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Generation

Definition: Learning a generative process to produce raw modalities that
reflects cross-modal interactions, structure, and coherence.

[Summariza’tion\ " Translation \ ( Creation )

. Reduction Maintenance Expansion
Information:
(content) > — <
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Latent Variable Models

Lots of variability in images x due to gender, eye color, hair color, pose, etc.

However, unless images are annotated, these factors of variation are not explicitly
available (latent).

|dea: explicitly model these factors using latent variables z
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Latent Variable Models

() Ethnicity

Image X

Only shaded variables x are observed in the data

Latent variables z are unobserved - correspond to high-level features
We want z to represent useful features e.g. hair color, pose, etc.
But very difficult to specify these conditionals by hand and they’re unobserved
Let’s learn them instead
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Latent Variable Models

Putaprioronz z~ N(0,/)
p(x | z) =N (ug(z),Xo(z)) where pg,Xp are neural networks

Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

Given a new image X, features can be extracted via p(zlx)
Given a random z, a new x can be generated => control; if z is interpretable
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Mixture of Gaussians

Mixture of Gaussians (Bayes network z -> x)
z ~ Categorical(l,--- , K)

p(x | 2= k) = N (k. ¢)

Generative process
1. Pick a mixture component by sampling z
2. Generate a data point by sampling from that Gaussian
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Mixture of Gaussians
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Mixture of Gaussians

K
p(x) = p(x,2) =Y p(z)p(x | 2) = > p(z = k) N(x; i, )
z z k=1 -~

component

can solve using expectation maximization
Expectation: use mean and variance to estimate p(z=Kk)
Maximization: use estimate p(z=Kk) to update mean and variance
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From GMMs to VAEs

Putaprioronz z~ N(0,/)
p(x | z) =N (ug(z),Xo(z)) where ug,2g are neural networks

Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

Even though p(xlz) is simple, marginal p(x) is much richer/complex/flexible
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Learning parameters of VAEs

Learning parameters of VAE: we have a joint distribution p(X, Z; 9)

We have a dataset D where for each datapoint the x variables are observed (e.g. images, text)
and the variables z are not observed (latent variables)

We can try maximum likelihood estimation:

log H p(x; 0) = Z log p(x; 0) = Z Iogz p(x,z; 0)

xeD xeD xeD z
(. J
Y
intractable :-(
Need cheaper approximations to - if z binary with 30 dimensions, need
optimize for VAE parameters sum 2730 terms

- if z continuous, integral is impossible
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Variational Inference

pFN

Suppose q(z; ¢) is a (tractable) probability distribution over the hidden
variables parameterized by ¢ (variational parameters)

e For example, a Gaussian with mean and covariance specified by ¢

q(z; ¢) = N(¢1,92)

Variational inference: optimize variational parameters so that a(z: ¢)
is as close as possible to p(x, z; &) while being simple to compute
E.g. in figure, posterior (in blue) is better approximated by orange
Gaussian than green

[Slides from Ermon and Grover]

Language Technologies Institute




KL Divergence

The KL divergence for variational inference is:
D1 (q(2)p(2]2)) = [ (2) log Fiiksdz

Intuitively, there are three cases
a. If qis low then we don’t care (because of the expectation).
b. If qis high and p is high then we are happy.
c. If qis high and p is low then we pay a price.

Note that p must be > 0 wherever g >0

OK, KL small

[Slides from Ermon and Grover]
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Variational Inference

High-level: decompose objective into lower-bound and gap.

} GAP(8, ¢)

r LB(6, )

/

log | [ p(x:60) = L(6) = LB(6, ¢) + GAP(8, $) for some ¢
xeD
Provides framework for deriving a rich set of optimization algorithms.
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Variational Inference

For any! distribution q(2|z; @) over z,
(%, 2;0)
(2]; @)

L(9) = E, 1og§ + KL[q(2|z; ) || p(2|z;0))

’
} posterior gap

> ELBO (evidence lower bound)

\ )
Since KL is always non-negative, L(6) > ELBO

! Technical condition: supp(g(z)) C supp(p(z | z; 6))
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Variational Inference

logp(z; ) = E,logp(x) (Expectation over z)
p(z, 2)

