Multimodal Generative LLMs: Unification, Interpretability, Evaluation

Mohit Bansal

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Talk Outline

A journey of multimodal generative LLMs for enhancing their unification, interpretable planning/programming, evaluation:

- Unified/Universal Multimodal Learning (for Generalizability, Shared Knowledge, Efficiency)
 - VLT5: Unifying Vision-and-Language Tasks via Text Generation [ICML 2021]
 - TVLT: Textless Vision-Language Transformer [NeurIPS 2022]
 - UDOP: Unifying Vision, Text, and Layout for Universal Document Processing [CVPR 2023]
 - CoDi: Any-to-Any Generation via Composable Diffusion [NeurIPS 2023] & CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation [2023]
- Interpretable Multimodal Generation via LLM Planning/Programming (for Understanding, Control, Faithfulness)
 - VPGen: Step-by-Step Text-to-Image Generation with Interpretable Visual Programming [NeurIPS 2023]
 - VideoDirectorGPT: Consistent Multi-Scene Video Generation via LLM-Guided Planning [2023]
 - DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning [2023]
- Evaluation of Multimodal Generation Models (of Fine-grained Skills, Faithfulness, Social Biases)
 - DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generation Models [ICCV 2023]
 - VPEval: Step-by-Step Text-to-Image Evaluation with Interpretable Visual Programming [NeurIPS 2023]
 - Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation [2023]
- Next Big Challenges: trade-offs, structure, non-verbal, interaction, reasoning, causality, long-distance fine-grained evaluation, efficiencies

Talk Outline

A journey of multimodal generative LLMs for enhancing their unification, interpretable planning/programming, evaluation:

• Unified/Universal Multimodal Learning (for Generalizability, Shared Knowledge, Efficiency)

- VLT5: Unifying Vision-and-Language Tasks via Text Generation [ICML 2021]
- TVLT: Textless Vision-Language Transformer [NeurIPS 2022]
- UDOP: Unifying Vision, Text, and Layout for Universal Document Processing [CVPR 2023]
- CoDi: Any-to-Any Generation via Composable Diffusion [NeurIPS 2023] & CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation [2023]
- Interpretable Multimodal Generation via LLM Planning/Programming (for Understanding, Control, Faithfulness)
 - VPGen: Step-by-Step Text-to-Image Generation with Interpretable Visual Programming [NeurIPS 2023]
 - VideoDirectorGPT: Consistent Multi-Scene Video Generation via LLM-Guided Planning [2023]
 - DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning [2023]
- Evaluation of Multimodal Generation Models (of Fine-grained Skills, Faithfulness, Social Biases)
 - DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generation Models [ICCV 2023]
 - VPEval: Step-by-Step Text-to-Image Evaluation with Interpretable Visual Programming [NeurIPS 2023]
 - Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation [2023]
- Next Big Challenges: trade-offs, structure, non-verbal, interaction, reasoning, causality, long-distance fine-grained evaluation, efficiencies

Vision: Pre-training → Fine-tuning

Motivation: the amount of data is limited in downstream tasks and pre-training enables much more data.

Language: Pre-training → Fine-tuning

Motivation: the amount of data is limited in downstream tasks and pre-training enables much more data.

O_i∈ℝⁱ **O**1 **O**₄ Language Language **Pre-training:** Model W1 W₂ W₃ [Peters et al., NAACL 2018], [Devlin et al., NAACL 2019] Transformer Text in Wikipedia [Vaswani, NeurIPS 2017] ~2500M Tokens (i.e., Words) Sentiment Language **Fine-tuning** Analysis Transformer + Movie Review [Maas et al., ACL 2011] Linear Layers 5 ~2.5M Tokens (i.e., Words)

Pre-training of Single Modality Tasks

Limitation: Single-modality pre-trained models are not aware of the interactions between vision and language

Large-Scale Cross-Modal Pre-training: LXMERT

 LXMERT combines knowledge from text, vision and cross-modal matching: vision-language transformers with 3 encoders (object relations, language, cross-modal) & 5 pretraining tasks: masked-LM, masked-Object-Prediction (feature regression+label classification), cross-modality matching, image-QA.

