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Learning Representations:
Problem so far N
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* Problem: Given a collection of data X, find a
set of “bases” B, such that each vector x; can
be expressed as a weighted combination of

the bases
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Why is this important?
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* With the right set of bases, the weights represent the data most effectively
— We can now use the weights to represent the data
— E.g. with notes as bases, the weights would be the score

* |f the bases are agreed upon, we can also communicate the information about the
data most efficiently
— Just communicate the weights
— E.g. enough to store Eigen face weights to reconstruct face
— E.g.just reading the score is sufficient for anyone to recreate music



What is the most accurate way to
represent data
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Selecting the kth face in the collection

* |f, instead of bases, we had a dictionary of all possible data
— A matrix that included every possible data vector as a column

— And the weights vector simply selected the correct data
instance

— l.e. w was one-sparse vector
wlp =1

(actually a one-hot vector because the one non-zero entry of w =
1,i.e X;w; =1)

Viinelasming for ScpaProcessing Groug



MLSP

achinebasing For S0 Processing Grex

What is the most accurate way to
represent data
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Selecting the kth face in the collection

* If, instead of bases, we had a dictionary of all possible data
— A matrix that included every possible data vector as a column
— And the weights vector simply selected the correct data instance

* Problem: Infeasible to construct such a dictionary!
— Will require infinite entries
 And our w vector too will require infinite bits to represent

— Alternately, will require storing the entire training data
* And will not be useful to represent data outside the training set 5
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Approximate representation with a
dictionary
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Selecting the kth face in the collection

* Problem: Infeasible to construct a perfect dictionary
— Will require too many (potentially infinite) entries

* Solution: Can we instead construct a smaller finite dictionary such that all
data can be approximated well by one of the entries in the dictionary?

— E.g. “The guy looks a lot like the 7t" face in the dictionary”
— E.g. The vector x looks a lot like the d;, the i-th entry in the dictionary.

* Questions:
— What do we mean by “looks a lot like”
— How do we construct the dictionary? 6
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Approximate representation with a
dictionary
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Selecting the kth face in the collection

* Problem: Infeasible to construct a perfect dictionary
— Will require too many (potentially infinite) entries

* Solution: Can we instead construct a smaller finite dictionary such that all
data can be approximated well by one of the entries in the dictionary?

— E.g. “The guy looks a lot like the 7t" face in the dictionary”

— E.g. The vector x looks a lot like the d;, the i-th entry in the dictionary.
* Questions:
— What do we mean by “looks a lot like”

— How do we construct the dictionary? 7
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Quantifying the error
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Selecting the kth face in the collection

* Different error metrics will result in different solutions
* Let’s generically represent the error as div()

f=Dw,  |w|,= 1,ZWl- =1
Error(f) = div(f,f)

* A common choice is the L, error

Error(f) = |f — fI?
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Approximate representation with a
dictionary

fi= ), wid
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Selecting the kth face in the collection

* Problem: Infeasible to construct a perfect dictionary
— Will require too many (potentially infinite) entries

* Solution: Can we instead construct a smaller finite dictionary such that all
data can be approximated well by one of the entries in the dictionary?

— E.g. “The guy looks a lot like the 7t" face in the dictionary”

— E.g. The vector x looks a lot like the d;, the i-th entry in the dictionary.
* Questions:

— What do we mean by “looks a lot like”

— How do we construct the dictionary? 9
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Learning the Dictionary

V1, V5, Vs, ... ] are the data for which the dictionary is

being learned

= |d4,d5, ..., dk] is the matrix of dictionary vectors

W = |w,,w,,Wg,...] is a set of one-hot vectors

Learning: Learn D and W to minimize total erroron V

D,

W = argmln div(V,DW) = argmlnz: div(V;, Dw;),

s.t.w; = one hot

If we’re only interested in learning the dictionary

D = argmin mui/nz div(V;, Dw;), s.t.w; = one hot
D .