= E, log @) (Mult/div by p(z|x), combine numerator)
_ R, log [ Z&2)9EIDN i by g(z]2)
! (2| z) p(2| x)
p(z, 2) q(z| ) -
= [, log + E, log Split Log
q: like an encoder network: ! q(z | ) ! p(z | ) ( )
data -> latent
p(z, z; 0) We'll ignore this term from now on
=, log + KL[q(z|z; ¢) || p(2|z;0)]
Huge number of algorithms | ! q(z|; ¢)l \ ]
from choices of g and \ Y

decompositions of ELBO _
posterior gap

Typically uncomputable,
but hopefully small
if we chose q well

Evidence Lower Bound (ELBO)
We’ll choose g, and parameters
8, ¢ to maximize this
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Learning parameters of VAEs

Evidence Lower Bound (ELBO) Generative/decoder
p(z, 2;0)
Eq log Gl d) Eqy(zix)[log P(z,x; 0) — log q4(z[x))] p(aj|z; 9)
; = Eg,@zxllog p(z, x; 0) — log p(z) + log p(z) — log q4(z|x))] P
= Eg,(zillog p(x[z; 0)] — Dy (2|x)[lp(2))
- g - g
~ ~
Reconstruct the input  Prior prevents hint from \j
from features z being too informative .
(different KL than before!) q(z | 2 ¢)

@ Take a data point x' Inference/encoder
@ Map it to 2 by sampling from q,(z|x’) (encoder)
© Reconstruct X by sampling from p(x|2; #) (decoder)

What does the training objective £(x; 6, ¢) do?
@ First term encourages X ~ x’ (x' likely under p(x|2; 6))

@ Second term encourages 2 to be likely under the prior p(z)

[Slides from Ermon and Grover]
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Learning parameters of VAEs

p(z|z;0)
L(x;0,0) = Eq,(zx)llog p(x|z;0)] — Dri(q4(2|x)|lp(2)) : A N\ :
D 4
We need to compute the gradients Vo£(x; 6,¢) and V,L(x;6, $) q(z|z; P)
——
easy

VoL(x;0,0) = VoEq,(z1x)[log p(x|z; 0)] — Dki(qs(z[x)[|p(2))
— V19Eq¢(z|x) [lOg p(X|Z; 9)]
- Eq¢(z|x) [VG log p(X|Z; 9)]

1 n
N Z Vo log p(x|zi; 0)
i=1
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Learning parameters of VAEs

p(z|z;0)
L(x;0,0) = Eq,(zx)llog p(x|z;0)] — Dri(q4(2|x)|lp(2)) : A N\ :
D 4
We need to compute the gradients VoL(x;6,¢) and V4L(x;6, ) q(z|z; @)
R/_/ W—/
easy tricky

Expectations also depend on ¢

Vo L(x 0, ) = VyEq, (2 [log p(x|z; 0)] — Dkr(qs(z[x)]|p(2))
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Reparameterization Trick

@ Want to compute a gradient with respect to ¢ of

Evwolr(@)] = [ a(zi $)r(z)dz

where z is now continuous

@ Suppose q(z; ¢) = N(u,0?%1) is Gaussian with parameters ¢ = (u, ). These
are equivalent ways of sampling:

e Sample z ~ q4(2)
o Sample e ~ N(0,1), z= p+ oe = g(e€; §)

@ Using this equivalence we compute the expectation in two ways:
Ermatuir(@)] = Ecenonlr(e(ei )] = [ ple)r(u-+ oo)de
VEqze)r(z)] = VeEclr(g(e ¢))] = E[Ver(g(e: ¢))]

@ Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ¢ and €
is easy to sample from (backpropagation)

¢ Ee[v¢r(g(€; ¢))] o % Zk V¢r(g(ek; ¢)) where 61’ T 7€k ~ N(07 I)'

[Slides from Ermon and Grover]
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Reparameterization Trick

Ve L(x:0,0) = V4Eq, z1x)[log p(x|z; 0)] — Dkr(qy(z1¥)[|p(2))
V¢Eq¢(z\x)[|og P(X‘Z? 9)] = V¢E6[|Og P(X‘,U + o€, 9)] reparameterize
= E[Vglog p(x|p + o€; 0)]

n

1
~ Z[V¢ log p(x|p + o€;; 0)]
i=1
Original form Reparameterized form

|_ _________________ 1 r—-—"-=-=-"-" - - - - - - =-=-=-=-= 1

I | I |

| f | ' Backprop f :

