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Administrative Stuff
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Last Reading Assignment!

▪ Four main steps for the reading assignments

▪ Monday 8pm: Official start of the assignment

▪ Wednesday 8pm: Select your paper

▪ Friday 8pm: Post your summary

▪ Monday 8pm: Post your extra comments (5 posts)
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Final Project Report (Due Sunday 12/10 at 8pm)

Main goals:

1. Produce a research paper which will motivate your research problem, 

describe the prior work, present your research contributions, explain the 

details of your experiments, and discuss your results.

2. Novel research ideas (N-1 new ideas for N students)

▪ Novel algorithm

▪ Novel application

3. Incorporate feedback from previous milestones

4. Compare to multimodal baselines from midterm report

1. Did the proposed ideas solve the errors highlighted in error analysis?

2. Broader implications of proposed ideas.
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Final Poster Presentations (Tuesday 12/5 and Thursday 12/7)

Main objective: 
▪ Focus on only one of your new research ideas

▪ All students should present and answer questions

▪ Be sure to be on time! We have many presentations each day ☺

▪ All presentations are in person (no remote presentations)

Presentation length:
▪ 30-seconds elevator pitch

▪ 4-minute full presentation – all students should present

▪ Following each presentation, audience can ask questions
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11-877 Next Semester!

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2023/

Do you want to be TA for Multimodal course?

Email me!

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2022/
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Multimodal Grounding
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FERRET: Refer and Ground Anything Anywhere at Any Granularity

Can we point to some part of the image and ask typical questions?

Yes! FERRET allows multimodal models to understand free-form input referring and 

generate grounded output
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FERRET: Refer and Ground Anything Anywhere at Any Granularity

Currently, other multimodal model has no good ability to understand free-form referring.
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FERRET: Refer and Ground Anything Anywhere at Any Granularity

How to design unified representations for three types of regions: point / box / free-form 

shape



12

12

FERRET: Refer and Ground Anything Anywhere at Any Granularity

For the feature part of the free-form regions, use spatial-aware visual sampler to extract 

features.
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FERRET: Refer and Ground Anything Anywhere at Any Granularity

Now the hardest part has been solved. How to train a LLM-based model to learn from 

those representations?



Multimodal Generation



15

15

SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with 

Frozen LLMs

Motivation for VQ-VAE:

Reduce the dimension size and do auto-regressive PixelCNN generation

Important points about VQ-VAE:

1. It is actually an auto-encoder  2. It uses discrete quantizer.
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SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with 

Frozen LLMs

Codebook from VQ-VAE:

It pre-defines an embedding space for quantization with size K.

Discret quantization is a must for PixelCNN to generate the final output.
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SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with 

Frozen LLMs

SPAE extends based on VQ-VAE to use a frozen LLM to be the quantizer.
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SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with 

Frozen LLMs

Semantic Pyramid AutoEncoder: allows for representing semantic concepts with 

notably fewer tokens



MLLM-guided Image 

Editing
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GUIDING INSTRUCTION-BASED IMAGE EDITING VIA MULTIMODAL LARGE 

LANGUAGE MODELS

Fu, Tsu-Jui, et al. "Guiding Instruction-based Image Editing via Multimodal Large Language Models." arXiv preprint arXiv:2309.17102 (2023)

https://arxiv.org/abs/2309.17102
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LLMs for Speech
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SALMONN: TOWARDS GENERIC HEARING ABILITIES FOR LARGE 

LANGUAGE MODELS

Tang, Changli, et al. "SALMONN: Towards Generic Hearing Abilities for Large Language Models." arXiv preprint arXiv:2310.13289 (2023).

• SALMONN, a Speech Audio Language Music Open Neural Network

• Integrating a pre-trained text-based large language model (LLM) with speech and audio encoders 

into a single multimodal model.

• Many prior Audio-Speech-Text LLMs - such as SpeechGPT and AudioPaLM.

• How is SALMONN different?

https://arxiv.org/abs/2310.13289v1
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SALMONN: TOWARDS GENERIC HEARING ABILITIES FOR LARGE 

LANGUAGE MODELS

Tang, Changli, et al. "SALMONN: Towards Generic Hearing Abilities for Large Language Models." arXiv preprint arXiv:2310.13289 (2023).

How is SALMONN different?

• competitive performances on training tasks 

• ASR and translation, auditory information-based question answering, emotion recognition, 

speaker verification, and music and audio captioning etc.

• SALMONN also has diverse emergent abilities unseen in training,

• speech translation to untrained languages, speech-based slot filling, spoken-query-based 

question answering, audio-based storytelling, and speech audio co-reasoning etc.