Large-Scale Cross-Modal Pre-training: LXMERT

 LXMERT combines knowledge from text, vision and cross-modal matching: vision-language transformers with 3 encoders (object relations, language, cross-modal) & 5 pretraining tasks: masked-LM, masked-Object-Prediction (feature regression+label classification), cross-modality matching, image-QA.

• Achieved big gains + sota on several VL tasks such as VQA, GQA, NLVR2, VizWiz, etc.

Tons of Specialized Vision-and-Language Pretraining Models

• Many different architectures (single vs. multi-stream), attention methods, objective functions, encoder/decoders, output heads, specialized modules (OCR/ASR/Tokenizers), etc., etc.!

[Sun et al., 2019; Tan and Bansal, 2019; Lu et al., 2019; Li et al., 2019; Su et al., 2019; Chen et al., 2020; Zhou et al., 2020; Li et al., 2020; inter alia]

9

Part 1: Unified/Universal Multimodal Learning

all multimodal tasks via text generation

TVLT (NeurIPS 2022)

video modeling without text (audio as images)

UDOP (CVPR 2023)

document image/text/layout with single architecture

CoDi (NeurIPS 2023)

generating any-to-any input-output modality combination

Part 1: Unified/Universal Multimodal Learning

Diverse Vision-and-Language Tasks (and Specialized Models)

Anderson et al., 2018, Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering Yu et al., 2019, Deep Modular Co-Attention Networks for Visual Question Answering Huang et al., 2019, Attention on Attentiof 2r Image Captioning Yu et al., 2018, MAttNet: Modular Attention Network for Referring Expression Comprehension Long et al., 2021, Generative Imagination Elevates Machine Translation

Diverse Vision-and-Language Tasks (and Specialized Models)

Anderson et al., 2018, Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering Yu et al., 2019, Deep Modular Co-Attention Networks for Visual Question Answering Huang et al., 2019, Attention on Attentiof Br Image Captioning Yu et al., 2018, MAttNet: Modular Attention Network for Referring Expression Comprehension Long et al., 2021, Generative Imagination Elevates Machine Translation

Task-specific Architectures / Objectives / Modules

Task-specific Architectures / Objectives

Visual Grounding

Can we tackle all V&L tasks with a single objective?

[Cho et al., ICML 2021]

Weights are initialized from off-the-shelf Seq2Seq LMs (e.g., T5)

Ours

Unified Architecture Comparable to Specialized Models

	#			Discrimin	Generative tasks			
Method	Pretrain Images	VQA test-std Acc	GQA test-std Acc	NLVR ² test-P Acc	$\begin{array}{c} RefCOCOg \\ test^d \\ Acc \end{array}$	$VCR Q \rightarrow AR$ $test$ Acc	COCO Cap Karpathy test CIDEr	Multi30K En-De test 2018 BLEU
LXMERT	180K	72.5	60.3	74.5	-	-	-	-
ViLBERT	3M	70.9	-	-	-	54.8	-	-
$UNITER_{Base}$	4M	72.9	-	77.9	74.5	58.2	-	
Unified VLP	3M	70.7	-	-	-	-	117.7	-
Oscar _{Base}	4M	73.4	61.6	78.4	-	-	123.7	-
XGPT	3M	-	-	-	-	-	120.1	-
MeMAD	-	-	-	-	-	-	-	38.5
VL-T5	180K	70.3	60.8	73.6	71.3	58.9	116.5	38.6
VL-BART	180K	71.3	60.5	70.3	22.4*	48.9	116.6	28.1

Multi-task Learning with Single Shared Set of Parameters

			Discriminative tasks					Generative tasks	
Method Finetuni tasks	Finetuning tasks	# Params	VQA Karpathy test Acc	GQA test-dev Acc	NLVR ² test-P Acc	RefCOCOg test ^d Acc	VCR val Acc	COCO Caption Karpathy test CIDEr	Multi30K En-De test2018 BLEU
VL-T5 VL-T5	single task all tasks	7P P	67.9 67.2	60.0 58.9	73.6 71.6	71.3 69.4	57.5 55.3	116.1 110.8	38.6 37.6

Similar performance with 1/7th = 14% parameters!