S S bottlenedk! | : l I :

: ~ q(z]P,x) : N : ot/ az 2 =g(d,xe) : 7 : Deterministic node
| i, oS : | : / T | . - Random node
| ' | / |

|

I V < L0/ x ~pE)

: : : = aL/agol :

| ' | |

[Slides from Ermon and Grover]
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Stochastic Optimization

s Eq,2)[f (2)]
VAEs RL
m?bX L(x;0,¢)  Evidence lower bound mquJ(ﬁb) Reward
max Eq, (21 llog p(x|z; 0)] max Ervprig) (7))
Solve by reparameterization! Reparameterization??? ;
X A
p(x|z; H)T We require that: In RL (at least for discrete actions): 7?7
. ‘ - ZIs continuous - T is a sequence of discrete actions a
- q(z) is reparameterizable - p(T; @) is not reparameterizable lals) T
q¢(Z|X) T - f(Z) iS diffel’entiab|e wrt ¢ - r(T) is a black box function ¢
i.e. the environment S
X o Sample z ~ g4(2)
o Sample e ~ N(0,/), z= p+ o¢

REINFORCE is a general-purpose solution!
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Learning parameters of VAEs

Generative/decoder

L(x;0,¢) = Eq,(pllogp(z,x;0) —log ge(z/x))] p (37 | z; 0 )
= Eg,(zx[log p(z, x; 0) — log p(z) + log p(z) — log q4(z|x))]

= Eg,(wllog p(x|z; 0)] — Dki(qy(z]x)|p(2)) TN
e St

reconstruction prior D 4
q(z|z; P)
1. Take a datapoint x;. Inference/encoder

2. Map it to p, 0 using gy(z|x;). encoder
3. Sample € ~ N(0,/) and compute Z = y + o€. reparameterize
4. Reconstruct X by sampling from p(x|Z; 0). decoder
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VAEs for Disentangled Generation

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

- - - consistently slow .
consistently good .

disentanglement_lib consistently fast .
my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was so awesome .

From negative to positive

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .

[Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019]
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VAEs for Disentangled Generation

Disentangled representation learning
- Very useful for style transfer: disentangling style from content -\ .
Ls(x) = Eq, @0 [logpa(x|2)] — 8 - KL(q4(2|x)||p(2)) /
beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger | v
constraint on the latent variables to have independent ;i’;eerlat've ) i Inference
dimensions e Model
Difficult problem! g
Positive results [Hu et al., 2016, Kulkarni et al., 2015] (Sganm/ \ o
Negative results [Mathieu et al., 2019, Locatello et al., 2019] et

Better benchmarks & metrics to measure disentanglement
[Higgins et al., 2017, Kim & Mnih 2018]

[Mathieu et al., Disentangling Disentanglement in Variational Autoencoders. ICML 2019]
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VAEs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal

0/ DOO0DOD Y

1/\42\ 4141

Zat decoder )22>022822
373333333

4 4 4 44U & 4 4 4

z, (nine) SrSES5ESe
b o606 66 ¢

17774951917

Z — decoder § ¥ 3 8B4 88 7%
CI I | 9} 9794319499
I\/Iodallty1 (SVHN) Modality 2 (MNIST)

Connections

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]
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VAEs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal

FlXZaZ\
0| 02 D000 0072
B 17 \N42) 4414
Lyt decoder 12} ) 220282
3 37%33% 3133
4 94440 ¢ 444
Zy prediction (nine) |8 S5S55§5895
6 bt bébtb éUc
g 17774951917
Z decoder .4 § 7 3 B4 8 8 &
a2 [ 9 979491 949
Modality 1 (SVHN) Modality 2 (MNIST)

Connections

[Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019]
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Image Tokens + Transformers

= |s this magic?