• A novel few-shot activation, by tuning LoRA scaling factor proposed to activate cross-modal 

emergent abilities of SALMONN.

https://arxiv.org/abs/2310.13289v1
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LANGUAGE MODELS

Tang, Changli, et al. "SALMONN: Towards Generic Hearing Abilities for Large Language Models." arXiv preprint arXiv:2310.13289 (2023).
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Generation from unique 

modalities
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DreamDiffusion: Generating High-Quality Images from Brain EEG Signals

Motivation:

● Image generation has seen advancements, especially in text-to-image methods

● What about "thoughts-to-images"?

● Challenges and Opportunities:

○ Current methods of image reconstruction rely on fMRI, but it's non-portable 

and costly.

○ EEG is non-invasive, low-cost, and has potential applications in art, dreams 

visualization, and therapy
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Challenges in EEG-Based Image Generation

● Inherent Noise in EEG Signals: High temporal resolution, low spatial resolution

● Limited Information and Individual Differences in EEG data

● EEG space differs significantly from text and image spaces
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Addressing Noise and Limited Information

● Objective: Train EEG representations using abundant EEG data

● Method: Temporal masked signal modeling to predict missing tokens

● Uniqueness: Focus on temporal characteristics, deepening understanding across 

diverse brain activities.
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Aligning EEG, Text, and Image Spaces

● Previous methods' limitation: Fine-tuning Stable Diffusion with limited data

● Solution: Introduce CLIP supervision to align EEG, text, and image embeddings

● Process: Leverage CLIP's image encoder to refine EEG feature embeddings, 

enhancing alignment
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Results

● Quantitative and qualitative results show the method's effectiveness.



Embodied Multimodal 

Models
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PaLM-E: An Embodied Multimodal Language Model

Motivation:

● Large Language Models (LLMs) excel in various domains.

● Real-world applications, like robotics, demand grounding—connecting words to 

real-world sensor modalities.

● LLMs trained on massive textual data lack direct connections to real-world visual 

and physical sensor modalities.

● Existing methods (Ahn et al., 2022) use robotic policies but are limited by 

providing only textual input.

● Evidence: State-of-the-art visual-language models struggle with direct solutions to 

robotic reasoning tasks.
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Building Embodied Language Models

● Main Idea: Inject continuous, embodied observations into PaLM-E's language 

embedding space.

● Implementation: Encode multi-modal observations into vectors matching language 

token dimensions.

● Analogy: Continuous data injected akin to language tokens.
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Modalities incorporated into PaLM-E

● State Estimation Vectors:

○ Simplest input, representing robot or object states.

● Vision Transformer (ViT):

○ Utilizes ViT for 2D image features.

● Object-Centric Representations:

○ Structured encoders for visual input lacking pre-structured entities.

○ Decomposes ViT's representation into distinct objects using ground-truth 

masks.

● Object Scene Representation Transformer (OSRT):

○ Learns 3D-centric neural scene representations.

● Entity Referrals:

○ Labels multi-modal tokens for object identification.

○ Enables PaLM-E to reference objects using special tokens
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Connecting Output to Embodiment

● PaLM-E is a decoder-only LLM that autoregressively generates textual 

completions given a prefix or prompt

● Hence, we need to distinguish  tasks requiring text-only output from those 

involving embodied planning or control

● Embodied Task Execution assumes access to policies executing low-level skills 

from a limited vocabulary.
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Results





Compositional Reasoning
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Visual Programming: Compositional visual reasoning without training

Challenge: While existing approaches work well on individual tasks, they struggle 

with scaling to a wide range of complex tasks.

VISPROG Overview:

● VISPROG inputs visual data and natural language instructions.

● Generates a sequence of steps or a "visual program" to execute tasks.

● Uses modules like computer vision models, language models, and image 

processing routines.
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Visual Programming: Compositional visual reasoning without training
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Visual Programming: Compositional visual reasoning without training

Capabilities:

● VISPROG uses GPT-3 for in-context learning and program generation.

● Supports various modules for image understanding, manipulation, and knowledge 

retrieval.

● Highly interpretable with logical, step-by-step visual rationales for tasks.

Advantages Over Previous Methods:

● Higher level of abstraction than Neural Module Networks.

● More flexible and modular, allowing for a wide range of tasks without specific 

training.

Key Contributions & Use Cases:

● Demonstrates flexibility in tasks like visual question answering, image editing, and 

object tagging.