Multi-task Learning with Single Shared Set of Parameters

		# Params	Discriminative tasks					Generative tasks	
Method Finetur task	Finetuning tasks		VQA Karpathy test Acc	GQA test-dev Acc	NLVR ² test-P Acc	RefCOCOg test ^d Acc	VCR val Acc	COCO Caption Karpathy test CIDEr	Multi30K En-De test2018 BLEU
VL-T5 VL-T5	single task all tasks	7P P	67.9 67.2	60.0 58.9	73.6 71.6	71.3 69.4	57.5 55.3	116.1 110.8	38.6 37.6

Similar performance with 1/7th = 14% parameters!

• Also performs better on rare/unseen categories!

Multi-task Learning with Single Shared Set of Parameters

		# Params	Discriminative tasks					Generative tasks	
Method Finetu task	Finetuning tasks		VQA Karpathy test Acc	GQA test-dev Acc	NLVR ² test-P Acc	RefCOCOg test ^d Acc	VCR val Acc	COCO Caption Karpathy test CIDEr	Multi30K En-De test2018 BLEU
VL-T5 VL-T5	single task all tasks	7P P	67.9 67.2	60.0 58.9	73.6 71.6	71.3 69.4	57.5 55.3	116.1 110.8	38.6 37.6

Similar performance with 1/7th = 14% parameters!

- Also performs better on rare/unseen categories!
- Many follow-up useful works on unification:

e.g., SimVLM, Flamingo, OFA, UnifiedIO, BLIP-2, CoCa, PaLI, etc.

Wang et al., 2021, SimVLM: Simple Visual Language Model Pretraining with Weak Supervision Alayrac et al., 2022, Flamingo: a Visual Language Model for Few-Shot Learning Wang et al., 2022, OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework Lu et al., 2022, Unified-IO: A Unified Model for Vision, Language, and Multi-Modal Tasks Li et al., 2023, BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models Yu et al., 2022, CoCa: Contrastive Captioners are Image-Text Foundation Models Chen et al., 2023, PaLI: A Jointly-Scaled Multilingual Language-Image Model

Part 1: Unified/Universal Multimodal Learning

TVLT: Textless Vision-Language Transformer

- Unified textless, audio-based homogeneous vision-language transformer •
- No ASR/tokenizer/text modules, 28x inference speed, 1/3 #params!

Efficiency: Inference Time / #Parameters

TVLT: Textless Vision-Language Transformer

- Unified ViT-style patch embeddings for both video and audio inputs
- MAE-style enc-dec: multimodal joint encoder; decoder weights are shared for video & audio decoding
- Two objectives: (1) masked autoencoding, (2) contrastive learning

26

TVLT: Textless Vision-Language Transformer

 Results: Audio-based TVLT (w/o any text modules) performs competitively with text-based model on diverse tasks: image-retrieval, video-retrieval, visual-QA, multimodal sentiment analysis, emotion analysis (while also being much more efficient = 28x faster, 1/3 #parameters)!

Part 1: Unified/Universal Multimodal Learning

UDOP: Unifying Vision, Text, Layout for Universal Document Processing

Unifies text, image, layout modalities (<u>w/o specialized modules incl. OCR</u>) with varied task formats, doing
document understanding + generation/editing from text+layout modalities via masked image reconstruction.

UDOP: Unifying Vision, Text, Layout for Universal Document Processing

Unifies text, image, layout modalities (<u>w/o specialized modules incl. OCR</u>) with varied task formats, doing
document understanding + generation/editing from text+layout modalities via masked image reconstruction.

State-of-the-art & rank-1 on 8 DocAI tasks / DUE-benchmark, e.g., document-VQA, table-NLI, table-QA, doc-IE, etc. across <u>diverse data domains like finance reports, academic papers, and websites</u>.

