

Language Technologies Institute

Multimodal Machine Learning

Lecture 12.2: Quantification

Paul Liang

* Co-lecturer: Louis-Philippe Morency. Original course co-developed with Tadas Baltrusaitis. Spring 2021 and 2022 editions taught by Yonatan Bisk. Spring 2023 edition taught by Yonatan and Daniel Fried **Definition:** Empirical and theoretical study to better understand heterogeneity, cross-modal interactions, and the multimodal learning process.

勜

Sub-Challenge 6a: Heterogeneity

Definition: Quantifying the dimensions of heterogeneity in multimodal datasets and how they subsequently influence modeling and learning.

勜

Distribution heterogeneity

Inspired by distributed learning

[Ye et al., Heterogeneous Federated Learning: State-of-the-art and Research Challenges, 2023]

Structure heterogeneity

Inspired by structure learning

A function $f : \mathcal{X}(\Omega) \to \mathcal{Y}$ is \mathfrak{G} -invariant if $f(\rho(\mathfrak{g})x) = f(x)$ for all $\mathfrak{g} \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega)$, i.e., its output is unaffected by the group action on the input.

A function $f : \mathcal{X}(\Omega) \to \mathcal{X}(\Omega)$ is \mathfrak{G} -equivariant if $f(\rho(\mathfrak{g})x) = \rho(\mathfrak{g})f(x)$ for all $\mathfrak{g} \in \mathfrak{G}$, i.e., group action on the input affects the output in the same way.

Derives deep learning architectures on grids, graphs, sets, etc.

[Bronstein et al., Geometric Deep Learning Grids, Groups, Graphs, Geodesics, and Gauges, 2021]

Carnegie Mellon Universit

Modality Biases

[Wu et al., Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks. ICML 2022] [Javaloy et al., Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization. ICML 2022] [Goyal et al., Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017]

Carnegie Mellon University

Modality Biases

Heterogeneity in information and relevance

Fairness and social biases – unimodal social biases

Finding: Image captioning models capture spurious correlations between gender and generated actions

Wrong

Baseline: A **man** sitting at a desk with a laptop computer.

Our Model: A **woman** sitting in front of a laptop computer.

Right for the Right

Reasons

Right for the Wrong Reasons

Baseline: A **man** holding a tennis racquet on a tennis court.

Our Model: A **man** holding a tennis racquet on a tennis court.

Wrong Right for the Right

Modality Biases

Heterogeneity in information and relevance

Fairness and social biases – cross-modal interactions worsen social biases

[Srinivasan and Bisk, Worst of Both Worlds: Biases Compound in Pre-trained Vision-and-Language Models. NAACL 2022]

Noise Topologies and Robustness

Heterogeneity in noise

Strong tradeoffs between performance and robustness

[Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021]

Noise Topologies and Robustness

Several approaches towards more robust models

Translation model Joint probabilistic model

[Ngiam et al., Multimodal Deep Learning. ICML 2011]

[Srivastava and Salakhutdinov, Multimodal Learning with Deep Boltzmann Machines. JMLR 2014]

[Tran et al., Missing Modalities Imputation via Cascaded Residual Autoencoder. CVPR 2017]

[Pham et al., Found in Translation: Learning Robust Joint Representations via Cyclic Translations Between Modalities. AAAI 2019]

Quantifying Heterogeneity via Transfer

Information transfer, transfer learning perspective

1a. Estimate modality heterogeneity via transfer

In practice, efficient by pre-trained models and few-shot transfer

Implicitly captures these:

[Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022]

Heterogeneity-aware Fusion

Information transfer, transfer learning perspective

1a. Estimate modality heterogeneity via transfer

(Implicitly captures heterogeneity)

2a. Compute modality heterogeneity matrix

[Zamir et al., Taskonomy: Disentangling Task Transfer Learning. CVPR 2018] [Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022] Information transfer, transfer learning perspective

[Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022]

Quantifying Modality Heterogeneity

HighMMT heterogeneity-aware: estimate heterogeneity to determine parameter sharing