● Impressive performance gains in tests (e.g., VQA tasks, zero-shot accuracy in 

NLVR).
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Visual Programming: Compositional visual reasoning without training

Diverse Applications of VISPROG:
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Visual Programming: Compositional visual reasoning without training

Analysis and Results:

Effect of Prompt Size:
● More in-context examples improve performance in GQA and NLVR tasks.

● Majority voting across different runs enhances accuracy.

● Performance in NLVR saturates with fewer prompts compared to GQA.

Generalization across Tasks:
● Various prompting strategies (random, voting, curated) impact performance differently.

● Curated prompts demonstrate comparable results to voting, with less computational resource.

● VISPROG shows strong zero-shot performance, particularly in single-image VQA for NLVR.



Unified Visio-Linguistic 

Model
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Image as a Foreign Language: BEIT Pretraining for All Vision and Vision-

Language Tasks

● Modality Convergence: Integrates language and vision pretraining.

● Multiway Transformers for handling multiple modalities.

● Simplified pre-training with 'mask-then-predict' method.

● Versatile Applications: Effective across object detection, segmentation, 

classification, and more.
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Image as a Foreign Language: BEIT Pretraining for All Vision and Vision-

Language Tasks

Multiway Transformer Backbone:
● Shared self-attention module with vision, language, and vision-language experts.

● Enables deep fusion for multimodal tasks.

Masked Data Modeling:
● Unified task for both monomodal and multimodal data.

● Learns representations and alignments between modalities.
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Image as a Foreign Language: BEIT Pretraining for All Vision and Vision-

Language Tasks

Some Results:
● Fusion encoder model surpasses previous models on VQA v2.0 and achieves 84.03% accuracy

● Sets new record in NLVR2, reaching over 90% accuracy.



Multimodal Alignment
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DEMYSTIFYING CLIP DATA 

● The increasing availability of pre-trained models for public use contrasts sharply with the lack of 

transparency regarding their training data. What is the significance of good data for a good model?

● Demystifying CLIP Data. The success of CLIP in computer vision is attributed to its data rather than its 

architecture or pre-training objective.
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DEMYSTIFYING CLIP DATA 

● The limited disclosure of CLIP's data collection process has prompted the need to unveil its curation approach, 

leading to the creation of MetaCLIP.

● The goal is to uncover CLIP’s data curation process, which involves preserving signal in the data while 

minimizing noise.

● Details from original CLIP paper:
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DEMYSTIFYING CLIP DATA 

● Data construction process consists of the following steps:

○ Metadata Construction: M = {entry}

○ Sub-string Matching: text → entry   

■ CommonCrawl (CC)4 as the source (1.6B mage-text pairs)

■ Retains only high-quality matching texts
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DEMYSTIFYING CLIP DATA 

● Data construction process consists of the following steps:

○ Inverted Indexing: entry → text     

■ All texts associated with each metadata entry are aggregated into lists, creating a mapping from each 

entry to the corresponding texts, entry → text. 

■ Out of the 500k entries, 114k entries have no matches.

○ Query and Balancing with t ≤20K 

■ For each metadata entry, the associated list of texts (or image-text pairs) is sub-sampled, ensuring that 

the resulting data distribution is more balanced.

■ t = 20k is a threshold used to limit the number of texts/pairs for each entry.
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DEMYSTIFYING CLIP DATA 
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DEMYSTIFYING CLIP DATA 



Multimodal Generation
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KOSMOS-G: Generating Images in Context with Multimodal Large Language 

Models 

Major advancement in text-to-image (T2I) and vision-language-to-image (VL2I) generation.

● But, how can we generate images from generalized vision-language inputs? 
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KOSMOS-G: “Alignment before Instruct”

The backbone of KOSMOS-G MLLM is a Transformer-based causal language model, serving as a general-purpose 

interface to multimodal input.

Entire pipeline can be divided into 3 stages:

1. Multimodal Language Modeling

2. Image Decoder Aligning

3. Instruction Tuning
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KOSMOS-G: Image Decoder Aligning

To make KOSMOS-G capable of image generation,

● Diffusion models are incorporated as the image decoder.

● AlignerNet is proposed that consists of an encoder M and a decoder N to learn the alignment between the 

KOSMOS-G source space and CLIP text encoder target space.
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KOSMOS-G: Instruction Tuning 

To pursue the objective of “image as a foreign language in image generation,”

● An interleaved vision-language data has been curated and

● KOSMOS-G is further fine-tuned using the diffusion loss in Equation 3. 
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KOSMOS-G: Generating Images in Context with Multimodal Large Language 

Models 

KOSMOS-G delivers impressive zero-shot generation results across diverse settings, yielding meaningful and 

coherent outputs even for highly customized subjects.
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