UDOP: Unifying Vision, Text, Layout for Universal Document Processing

DI UL UD MODDIS						
	PHILIP INC Replace Title					
120 PARK AVENUE, NEW YORK, N Y 19017 - TELEPHONE (212) 880-5000	COMPANIES INC. 120 PARK AVENUE, NEW YORK, N Y 10017 - TELEPHONE (212) 880-5000					
April 19, 1990	April 19, 1990					
	The company address below is: Add Text					
Mr. Abner T. Herbert, III 9470 Martin Rd. Roswell, GA 30076	Mr. Abner T. Herbert, III 9470 Martin Rd. Roswell, GA 30076					
Dear Mr. Herbert:	Dear Mr. Herbert:					
In accordance with your request, the following are the proponents of Proposals 3 and 4 included in our 1990 Proxy Statement:	In accordance with your request, the following are the proponents of Proposals 3 and 4 included in our 1990 Proxy Statement:					
Proposal #3 Claim to Beneficially Own	Proposal #3 Claim to					
Evangelical Lutheran Church in America 8765 West Higgins Road Chicago, IL 120,000 shares	Eeneficially OWn Evangelical Lutheran Church in America 8765 West Higgins Road Chicago, IL 120,000 shares					
Ed Crane, Director Corporate Social Responsibility	Ed Crane, Director Corporate Social Responsibility					
Proposal #4 (co-sponsored) Adrian Dominican Sisters 1257 East Siena Heights Drive Adrian, MI 1,098 shares	Proposal #4 (by UDOP) Some random name. Some random street. Some random city, state. 1,098 shares					
Sister Annette M. Sinagra, O.P. Corporate Responsibility Coordinator	Sister Annette M. Sinagra, O.P. Corporate Responsibility Coordinator					
and	and					
Corporate Responsibility Office Province of Saint Joseph of the Capachin Order 1534 Arch Street Berkeley, CA 40 shares	Corporate Responsibility Office Province of Saint Joseph of the Capachin Order 1534 Arch Street Berkeley, CA 40 shares					
(Rev.) Michael H. Crosby, OFMCap Corporate Responsibility Agent Sincerely, Patricia Molloy Legal Assistant	(Rev.) Michael H. Crosby, OFMCap Corporate Responsibility Agent Change Serial Sincerely, Numbers Patricia Molloy Legal Assistant 664					

[Tang et al., CVPR 2023]

Part 1: Unified/Universal Multimodal Learning

- New generative-Al foundation model that allows any combination of input modalities & generates any combination of output modalities (text, audio, image, video) – can help create diverse 'manymodal' stories using different types of inputs on the storyboard!
- **BUT** training such a model presents **significant costs**, as the # combinations for input and output modalities scales **exponentially** & training datasets **missing** for many combinations of modalities.
- We propose "Bridging Alignment" strategy to efficiently model the exponential number of inputoutput combinations with a linear number of training objectives.
- Allows CoDi to freely condition on any input combination+generate any group of modalities, even if not present in the training data.

[Tang et al., NeurIPS 2023]

- Stage 1: We train a latent diffusion model (LDM) for each modality. They can be trained independently, ensuring high-quality generation for each modality. For conditional generation, e.g., audio+language→image, the input modalities are projected into a shared feature space, and the output LDM attends to this combination of input features.
- This multimodal conditioning mechanism prepares the diffusion model to **condition on any combination of modalities without directly training** for such settings.

- <u>Stage 2</u>: We add a cross-attention module to each LDM and an environment encoder to project the LDM latent variables into a shared/mixed space.
- This enables CoDi to seamlessly **mix/generate any group of output modalities**, **w/o training** on all generation combinations (with linear # training objectives).

Audio + Image \rightarrow Text + Image

Audio + Image \rightarrow Text + Image

"Playing piano in a forest."

https://codi-gen.github.io/

Text + Image \rightarrow Video

"Eating on a coffee table."

Text + Image \rightarrow Video

"Eating on a coffee table."