Purpose the second state of the second state

- All model combinations (>10,000)
- Pareto front
- HighMMT single-task
- HighMMT multitask
- HighMMT heterogeneity-aware

[Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022]

Carnegie Mellon University

Challenges: Quantifying Heterogeneity

Open challenges

Open challenges:

- Noisy and missing modalities.
- New and understudied modalities.
- Large number of modalities.
- Cases where its unclear which modalities are useful active selection
- Related fields: federated learning, active learning, distributed systems, structure & invariances

Sub-Challenge 6b: Cross-modal Connections

췖

Sub-Challenge 6b: Cross-modal Interactions

Interacting: process affecting each modality, creating new response

勜

Part 1: Multimodal Interactions

Interactions: Understanding *commonalities* between modalities and how they *combine* to provide information for a task.

Multimodal Interactions

Interactions: Understanding *commonalities* between modalities and how they *combine* to provide information for a task.

Multimodal Interactions

Interactions: Understanding *commonalities* between modalities and how they *combine* to provide information for a task.

Multimodal Interactions

Interactions: Understanding *commonalities* between modalities and how they *combine* to provide information for a task.

Fundamental questions in multimodal learning

What interactions are in my data? What interactions do models learn?

What models are suitable for my data?

Original multimodal distribution p

Estimating synergy

Verbal Nonverbal Sarcasm Unimodal marginal 1 Verbal Sarcasm No Yes/No Yes 4þ Yes/No ♣ Yes ♣ ۲þ No

Synergy = Original multimodal information about the task

- multimodal information given by the *worst* distribution combining the same modalities

Estimating synergy

Synergy = Original multimodal information about the task

- multimodal information given by the *worst* distribution combining the same modalities

Many ways of combining these 2 unimodal marginals into a multimodal distribution!

Synergy = Original multimodal information about the task

- multimodal information given by the *worst* distribution combining the same modalities

Many ways of combining these 2 unimodal marginals into a multimodal distribution!

- multimodal information given by the *worst* distribution combining modalities = 1 - 0 = 1

Mathematical Framework for Interactions

More formally as partial information decomposition: [Bertschinger et al., 2014]

 X_1

q must be a *coupling* of the unimodal marginals:

$$\begin{split} \Delta_p &= \{q(x_1, x_2, y) : q(x_1, y) = p(x_1, y), q(x_2, y) = p(x_2, y)\} \\ & S = I_p(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y) \\ & \mathsf{Task-relevant} \\ & \mathsf{multimodal info} \\ & \mathsf{S}_{q^*} = I_{q^*}(X_1, X_2; Y) - \min_{q \in \Delta_p} I_q(X_1, X_2; Y) = 0 \end{split}$$

Estimating Partial Information Decomposition

Equivalent formulation as max-entropy optimization:

$$q^* = \arg\max_{q \in \Delta_p} H_q(Y|X_1, X_2)$$

 $\Delta_p = \{q(x_1, x_2, y) : q(x_1, y) = p(x_1, y), q(x_2, y) = p(x_2, y)\}$

If X_1, X_2, Y have small discrete support: exact solution via convex programming.

Estimating Partial Information Decomposition

Equivalent formulation as max-entropy optimization:

$$q^* = \arg\max_{q \in \Delta_p} H_q(Y|X_1, X_2)$$

 $\Delta_p = \{q(x_1, x_2, y) : q(x_1, y) = p(x_1, y), q(x_2, y) = p(x_2, y)\}$

If *X*₁, *X*₂, *Y* high-dimensional & continuous: an approximate neural network estimator.