An armchair in the shape of an avocado

[DALL-E. Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
[see also, Esser et al. Taming Transformers for High Resolution Image Synthesis. CVPR 2021]

Language Technologies Institute



Image Tokens + Transformers

Image
encoder -

An armchair in l

the shape of an —— e — A A A — ‘ ‘ ‘

encoder

@ Autoregressive Transformer

avocado. l
Image
decoder
@ Generation
[DALL-E. Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021]
[see also, Esser et al. Taming Transformers for High Resolution Image Synthesis. CVPR 2021] https://arxiv.org/abs/2102.12092
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Codebook
e1 8283 eK
Embedding
Space
|
VL /
| °1‘/
- q(z|x) — "ae‘ . CNN
| | 192 |
\ 3 1 / L €5 |
Z 2 zq(x)
53
= -

32 x 32 grid of digits, [0... 8192]

Each digit is a “visual token”
https://arxiv.org/abs/2102.12092, Figures from Charlie Snell,

https://ml.berkeley.edu/blog/posts/vq-vae/
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Image Tokens + Transformers

(2) Autoregressive generation of the tokens

2. sample a latent

2 from this distribution
Encoder Decoder i
. P inier | 0 1 2 3. input the sampled latent
56| 73|67123|181|19/ ... 1. predict a distribution for the next back into the transformer
image latent in the sequence pob | .01 | .02 |.15 | .. and repeat
discrete codes Y
to image

Massive Transformer

image to ‘
discrete codes

56 | 73 (67|23 (81|19 ... — T T T T T L o i T i T

an armchair in the shape of an avocado 15 123 24

Input text tokens Generated Image latents

https://arxiv.org/abs/2102.12092, Figures from Charlie Snell,
https://ml.berkeley.edu/blog/posts/vq-vae/
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Summary: Variational Autoencoders

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,
Query v Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.

| 3 -
S - GSEER
- Relatively easy to train. A - -
- Explicit inference network g(zlx). GAN Eﬂﬁ
| | CAEDNE -
- More blurry images (due to reconstruction).  VAFGAN  RESSS R A ]
. AS

VAE

p"

Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.

GAN

VAE/GAN
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Diffusion Models

po(zo|z1) po(zt-1|Tt)  po(Tt|Tit1) po(zr_1|lzT)  Reverse diffusion
£ A N £ process
N_7
q(xr|er_1) Diffusion process

Encoding via adding noise:  q(x; | ®t—1) = N(@4;v/ozxi—1,(1 — a)I)  Noise parameters

Decoding via denoising: p(zo.r) = p(zr) | [ po(®io1 | @) where p(xr) = N (21;0,1)

t=1
[Tutorial by Calvin Luo and Yang Song]
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Diffusion Models

Generative modeling via denoising

po(xo|x1) Po(Ti—1|zs)  po(Te|Ty1) po(z7_1|zT)  Reverse diffusion

q(1|z0) q(ze|wer)  q(@eg|we) ¢(zr|zr—1)  Diffusion process

Similar to variational autoencoder, but:

1. The latent dimension is exactly equal to the data dimension.

2. Encoder g is not learned, but pre-defined as a Gaussian distribution centered
around the output of previous timestep.

3. Gaussian parameters of latent encoders vary over time such that distribution of
final latent is a standard Gaussian.

[Tutorial by Calvin Luo and Yang Song]
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Learning Diffusion Models

Key idea: use variational inference

po(zo|z1) Po(Ti—1|Te)  po(Te|Tiy1) po(z7_1|zT)  Reverse diffusion
T T . process

q(1|z0) q(ze|wer)  q(@eg|we) ¢(zr|zr—1)  Diffusion process

P(Zo) ] Our old friend the ELBO
L1.T | iL’o)

= Eq(@1|ao) 08 po(To | 21)] — Drlg(@r | o) || p(r))

logp(iv) > IEQ(f':1::r|fl3o) [log C](

-~ —~

reconstruction term prior matching term
T
Multi-level VAE! — ZEq(mt|m0) [Dkr(q(®s—1 | Tt, o) || Po(Ti—1 | Tt))]
t=2 ~~ d

denoising matching term

[Tutorial by Calvin Luo and Yang Song]
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Learning Diffusion Models

Key idea: use variational inference

q(@e-1|ze; x0)  q(Te|Te41, T0)

po(Tolz1) po(Ti—1|m)  po(Tt|Tit1) po(zT—1|TT)
N_7 T T N_7
q(x1|o) q(xe|ri-1) q(zey1]Te) q(xr|rr-1)
Intuition: Neural network to predict cleaner Use Bayes ”:,Ie tol t Alscéparameterlze as
image x;_, from noisy image x; at time t, reverse,Gpropo.r 'onat to aussian, use ’
consistent with the noise adding process. T ataaussian reparameteriztion tric
— ZEEq(mtkno) [DKL(Q(mt—l | wtawO) || pe(wt—l | mt))l
=2 ~

denoising matching term

[Tutorial by Calvin Luo and Yang Song]