MLSP
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Learning the Dictionary

. ﬁ — argmin mui,n Zi diU(Vi,DWi)
D

= argminz min div(V;, Dw;)
D — Wi
l

* Generally does not have a closed form solution, but can
solved with the following iteration that provably reduces
error in each step

w; = argmin div(V;, Dw)
W

D = argminz div(V;, Dw;)
D .
l
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Learning the Dictionary

e D =arominminY.din(V. Dw:)

For div(.) = ||V; — Dw;||* this gives us the well-known
K-means algorithm

il o Jnlininknlinke i N 2 V4
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* Generally does not have a closed form solution, but can
solved with the following iteration that provably reduces
error in each step

w; = argmin div(V;, Dw)
W

D = argminz div(V;, Dw;)
D .



MLSP

Viinelasming or Scpal

Learning the Dictionary

e« D =argminminy.div(V..Dw;)

For div(.) = ||V; — Dw;||* this gives us the well-known
K-means algorithm

D e W

- Grouping V; by the dictionary entries they are
assigned to (w;) results in clustering
error in each step

w; = argmin div(V;, Dw)
W

D = argminz div(V;, Dw;)
D .
l
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Poll 1

e Select all that are true
— K-means models a dictionary-based representation

— Dictionary based representations represent data as
entries from a dictionary

— The ideal dictionary includes every possible data
Instance

— Dictionaries can be estimated by minimizing the total
divergence between the original data and a one-hot
dictionary-based composition of the data
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Poll 1

e Select all that are true
— K-means models a dictionary-based representation

— Dictionary based representations represent data as
entries from a dictionary

— The ideal dictionary includes every possible data
instance

— Dictionaries can be estimated by minimizing the total
divergence between the original data and a one-hot
dictionary-based composition of the data
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So let’s look at clustering

* From a more naive, procedural perspective..

MLSP

Vishinedaaming o 5

16



Clustering

17
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Statistical Modelling and Latent
Structure

Much of statistical modelling attempts to identify latent structure in
the data

— Structure that is not immediately apparent from the observed data

— But which, if known, helps us explain it better, and make predictions
from or about it

Clustering methods attempt to extract such structure from
proximity
— First-level structure (as opposed to deep structure)

We will see still other forms of latent structure discovery later in the
course



How

19



Clustering

* Whatis clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

MLSP
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Clustering

* Whatis clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)
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Clustering

* Whatis clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

e Howis it done

— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

22
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Clustering

* Whatis clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

e Howis it done

— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

— The objective function used affects
the nature of the discovered clusters

e E.g. Euclidean distance vs.
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Clustering

* Whatis clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

e Howis it done

— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

— The objective function used affects
the nature of the discovered clusters

e E.g. Euclidean distance vs.
* Distance from center

24
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Why Clustering

* Find structure: Automatic grouping into “Classes”

— Different clusters may show different behavior

* Representation: Quantization

— All data within a cluster are represented by a single point

* Preprocessing step for other algorithms

— Indexing, categorization, etc.
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Finding natural structure in data
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* Find natural groupings in data for further analysis
e Discover latent structure in data

26
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Some Applications of Clustering

* Image segmentation

27
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Representation: Quantization

TRAINING QUANTIZATION

Quantize every vector to one of K (vector) values

What are the optimal K vectors? How do we find them? How do
we perform the quantization?

LBG algorithm ”
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Quantization: Formally

IV = ZWidi
l

V=Dw |w|=1 ) 7'
wlp =1 '

* d; are the “representative” vectors of each cluster
* Restriction: only one of the w; is 1, therest are O
- 2w =0
— W is unit length and one-sparse

29



Representation: BOW

P> »l o) 0:08/44

How to retrieve all music videos by this guy?

Build a classifier
— But how do you represent the video?