CoDi-2: In-Context, Interleaved, Interactive Any-to-Any Generation

CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation

Talk Outline

A journey of multimodal generative LLMs for enhancing their unification, interpretable planning/programming, evaluation:

- Unified/Universal Multimodal Learning (for Generalizability, Shared Knowledge, Efficiency)
 - VLT5: Unifying Vision-and-Language Tasks via Text Generation [ICML 2021]
 - TVLT: Textless Vision-Language Transformer [NeurIPS 2022]
 - UDOP: Unifying Vision, Text, and Layout for Universal Document Processing [CVPR 2023]
 - CoDi: Any-to-Any Generation via Composable Diffusion [NeurIPS 2023] & CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation [2023]

• Interpretable Multimodal Generation via LLM Planning/Programming (for Understanding, Control, Faithfulness)

- VPGen: Step-by-Step Text-to-Image Generation with Interpretable Visual Programming [NeurIPS 2023]
- VideoDirectorGPT: Consistent Multi-Scene Video Generation via LLM-Guided Planning [2023]
- DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning [2023]
- Evaluation of Multimodal Generation Models (of Fine-grained Skills, Faithfulness, Social Biases)
 - DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generation Models [ICCV 2023]
 - VPEval: Step-by-Step Text-to-Image Evaluation with Interpretable Visual Programming [NeurIPS 2023]
 - Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation [2023]
- Next Big Challenges: trade-offs, structure, non-verbal, interaction, reasoning, causality, long-distance fine-grained evaluation, efficiencies

Part 2: Interpretable Multimodal Generation with LLM Planning

[Cho et al., NeurIPS 2023]

Background: Visual Programming

님

NMNs (Andreas et al., CVPR 2016), MattNet (Yu et al., CVPR 2018)...SummProg (Saha et al., ICLR 2023), VisProg (Gupta and Kembhavi, CVPR 2023), ViperGPT (Surís et al., 2023)

1) Define visual modules

Image Understanding	Loc OWL-ViT C	FaceDet DSFD (pypi) Ma	Seg askFormer	Select CLIP-Vi	Classify T CLIP-ViT	Vqa ViLT
Image Manipulation	Replace Stable Diffusion	ColorPop PIL.convert() cv2.grabCut() CropLeft	BgBl PIL.Gaussi cv2.gral	ur anBlur() oCut() rRight	Tag PIL.rectangle() PIL.text() CropAbove	Emoji AugLy (pypi) CropBelow
Knowledge Retrieval	PIL.crop()	PIL.crop() Arithmetic & Logical	PIL.C	erop() Eval	PIL.crop() Count len()	PIL.crop() Result dict()

2) Generate programs w/ LLM

RESULT=IMAGE0

Instruction: Replace the BMW with an Audi and cloudy sky with clear sky Program:

3) Execute programs for reasoning tasks

Andreas et al., 2016, Neural Module Networks

Yu et al., 2018, MAttNet: Modular Attention Network for Referring Expression Comprehension Saha et al., 2023, Summarization programs: Interpretable abstractive summarization with neural modular trees Gupta and Kembhavi, 2023, Visual Programming: Compositional Visual Reasoning Without Training Surís et al., 2023, ViperGPT: Visual Inference via Python Execution for Reasoning

two Pikachus on a table

two Pikachus on a table	Object/Count Generation
Given an image ca objects and their image. Caption: two Pika	aption, determine r counts to draw an achus on a table
LM pikachu (2) table	: (1)

Skill-based Results

Our VPGen shows improved spatial control

• Generation via layout programs promotes better **understanding+planning** of structure/scale/spatial relations (also allows **explicit control** over these properties via manual, **interpretable corrections of unfaithful parts**)!