Language Technologies Institute




Learning Noise Parameters

Generative modeling via denoising

po(zo|z1) Po(Ti—1|Te)  po(Te|Tiy1) po(z7_1|zT)  Reverse diffusion
T N T process

q(1|z0) q(ze|wer)  q(@eg|ze) g(zr|zr—1)  Diffusion process
Encoding via adding noise:  q(x: | 1) = N (x4;/arxs—1, (1 — az)I)  Noise parameters

Choose (X1 > + -+ > QT

l.e., add smaller noise at the beginning of the diffusion process and
gradually increase noise when the samples get noisier.

[Tutorial by Calvin Luo and Yang Song]
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Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process
- Higher quality samples e pp aEmEE :
Exact log-likelihood e e
- Controllable generation

[Tutorial by Yang Song]
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Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process

Forward SDE (data — noise)

x(0) dx = f(x,t)dt + g(t)dw

score function

£0x,1) — 6 (£)Vx log e (x)

Reverse SDE (noise — data)

| S

dt + g(t)dw

Think ‘infinite-layer’ latent variable model

[Tutorial by Calvin Luo and Yang Song]
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Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process

[Tutorial by Calvin Luo and Yang Song]
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Conditioning Diffusion Models

1. Directly training diffusion models with conditional information

p(zor) = p(er) | [ po(®iz1 | @) —— p(wo.r | y) =p(z7) | [ po (it | 2,y)

1. Conditional original image prediction Lo(xt,t,y) = o
2. Conditional noise prediction €o(Tt,1,Y) = €
3. Conditional score function estimation  sg(x¢,t,y) ~ Vlogp(x; | y)

[Tutorial by Calvin Luo and Yang Song]
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Conditioning Diffusion Models on Text

1. Directly training diffusion models with conditional information
Conditional latent variables are pretrained CLIP embeddings, then diffusion model to

generate image.
@ CLIP encoder

CLIP é
C—
] encoder
@ Autoregressive model

An armchair in l

the shape of an — | 1&Xt 1 A NN\ — 000 Ce:rlﬁlbpeigi?r?:

encoder

avocado. l
Diffusion
model \

@ Generation

[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]
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Conditioning Diffusion Models on Text

u D A L L' E 2 https://cdn.openai.com/papers/dall-e-2.pdf I magen https://arxiv.org/pdf/2205.11487.pdf

= Diffusion on top of frozen CLIP Diffusion on top of frozen TS embeddings

."/
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Text-to-Image Generation with Latent Diffusion

1. Directly training diffusion models with conditional information
Diffusion process in latent space instead of pixel space — faster training and inference.
Use autoencoder for perceptual compression, diffusion model for semantic compression.

20

— Autoencoder+GAN

20 Semantic Compression Latent Space Conditioning
g — Generative Model: . L Diffusion Process ) emanti
5 60 Latent Diffusion Model (LDM) l Ma; |
- Denoising U-Net €g 2T Text
s
-f§ =0 Perceptual Compression Repres
2 I - entations
Z

-

6

o
®
°
®
®
®
®

0 0.5 1 i3
Rate (bits/dim)

B R B =

denoising step crossattention  switch  skip connection concat - J

Pixel Space

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Text-to-Image Generation with Latent Diffusion

Text-to-Image Synthesis on LAION. 1.45B Model.

’A street sign that reads ’A zombie in the "An image of an animal "An illustration of a slightly ’A painting of a ’A watercolor painting of a ’A shirt with the inscription:

“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’

)

i iy,
LATENT
DIFFUSION

Generative
Models!

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Text-to-Image Generation with Latent Diffusion

Semantic Synthesis on Flickr-Landscapes [21]

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Text-to-Image Generation with Latent Diffusion

- . P . ——

R g

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]
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Conditioning Diffusion Models

2. Training unconditional diffusion model then classifier guidance

Viegp(z: |y) = Vlegp(z:) + vVlogp(y | z¢)

unconditional score classiﬁe;rgradient
shiny > y =+1
delicious > Yy =+1
terrible > y=-1

!