30
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Representation: BOW

—
Vk:DWk fzzwk
k

o — _ Representation: Each number is the
Training: Each point is a video frame #frames assigned to the codeword

* Bag of words representations of
video/audio/data

31



MLSP
Obtaining “Meaningful” Clusters

* Two key aspects:

— 1. The feature representation used to characterize
your data

— 2. The “clustering criteria” employed

32
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Clustering Criterion

* The “Clustering criterion” actually has two
aspects

* Cluster compactness criterion

— Measure that shows how “good” clusters are
* The objective function

* Distance of a point from a cluster
— To determine the cluster a data vector belongs to
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“Compactness” criteria for clustering
* Distance based measures
— Total distance between each i
element in the cluster and . .
every other element in the o

cluster

34
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“Compactness” criteria for clustering
e Distance based measures
— Total distance between each
element in the cluster and %
every other element in the

cluster

35
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“Compactness” criteria for clustering

e Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

Ve

— Distance between the two
farthest points in the cluster

36
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“Compactness” criteria for clustering

Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster

— Total distance of every
element in the cluster from the
centroid of the cluster

37
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“Compactness” criteria for clustering

Distance based measures

— Total distance between each
element in the cluster and
every other element in the
cluster

— Distance between the two
farthest points in the cluster

— Total distance of every
element in the cluster from the
centroid of the cluster
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“Compactness” criteria for clustering

Distance based measures @
— Total distance between each

element in the cluster and %
every other element in the
cluster

— Distance between the two ‘
farthest points in the cluster

— Total distance of every
element in the cluster from the

centroid of the cluster @
SO
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“Compactness” criteria for clustering

 Distance based measures @

— Total distance between each
element in the cluster and every %
other element in the cluster

— Distance between the two farthest
points in the cluster

— Total distance of every element in
the cluster from the centroid of the
cluster

N

— Distance measures are often
weighted Minkowski metrics @
distz\/wl‘al—bln+w2‘a2—b2‘n+...+wM‘aM—bMn %
40
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Clustering: Distance from cluster

 How far is a data point from a
cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster
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Clustering: Distance from cluster

 How far is a data point from a

cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster
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Clustering: Distance from cluster

 How far is a data point from a
cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster
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Clustering: Distance from cluster

 How far is a data point from a
cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest pointin
the cluster

— Probability of data measured on
cluster distribution




MLSP

Clustering: Distance from cluster

 How faris a data point from a
cluster?
— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest pointin
the cluster

— Probability of data measured on
cluster distribution

— Fit of data to cluster-based
regression

i
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Optimal clustering: Exhaustive enumeration

* Find the clusters such that cluster compactness measure
is optimized

* All possible combinations of data must be evaluated

— |If there are M data points, and we desire N clusters, the number
of ways of separating M instances into N clusters is

— Exhaustive enumeration based clustering requires that the
objective function (the “Goodness measure”) be evaluated for
every one of these, and the best one chosen

 This is the only correct way of optimal clustering

— Unfortunately, it is also computationally unrealistic
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Poll 2

The true distance of a data instance from a cluster is its distance from the
centroid of the cluster

— True
— False

If individual clusters are required to capture local linear trends, which of
the following measures would we use to find the distance of a point from
a cluster

— The Euclidean distance from the centroid
— The Euclidean distance to the closest point in the cluster

— The (inverse) likelihood of the data point computed on the distribution of data
within the cluster

— The Euclidean distance of the point from the linear regression hyperplane
through the cluster



Poll 2

The true distance of a data instance from a cluster is its distance from the
centroid of the cluster

— True
— False

If individual clusters are required to capture local linear trends, which of
the following measures would we use to find the distance of a point from
a cluster

— The Euclidean distance from the centroid
— The Euclidean distance to the closest point in the cluster

— The (inverse) likelihood of the data point computed on the distribution of data
within the cluster

— The Euclidean distance of the point from the linear regression hyperplane
through the cluster

48
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Not-quite non sequitur: Quantization

Signal Value Bits | Mapped to
S >=3.75v 11 | 3 * const
3.75v > S >= 2.5v 10 | 2 * const
2.5v> S8 >=1.25v 01 |1*const
1.25v > S >= Qv 00 (O

AR AREEREREN

Analog value (arrows are quantization levels)

Probability of analog value

* Linear quantization (uniform quantization):
— Each digital value represents an equally wide range of analog values
— Regardless of distribution of data
— Digital-to-analog conversion represented by a “uniform” table

49
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Not-quite non sequitur: Quantization