Model	VPEvAL Skill Score (%) ↑								
	Object	Count	Spatial	Scale	Text Rendering	Average			
Stable Diffusion v1.4	97.3	47.4	22.9	11.9	8.9	37.7			
Stable Diffusion v2.1	96.5	53.9	31.3	14.3	6.9	40.6			
Karlo	95.0	59.5	24.0	16.4	8.9	40.8			
minDALL-E	79.8	29.3	7.0	6.2	0.0	24.4			
DALL-E Mega	94.0	45.6	17.0	8.5	0.0	33.0			
VPGEN (F30)	96.8	55.0	39.0	23.3	5.2	43.9			
VPGEN (F30+C+P)	96.8	72.2	56.1	26.3	3.7	51.0			

Large improvements on structural control:

- Counting
- Spatial relation
- Relative size/scale comparison

VideoDirectorGPT: Consistent Multi-Scene Video Generation via LLM-Guided Planning

https://videodirectorgpt.github.io/

https://videodirectorgpt.github.io/

[Lin et al., 2023]

Multi-Sentence to Multi-Scene Video (Coref-SV)

Scene 1: mouse is holding a book and makes a happy face.

Scene 2: he looks happy and talks.

Scene 3: he is pulling petals off the flower.

Scene 4: he is ripping a petal from the flower.

Scene 5: he is holding a flower by his right paw.

Scene 6: one paw pulls the last petal off the flower.

Scene 7: he is smiling and talking while holding a flower on his right paw.

ModelScopeT2V

X fails to keep "mouse" through all scenes

VideoDirectorGPT (Ours)

the "mouse" is consistent through all scenes + layout control

Single Sentence to Multi-Scene Video (HiREST)

make a strawberry surprise

GPT-4 generated sub-scene descriptions:

- a young man in a red apron washes ripe red strawberries in a silver sink
- a young man in a red apron carefully cuts the strawberries on a wooden chopping board with a sharp knife
- a young man in a red apron places cut strawberries, banana, and Greek yogurt into an electric blender
- a young man in a red apron blends ingredients together until smooth in an electric blender
- a young man in a red apron pours the smoothie into a tall glass
- a young man in a red apron places a scoop of vanilla ice cream on top of the smoothie in a tall glass
- a young man in a red apron places a strawberry on top of the ice cream for garnishing
- a young man in a red apron serves the Strawberry Surprise on a ceramic plate

ModelScopeT2V

X no actual process shown on how to "make" the strawberry surprise

VideoDirectorGPT (Ours)

 step-by-step + consistent process on how to "make" the strawberry surprise

Single Sentence to Single-Scene Video (ActionBench-Direction)

pushing stuffed animal from left to right

ModelScopeT2V

★ fails to move the "stuffed animal"

VideoDirectorGPT (Ours)

Human-in-the-Loop Video Control/Editing

User-Provided Input Image --> Video

Scene 1: a <S> then gets up from a plush beige bed.
Scene 2: a <S> goes to the cream-colored kitchen and eats a can of gourmet snack.
Scene 3: a <S> sits next to a large floor-to-ceiling window.

Quantitative Evaluation & Human Evaluation

Method				VPEva	ActionB	ActionBench-Direction				
		Object Count S		Spati	al Scale	e Overall Acc. (%) Movement I	Movement Direction Acc. (%)		
ModelScopeT2V		89.8	38.8	18.0) 15.8	40.8		30.5	0.5	
	VIDEODIRECTORGPT (Ours) 9'		77 .4	61.1	47.0	70.6		46.5		
Method				ActivityNet Captions			Coref-SV	HiR	EST	
			FVI	D (↓)	FID (\downarrow)	Consistency (†)	Consistency (†)	$\overline{\text{FVD}}(\downarrow)$	FID (\downarrow)	
ModelScopeT2V ModelScopeT2V (with GT co-reference; oracle) VIDEODIRECTORGPT (Ours)		98	980		46.0	16.3	1322	23.79		
		e) 8 (- 05	- 16.50	64.8	37.9 42.8	733	- 18.54		

Evaluation category	Human Preference (%) \uparrow						
	VIDEODIRECTORGPT (Ours)	ModelScopeT2V	Tie				
Quality	54	34	12				
Text-Video Alignment	54	28	18				
Object Consistency	58	30	12				

DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning

Text-to-Diagram Generation on AI2D-Caption

Diagram Generation in Multiple Platforms

Human-in-the-Loop Diagram Editing

Human-in-the-Loop Diagram Editing

Quantitative Evaluation & Human Evaluation

Methods	VPEval (%) ↑					Captioning \uparrow		CLIPScore ↑	
	Object	Count	Text	Relationships	Overall	CIDEr	BERTScore	Img-Txt	Img-Img
Zeroshot									
Stable Diffusion v1.4	70.1	48.1	0.0	76.7	43.8	7.7	87.5	27.3	65.3
VPGen	64.1	39.2	0.0	69.8	41.2	6.1	87.2	25.6	61.7
AutomaTikZ	32.9	29.1	5.5	68.1	33.5	12.2	86.9	24.7	64.5
Fine-tuned									
Stable Diffusion v1.4	75.4	44.3	0.0	73.7	46.1	18.2	88.5	30.1	68.1
VPGen	69.1	41.8	0.0	74.6	42.9	4.2	86.9	26.4	61.9
DiagrammerGPT (Ours)	87.0	54.4	33.4	79.3	65.1	31.7	90.1	32.9	74.5

Evaluation category	Human Preference (%) \uparrow						
	DiagrammerGPT	SD v1.4	Tie				
Image-Text Alignment	36	20	44				
Object Relationships	48	30	22				
Talk Outline

A journey of multimodal generative LLMs for enhancing their unification, interpretable planning/programming, evaluation:

- Unified/Universal Multimodal Learning (for Generalizability, Shared Knowledge, Efficiency)
 - VLT5: Unifying Vision-and-Language Tasks via Text Generation [ICML 2021]
 - TVLT: Textless Vision-Language Transformer [NeurIPS 2022]
 - UDOP: Unifying Vision, Text, and Layout for Universal Document Processing [CVPR 2023]
 - CoDi: Any-to-Any Generation via Composable Diffusion [NeurIPS 2023] & CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation [2023]
- Interpretable Multimodal Generation via LLM Planning/Programming (for Understanding, Control, Faithfulness)
 - VPGen: Step-by-Step Text-to-Image Generation with Interpretable Visual Programming [NeurIPS 2023]
 - VideoDirectorGPT: Consistent Multi-Scene Video Generation via LLM-Guided Planning [2023]
 - DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning [2023]
- Evaluation of Multimodal Generation Models (of Fine-grained Skills, Faithfulness, Social Biases)
 - DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generation Models [ICCV 2023]
 - VPEval: Step-by-Step Text-to-Image Evaluation with Interpretable Visual Programming [NeurIPS 2023]
 - Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation [2023]
- Next Big Challenges: trade-offs, structure, non-verbal, interaction, reasoning, causality, long-distance fine-grained evaluation, efficiencies

Part 3: Evaluation of Multimodal Generation

VPEval (NeurIPS 2023)

DALL-Eval (ICCV 2023)

Heusel et al., 2017, GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium Xu et al., 2018, AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks Hessel et al., 2021, CLIPScore: A Reference-free Evaluation Metric for Image Captioning Hinz et al., 2022, Semantic Object Accuracy for Generative Text-to-Image Synthesis

Background: Recent Progress in Text-to-Image Generation

Before 2021

Evaluation metrics focus on visual quality (e.g., Inception Score, FID)

Background: Recent Progress in Text-to-Image Generation

Before 2021

Background: Recent Progress in Text-to-Image Generation

Before 2021

Evaluation Modules

Skill-based Evaluation

Skill-based Interpretable Evaluation Program

Object

Prompt: "a photo of a dog"
Program: objectEval(img, "dog")

Count

Prompt: "3 dogs"
Program: countEval(img, "dog", "==3")

Spatial

Prompt: "a spoon is in front of a potted plant"
Program: spatialEval(img, "spoon, potted plant, front")

Scale

Prompt: "a laptop that is bigger than a sports ball"
Program: scaleEval(img, "Laptop, sports ball, bigger")

Text Rendering

Prompt: "a poster that reads 'shop'"
Program: textEval(img, "shop")

Evaluation Results & Visual+Textual Explanation of Errors

https://vp-t2i.github.io/

[Cho et al., NeurIPS 2023]

Open-ended Evaluation

Open-ended Interpretable Evaluation Program

Open-ended Evaluation

Open-ended Interpretable Evaluation Program

Open-ended Evaluation

Human-Metric Correlation of VPEval

VPEval shows higher human correlations than single-model based evaluation

Table 3: Human correlation study of skill-based evaluation. We measure Spearman's ρ correlation between human judgment and different automated metrics on the skill-based prompts (Sec. 4.3). VPEVAL[†]: using BLIP-2 VQA for objectEval/spatialEval/scaleEval modules.