Quantifying Multimodal Datasets

1. Dataset quantification:

 $\mathcal{D} = \{(x_1, x_2, y)\} \longrightarrow \{R, U_1, U_2, S\}_{\mathcal{D}} \bullet$

Also matches human judgment of interactions, and other sanity checks on synthetic datasets

1. Dataset quantification:

$$\mathcal{D} = \{(x_1, x_2, y)\} \longrightarrow \{R, U_1, U_2, S\}_{\mathcal{D}} \bullet$$

2. Model quantification:

$$f(\mathcal{D}) = \{ (x_1, x_2, \hat{y} = f(x_1, x_2)) \} \longrightarrow \{ R, U_1, U_2, S \}_{f(\mathcal{D})}$$
$$\{ R, U_1, U_2, S \}_{f(\mathcal{D}_1)}, \dots, \{ R, U_1, U_2, S \}_{f(\mathcal{D}_k)} \longrightarrow \{ R, U_1, U_2, S \}_f$$

3. Model selection:

3. Model selection:

$\{R, U_1, U_2, S\}_{\mathcal{D}} \longleftrightarrow \{R, U_1, U_2, S\}_f$

34

And he I don't think he got mad when hah I don't know maybe.

Vision:

Acoustic:

(frustrated voice)

Sentiment

 $R U_{\ell} U_{av} S$

Language/Agreement

Its just a *privilege* to watch your mind at work.

- Text : suggests a compliment.
- · Audio : neutral tone.
- · Video : straight face.

Multiplicative/Transformer

Multimodal Transformer

Sarcasm

 $R U_{\ell} U_{av} S$

Application 1: Mental Health

Daily mood prediction as a stepping-stone towards real-time assessment of suicide ideation.

Text + app + keystroke interactions

Slower implies positive	Faster implies positive
just	why, thank, haha
next, was, into, people	making, work, idk
stuff, cute, phone, want, talk, see	they, send, dont, man, going
don't, talk	think, you, all, love

+ words like 'love', 'thanks', 'haha' become more positive when typed faster
- words like 'don't, 'just' become more negative when typed faster

Application 2: Computational Pathology

Understanding the models and adoption in practice by doctors
Implications of Studying Multimodal Interactions

Optimizing these interactions as training objectives:

Visualizing the interactions learned in individual neurons:

[Liang et al., FactorCL. NeurIPS 2023]

Why am I spending my money watching this? (sigh) I think I was more sad...

[Liang et al., MultiViz. ICLR 2023]

Predicting multimodal performance to decide modality utility:

[Liang et al., Semi-supervised. arXiv 2023]

Identifying overall presence of cross-modal interactions

Statistical non-additive interactions [Friedman & Popescu, 2008, Sorokina et al., 2008]

f exhibits interactions between 2 features x_A and x_B iff *f* cannot be decomposed into a sum of unimodal subfunctions f_A , f_B such that $f(x_A, x_B) = f_A(x_A) + f_B(x_B)$.

If the additive projection $\tilde{f}(x_A, x_B)$ is equal to nonlinear fusion $f(x_A, x_B)$ then the non-additive interactions are not modeled.

μ measures **overall quantity** of cross-modal interactions on a trained model + dataset.

[Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020]

Identifying individual cross-modal interactions

Statistical non-additive interactions [Friedman & Popescu, 2008, Sorokina et al., 2008]

f exhibits interactions between 2 features x_A and x_B iff *f* cannot be decomposed into a sum of unimodal subfunctions f_A , f_B such that $f(x_A, x_B) = f_A(x_A) + f_B(x_B)$.

f exhibits interactions between 2 features
$$x_A$$
 and x_B iff $\frac{\partial f^2}{\partial x_A \partial x_B} > 0$.

Natural second-order extension of gradient-based approaches!

Identifying individual cross-modal interactions

CLEVR

The other small shiny thing that is the same shape as the **tiny yellow shiny object** is what color?

VQA 2.0

How many **birds**? **Th**i and

Flickr-30k

Three small dogs, two white and one black and white, on a sidewalk.

CMU-MOSEI

Why am I spending my money watching this? **(sigh)** I think I was more **sad**...

Relationships

Correspondence

Classification of cross-modal interactions

[Wang et al., M2Lens: Visualizing and Explaining Multimodal Models for Sentiment Analysis. IEEE Trans Visualization and Computer Graphics 2021]

Visualization website

See interactive website: https://andy-xingbowang.com/m2lens/

Summary of cross-modal interactions across entire dataset.