IREERHHEARE

Q
_g Signal Value Bits Mapped to
> _

3 S >=4v 11 4.5

5 4v> S >=2.5v 10 3.25

<

qc_’ 2.5v>S >=1v 01 1.25

S 1.0v > S >= Qv 00 0.5

=

e

S

e

(@]

-

(a1

Analog value (arrows are quantization levels)

* Non-Linear quantization:

— Each digital value represents a different range of analog values

* Finer resolution in high-density areas

 Mu-law / A-law assumes a Gaussian-like distribution of data

— Digital-to-analog conversion represented by a “non-uniform” table

50
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Non-uniform quantization

VAN

Analog value

Probability of analog value

If data distribution is not Gaussian-ish?
— Mu-law / A-law are not optimal

— How to compute the optimal ranges for quantization?
* Or the optimal table

51



MLSP

The Lloyd Quantizer

/N

R AR

Analog value (arrows show quantization levels)

Probability of analog value

Lloyd quantizer: An iterative algorithm for computing optimal
guantization tables for non-uniformly distributed data

Learned from “training” data

52
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Lloyd Quantizer

 Randomly initialize
/\ guantization points
1t 1t 1 1

— Right column entries of
guantization table

53
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Lloyd Quantizer

 Randomly initialize
guantization points
/\ — Right column entries of
Tt 1t 1t 1

guantization table
O

* Assign all training points to
/\ the nearest quantization
int
N PoImn

— Draw boundaries

)

o4



MLSP

Lloyd Quantizer

 Randomly initialize
guantization points
/\ — Right column entries of
Tt 1t 1t 1

guantization table

* Assign all training points to
/\ the nearest quantization
I O I point

— Draw boundaries

* Reestimate quantization
points

(T O A

55
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Lloyd Quantizer

JAWAVAN

()

Randomly initialize
guantization points

— Right column entries of
guantization table

Assign all training points to
the nearest quantization
point

— Draw boundaries

Reestimate quantization
points

Iterate until convergence

56
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Generalized Lloyd Algorithm: K-means clustering

K meansis an iterative algorithm for clustering vector
data

McQueen, J. 1967. “Some methods for classification and
analysis of multivariate observations.” Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
281-297

* General procedure:

Initially group data into the required number of clusters
somehow (initialization)

Assign each data point to the closest cluster

Once all data points are assigned to clusters, redefine clusters

lterate



K—means

Problem: Given a set of data
vectors, find natural clusters

Clustering criterion is scatter:
distance from the centroid

Every cluster has a centroid

The centroid represents the cluster

Definition: The centroid is the
weighted mean of the cluster
Weight = 1 for basic scheme

m

cluster o

Z

iecluster

MLSP
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. 1ecluster
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K—means

Initialize a set of centroids
randomly

MLSP
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K—means

Initialize a set of centroids
randomly

For each data point x, find the RN

distance from the centroid for

each cluster ) "o
d = distance(x,m ) g

cluster



K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

MLSP



K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

MLSP



K—means

Initialize a set of centroids
randomly

For each data point x, find the RS
distance from the centroid for $
each cluster Py
*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

.
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.*
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

Vi inedaamig
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

———
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g |
minimum

When all data points are
clustered, recompute centroids

mcluster Z Z W x

eclus

———

MLSP
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

[ J
dcluster

Put data point in the cluster of the
closest centroid

«  Cluster for which d e IS
minimum

When all data points are

clustered, recompute centroids

———

— dlStance(.X, mcluster )

1
WX,

z Wi iecluster
luster

ieclust

m cluster

If not converged, go back to 2
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K-Means comments

e The distance metric determines the clusters

— In the original formulation, the distance is L, distance

* Euclidean norm, w, =1

diStancecluster (x9 mcluster) :H X—m

1
m — Z x.
cluster | | 2 cluster N ;

cluster i€cluster

— If we replace every x by m (x), we get Vector

Quantization

cluster

 K-means is an instance of generalized EM

* Not guaranteed to converge for all distance
metrics
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Poll 3

 The Lloyd-max quantizer’s training algorithm is a special
case of K-means clustering

— True
— False

* What would we have to update to guarantee that the K-
mean approach would converge, if we changed from the L2
divergence to some other divergence?

