragkiadaki, 10-703 CMU]
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Policy Gradients

Gradient estimator:

Interpretation:

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really 
hard - can we help this estimator?

[Slides from Fragkiadaki, 10-703 CMU]
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Variance Reduction with a Baseline

Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all 
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you 
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an 
estimator:

e.g. exponential moving average of the rewards. 

[Slides from Fragkiadaki, 10-703 CMU]
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Actor-Critic Methods

A better baseline: want to push the probability of an action from a state, if this 
action was better than the expected value of what we should get from that state

Recall: Q and V - action and state value functions!

We are happy with an action a in a state s if Q(s,a) - V(s) is large.
Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:
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Actor-Critic Methods

Actor: decides what actions to take

Critic: evaluates how good the action is 

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning 
by training both an actor (the policy) and a critic (the Q function) 

Exploration + experience replay
Decorrelate samples

Fixed targets

[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]
Variance reduction with a baseline
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Summary: RL Methods

Value iteration
Policy iteration

(Deep) Q-learning

Policy gradients

Actor (policy)
Critic (Q-values)

[Slides from Fragkiadaki, 10-703 CMU]
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Back to Reasoning: Interactive Reasoning

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]
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Language-conditional RL: Instruction Following

[Misra et al., Mapping Instructions and Visual Observations to Actions with Reinforcement Learning. EMNLP 2017]
[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

Fusion
Alignment
Ground language
Recognize objects
Navigate to objects
Generalize to unseen objects

Language specifies the task
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Language-conditional RL: Instruction Following

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

● Gated attention via element-wise product

Fusion
Alignment
Ground language
Recognize objects
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Language-conditional RL: Instruction Following

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Instruction Following

Grounding is 
important for 
generalization

blue armor, red pillar
-> blue pillar

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Embodied QA

[Das et al., Embodied Question Answering. CVPR 2018]

Navigation + QA
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Language-assisted RL: Language to Rewards

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019]

Language specifies the rewards rather than actions

“Jump over the skull 
while going to the 
left”

Reward shaping 
(Goyal et al. 2019)

“build an L-like shape 
from red blocks”

Goal specification
(Bahdanau et al. 2019)

“I prefer JetBlue, 
even if it’s 
expensive”

Preferences
(Lin et al. 2022)

https://arxiv.org/abs/1806.01946, 
https://arxiv.org/abs/1902.07742, 
https://www.ijcai.org/proceedings/2019/331, 
https://arxiv.org/abs/2204.02515
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Language-assisted RL: Language to Rewards

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019]

Montezuma’s 
revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

“Jump over the skull while going to the left”

from Amazon Mturk :-(
asked annotators to play the 
game and describe entities

Intermediate rewards to speed up learning

Language specifies the rewards rather than actions
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Language-assisted RL: Domain knowledge

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Language as domain knowledge – instruction manuals
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Language-assisted RL: Domain knowledge

1. Choose relevant sentences
2. Label words into action-description, state-

description, or background

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

Language as domain knowledge – instruction manuals
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Language-assisted RL: Domain knowledge

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]

A: action-description
S: state-description

Relevant sentences

Language as domain knowledge – instruction manuals
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Summary: Interactive Reasoning

Instruction following

“Jump over the 
skull while going 
to the left”

Reward shaping

Embodied QA

Domain knowledge

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]
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Interactive Reasoning Challenges Open
challenges

Learning from open-ended manuals

[Atari Learning Environment]
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Interactive Reasoning Challenges Open
challenges

Learning from text-based games

[Zhong et al., SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark. NeurIPS 2021]
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Interactive Reasoning Challenges Open
challenges

Learning from lots of offline data

[Fan et al., MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge. arXiv 2022]
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Interactive Reasoning Challenges Open
challenges

Hard to specify reward, but only final goal

[Habitat Rearrangement Challenge 2022]
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Summary

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Last Thursday Temporal
Hierarchical Continuous 

InteractiveToday

RL basics
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Summary: RL Methods

Value iteration
Policy iteration

(Deep) Q-learning

Policy gradients

Actor (policy)
Critic (Q-values)

Epsilon greedy + exploration
Experience replay

Decorrelate samples
Fixed targets

Variance reduction with a baseline

[Slides from Fragkiadaki, 10-703 CMU]
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Summary

Inference
paradigmC External

knowledge
DStructure

modelingA Intermediate 
conceptsB

Definition: Combining knowledge, usually through multiple inferential steps, 
exploiting multimodal alignment and problem structure.

Causal
LogicalThursday

Last Thursday Temporal
Hierarchical Continuous 

InteractiveToday

Knowledge 
CommonsenseDiscrete Discovery