[Wang et al., M2Lens: Visualizing and Explaining Multimodal Models for Sentiment Analysis. IEEE Trans Visualization and Computer Graphics 2021]

Visualization website

warm E Instance View ✓ Vision Feature ✓ Audio Feature Instance Detail Instance Summary V Desc V sort By: error 0.7 -3.0 -1.43.0 pitch × really like how it's done because, word: (umm) i Yaw Feature Importance 🔺 Video Detail features/mo this movie five times you will still not understand everything about it -0.918 not -0.249 movie 19 · Nose Wrinkle 107 -3.0 -1.20.7 3.0 pitch it definitely, it worked. word: Surprise Importance 🔺 Feature -0:25 features/mo

See interactive website: https://andy-xingbowang.com/m2lens/

Summary of cross-modal interactions in a single instance.

[Wang et al., M2Lens: Visualizing and Explaining Multimodal Models for Sentiment Analysis. IEEE Trans Visualization and Computer Graphics 2021]

Visualizing multimodal transformers See interactive website: <u>https://github.com/IntelLabs/VL-InterpreT</u>

[Aflalo et al., VL-InterpreT: An Interactive Visualization Tool for Interpreting Vision-Language Transformers. CVPR 2022]

Visualizing multimodal transformers See interactive website: <u>https://github.com/IntelLabs/VL-InterpreT</u>

[Aflalo et al., VL-InterpreT: An Interactive Visualization Tool for Interpreting Vision-Language Transformers. CVPR 2022]

Visualizing multimodal transformers See interactive website: <u>https://github.com/IntelLabs/VL-InterpreT</u>

[Aflalo et al., VL-InterpreT: An Interactive Visualization Tool for Interpreting Vision-Language Transformers. CVPR 2022]

Evaluating Quantification

How can we evaluate the success of quantifying cross-modal interactions?

Problem: real-world datasets and models do not have cross-modal interactions annotated!

Direct evaluation: Create datasets for each tested quality, but limited to synthetic data

勜

Direct evaluation: Create datasets for each tested quality, but limited to synthetic data

[Liang et al., MultiViz: Towards Visualizing and Understanding Multimodal Models. ICLR 2023]

Can be done with

synthetic data

Indirect evaluation

Find some downstream quality that practitioners find useful and can be easily evaluated.

Quantification output

Indirect evaluation: Model simulation

Indirect evaluation: Model simulation

MultiViz stages leads to higher accuracy and agreement Blind test + reasonable baselines + measurable outcome

Indirect evaluation: Model error analysis and debugging

Indirect evaluation: Model error analysis and debugging

Indirect evaluation: Model error analysis and debugging

MultiViz enables error analysis and debugging of multimodal models

More ways for indirect evaluation:

- Model selection: given fixed budget, try randomly or try models in order based on what quantification tells me.

- Data/modality selection: given fixed budged, collect random data or collect based on what quantification tells me.

- If quantification gives theoretical result, check how well the theory matches experiments.

Challenges: Quantifying Multimodal Interactions

Open challenges

Open challenges:

- Faithfulness: do explanations accurately reflect model's internal mechanics?
- Usefulness: unclear if explanations help humans
- Disagreement: different interpretation methods may generate different explanations
- Evaluate: how to best evaluate interpretation methods

[Chandrasekaran et al., Do explanations make VQA models more predictable to a human? EMNLP 2018]

[Krishna et al., The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective. arXiv 2022]

猕

Recall error analysis!

Existing models struggle to adapt to targeted causal interventions. How can we make them more robust to spurious correlations?

[Agarwal et al., Towards Causal VQA: Revealing & Reducing Spurious Correlations by Invariant & Covariant Semantic Editing. CVPR 2020]

Sub-Challenge 6c: Multimodal Learning Process

Definition: Characterizing the learning and optimization challenges involved when learning from heterogeneous data.

Kinetics dataset

Adding more modalities should always help?

Modalities: RGB (video clips)

A (Audio features)

OF (optical flow - motion)

Dataset	Multi-modal	V@1	Best Uni	V@1	Drop
Kinetics	A + RGB	71.4	RGB	72.6	-1.2
	RGB + OF	71.3	RGB	72.6	-1.3
	A + OF	58.3	OF	62.1	-3.8
	A + RGB + OF	70.0	RGB	72.6	-2.6
· · · · ·					

But sometimes multimodal doesn't help! Why?