Eval Metric	Human-metric correlation (Spearman's ρ) \uparrow					
	Object	Count	Spatial	Scale	Text	Overall
CLIP Cosine similarity (ViT-B/32)	35.2	38.6	35.4	13.7	40.0	20.4
BLIP-2 Captioning - BLEU	11.9	31.4	26.3	24.0	23.6	-3.4
BLIP-2 Captioning - ROUGE	15.7	26.5	28.0	12.2	28.3	11.9
BLIP-2 Captioning - METEOR	33.7	20.7	40.5	25.1	26.6	29.3
BLIP-2 Captioning - SPICE	56.1	20.9	40.6	27.3	18.6	28.1
BLIP-2 VQA	63.7	63.1	38.9	26.1	31.3	65.0
VPEval	34.5	63.8	48.9	29.4	85.7	73.5
$VPEVAL^{\dagger}$	63.7	63.8	51.2	29.5	85.7	79.0

Table 4: Human correlation on open-ended evaluation with Spearman's ρ .

Metrics	ho (†)
BLIP-2 Captioning	
BLEU-4	18.3
ROUGE-L	32.9
METEOR	34.0
SPICE	32.8
Cosine-similarity	
CLIP (ViT-B/32)	33.2
LM + VQA module	
TIFA (BLIP-2)	55.9
LM + multiple modules	
VPEVAL (Ours)	56.9
VPEVAL [†] (Ours)	60.3

Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for T2I

Recent: QG/A Frameworks

[Cho et al., Preprint 2023]

https://google.github.io/dsg/

Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for T2I

Complex, non-atomic questions

Q: "is there a red motorcycle?"

Unclear question;

The question checks multiple aspects at once!

= "is there a motorcycle?" → Yes
 +
 "is the motorcycle red?" → No

Invalid questions

Q1: "is there a motorcycle?" \rightarrow A: No

Q2: "is the motorcycle red?" \rightarrow A: Yes

Q2 is invalid;

If there is not motorcycle, no need to check its color!

Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for T2I

https://google.github.io/dsg/

[[]Cho et al., Preprint 2023]

DALL-Eval: Measuring Social Biases

Overall Gender / Skin Tone Bias Analysis

Model	MAD (\downarrow)			
	Gender	Skin Tone		
uniform (unbiased)	0.0000	0.0000		
minDALL-E	0.1984	0.1687		
Karlo	0.3545	0.1707		
Stable Diffusion	0.3618	0.1698		
one-hot (entirely biased)	0.5000	0.1800		

We can compare which models are more strongly skewed than others

e.g., minDALL-E is less biased than Karlo/Stable Diffusion

DALL-Eval: Measuring Social Biases

Profession-wise Analysis

Conclusion + Big Challenges / Research Directions

Trade-off of blackbox pretraining vs. modular structure

(including interpretability/understanding, fairness/bias, privacy)?

- Other modalities (non-verbal gesture/gaze, action-interaction)?
- Long-distance text/video understanding+generation, causal/counterfactual?
- Fine-grained evaluation of skills/consistency/bias/faithfulness+hallucination?
- Continual learning / Unlearning when new/unseen information keeps coming in?
- Efficiency w.r.t. time, storage, memory, carbon footprint, etc.?

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Thank you!

Webpage: <u>http://www.cs.unc.edu/~mbansal/</u> Email: <u>mbansal@cs.unc.edu</u>

MURGe-Lab: <u>https://murgelab.cs.unc.edu/</u>

(thanks to our awesome students for all the work I presented!)

We are hiring PhD students + Postdocs!