Pretrained

Pt 1
@00

The food tastes

[Dhariwal and Nichol, Diffusion Models Beat GANs on Image Synthesis. arXiv 2021]
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Conditioning Diffusion Models

3. Training unconditional diffusion model then classifier-free guidance

Vliogp(z: | y) = Viogp(xt) + v (Viegp(z: | y) — Vg p(xt))
= Vlogp(x:) +vVlogp(x: | y) — vV log p(z:)
= yVlogp(z: | y) + (1 — 7)Vlogp(z:)

7 \ - s

' '
conditional score unconditional score

2 separate diffusion models, one conditional and one unconditional?

Just 1 diffusion model, unconditional training can be seen as setting y=constant

See empirical comparison by GLIDE paper — classifier-free guidance is more preferred

[Nichol et al., GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. arXiv 2022]
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Summary: Generative Models

Likelihood-based

1. Autoregressive models — exact Easy to train, Slow to
inference via chain rule exact likelihood sample from

2. VAEs — approximate inference Fast & easy to Lower generation
via evidence lower bound train quality

3. Diffusion model — approximate High generation Slow to
inference via modeling noise quality sample from
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement Ls(X) = Eq,zx[log pa(X|2)] — B8 - KL(q4(2]x)|[p(2))
T
2. Conditioning p(iBO:T | y) = p(a:T) Hpg(a:t_l | T, y)
t=1
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement Blue
!
2. Conditioning Adapted + pretrained p(xlc)
rFt t 11t

3. Prompt tuning
Adapter Pretrained p(x)

bttt
AA 00000

N
NI : i
& T E :

What color is the car?
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement

2. Conditioning B ]

3. Prompt tuning p(x) / » Shift

Pretrained I

4. Representation tuning T T T T

Attention

_—1
@ A
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Summary: Conditioning and Controlling Generative Models

1. Disentanglement Ls(X) = Eq, 210 [l0g po(x|2)] — B - KL(g¢(z|X)||p(2))
T

2. Conditioning p(xo.7 | y) = p(xT) Hpg(a:t_l | 1, y)
t=1

3. Prompt tuning

4. Representation tuning

Vi = VI Vi
5. Classifier gradient tuning ogp(@: | y) ~ ng(mtz T ogP(y | 331:2

~~

unconditional score classifier gradient
N | Viogp(z: | y) = yViogp(x: | y) + (1 — v)V log p(x;)
6. Classifier-free tuning ~ ~ ~ ~ ~
conditional score unconditional score
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Open
challenges

Open Challenges

Definition: Simultaneously generating multiple modalities to increase information
content while maintaining coherence within and across modalities.

Recall
Cross-modal interactions representation &
alignment!
Big dog on the beach. Waves crashing, people playing volleyball, ...
Cross-modal interactions
‘woof’ ‘crash’ ‘bounce’ ‘wWhoosh’
—
. Recall
Temporal + causal + logical structure i
reasoning!
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Open
challenges

Open Challenges

1. Synchronized generation over multiple modalities.

2. What’s special about diffusion models from multimodal perspective?

2. Combining generation with explicit reasoning to enable compositional generation.
3. Better representation fusion and alignment in generation.

4. More control over large-scale generative models, fine-grained + few-shot control.
5. Human-centered evaluation of generative models.

More resources:

https://lilianwengq.qgithub.io/tags/generative-model/
https://yang-song.net/blog/2021/score/

https://blog.eviang.com/2018/01/nf1.html & https://blog.eviang.com/2018/01/nf2.html
https://deepgenerativemodels.github.io/syllabus.html
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
https://cvpr2022-tutorial-diffusion-models.qgithub.io/
https://huggingface.co/blog/annotated-diffusion
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://imtomczak.qgithub.io/blog/1/1_introduction.html
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https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://blog.evjang.com/2018/01/nf1.html
https://blog.evjang.com/2018/01/nf2.html
https://deepgenerativemodels.github.io/syllabus.html
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
https://cvpr2022-tutorial-diffusion-models.github.io/
https://huggingface.co/blog/annotated-diffusion
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://jmtomczak.github.io/blog/1/1_introduction.html