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020]

Optimization challenges

Learning and optimization challenges

2 explanations for drop in performance:

- 1. Multimodal networks are more prone to overfitting due to increased complexity
- 2. Different modalities overfit and generalize at different rates

Key idea 1: compute overfitting-togeneralization ratio (OGR)

Gap between training and valid loss OGR wrt each modality tells us

how much to train that modality

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020]

Optimization challenges

Learning and optimization challenges

Conventional approach

Key idea 2: Simultaneously train unimodal networks to estimate OGR wrt each modality

÷

Reweight multimodal loss using unimodal OGR values

Allows to better balance generalization & overfitting rate of different modalities

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020]

Challenges

Open challenges

Open challenges:

- Learning, generalization, and optimization in high-dimensional settings (p >> n).
- Modality shortcuts and biases.
- Dimensionality reduction, modality selection, approximate inference.
- Reducing time and space complexity, model compression and efficiency.

More Quantification

Dimensions of quantification

Conclusion

Multimodal Behaviors and Signals

Language

- Lexicon
 - Words
- Syntax
 - Part-of-speech
 - Dependencies
- Pragmatics
 - Discourse acts

Acoustic

- Prosody
 - Intonation
 - Voice quality
- Vocal expressions
 - Laughter, moans

Visual

- Gestures
 - Head gestures
 - Eye gestures
 - Arm gestures
- Body language
 - Body posture
 - Proxemics
- Eye contact
 - Head gaze
 - Eye gaze
- Facial expressions
 - FACS action units
 - Smile, frowning

Touch

- Haptics
- Motion

Physiological

- Skin conductance
- Electrocardiogram

Mobile

- GPS location
- Accelerometer
- Light sensors

勜

Carnegie Mellon University

A dictionary definition...

Multimodal: with multiple modalities

A research-oriented definition...

Multimodal is the scientific study of

heterogeneous and interconnected data

Heterogeneous: Diverse qualities, structures and representations.

Abstract modalities are more likely to be homogeneous

Connected: Shared information that relates modalities

췖

Interacting: process affecting each modality, creating new response

勜

Interacting Modalities

勜

study of heterogeneous and interconnected data 😊

Interacting

 \boldsymbol{Z}
Multimodal Machine Learning

What are the core multimodal technical challenges, understudied in conventional machine learning?

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

> This is a core building block for most multimodal modeling problems!

Individual elements:

It can be seen as a "local" representation or representation using holistic features **Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

Most modalities have internal structure with multiple elements

Elements with temporal structure:

Other structured examples:

Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

Sub-challenges:

Discrete Alignment

Discrete elements and connections

Continuous Alignment

Segmentation and continuous warping

Contextualized Representation

Alignment + representation

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure

Definition: Learning a generative process to produce raw modalities that reflects cross-modal interactions, structure and coherence

Sub-challenges:

Definition: Transfer knowledge between modalities, usually to help the target modality which may be noisy or with limited resources

Definition: Empirical and theoretical study to better understand heterogeneity, cross-modal interactions and the multimodal learning process

Sub-challenges:

Core Multimodal Challenges

Future Direction: Heterogeneity

Homogeneity vs Heterogeneity

Examples:

Arbitrary Tokenization

Beyond Additive Interactions

Causal, logical interactions

Brain-inspired representations

Future Direction: High-modality

https://github.com/pliang279/MultiBench

Examples:

Non-parallel learning

Limited resources

Future Direction: Long-term

Short-term

Examples:

Compositionality

Memory

Personalization

Future Direction: Interaction

Social-IQ

https://www.thesocialiq.com/

Social Intelligence

Examples:

勜

Multi-Party

Causality

Future Direction: Real-world

MultiViz

https://github.com/pliang279/MultiViz

Healthcare Decision Support

Intelligent Interfaces and Vehicles Online Learning and Education

Examples:

Robustness

Fairness

Generalization

췖

Carnegie Mellon University