— The formula for the distance to the cluster
— The formula for the centroid

— Convergence can never generally be guaranteed



Poll 3

 The Lloyd-max quantizer’s training algorithm is a special
case of K-means clustering

— True

— False

 What would we have to update to guarantee that the K-
means approach would converge, if we changed from the
L2 divergence to some other divergence?

— The formula for the distance to the cluster
— The formula for the centroid

— Convergence can never generally be guaranteed

- LSP
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Non-Euclidean clusters

* Basic K-means results in good clusters in
Euclidean spaces

— Alternately stated, will only find clusters that are
“good” in terms of Euclidean distances

 Will not find other types of clusters

MLSP
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Non-Euclidean clusters

f([Xa}I]) -> [X,y,Z] "R
X =X o

y - y 05 .
z=o(x?+y?)

* For other forms of clusters, we must modify the distance measure

— E.g. distance from a circle

— But finding nearest values and representative vectors (cetroids) becomes hard
 May be viewed as a distance in a higher dimensional space

— l.e Kernel distances

— Kernel K-means
* Other related clustering mechanisms:

— Spectral clustering
* Non-linear weighting of adjacency

— Normalized cuts.. 24
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The Kernel Trick

* Transform the data into a synthetic higher-dimensional space where the
desired patterns become natural clusters based on Euclidean distance
— E.g. the quadratic transform above

* Problem: What is the function/space?

Problem: Distances in higher dimensional-space are more expensive to
compute

— Yet only carry the same information in the lower-dimensional space

75
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Distance in higher-dimensional space

* Transform data x through a possibly unknown
function ®(x) into a higher (potentially infinite)
dimensional space

— z = O(x)

* The distance between two points is computed in
the higher-dimensional space

_d(xll X2)= ||Z1'Z2| 2 = ||CD(X1)_CD(X2)||2

* d(x,, X,) can be computed without computing z

— Since it is a direct function of x, and x,
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Distance in higher-dimensional spacev

* Distance in lower-dimensional space: A combination of
dot products

— |lz- 2, | |* = (2,- 2,)(24- 2,) = 2,2, + 2,.2,-2 2,.2,

* Distance in higher-dimensional space

— d(x,, x,) =| |D(x;) — D(x,)| |2
= O(x,). O(x;) + D(x,). D(x,)-2 D(x,). D(x,)

* d(x,, xX,) can be computed without knowing ®(x) if:

— O(x,). O(x,) can be computed for any x; and x, without
knowing @(.)

77
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The Kernel function

* A kernel function K(x,,x,) is a function such that:
— K(x4,x,) = O(x,). D(x,)

 Once such a kernel function is found, the distance
in higher-dimensional space can be found in
terms of the kernels
— d(xll Xz) =| |CD(X1) - CD(Xz)l |2
= D(x,). D(x,) + D(x,). D(x,)-2 D(x,). P(x,)
= K(x,,x;) + K(x,,X,) - 2K(x,,X,)

* But what is K(x,,x,)?
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A property of the dot product

* Foranyvectorv,vlv=||v]||? >=0

— This is just the length of v and is therefore non-
negative

* Foranyvectoru=2.a v, ||u||?>=0
=> (X, av)(Z.av)>=0
—>ZIZJaIaJVI vy >=0

* This holds for ANY real {a,, a,, ...}
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The Mercer Condition

e If z= ®(x) is a high-dimensional vector derived
from x then for all real {a,, a,, ...} and any set {z,,
Z,, ... } ={0(x,), O(X,),...}

— 2 28,87.Z >=0

— ;%9 3, D(x). O(x;) >=0

=) 1

o If K(x;,X,) = D(x4). O(x,)

=> 2%, % a; a; K(x;,x;) >=0

* Any function K() that satisfies the above condition
is a valid kernel function
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The Mercer Condition

¢ K(xy,X,) = O(x,). D(x,)
=> 2, 2;; 3, K(x;, %) >=0

* A corollary: If any kernel K{(.) satisfies the Mercer
condition

d(x,, x,) = K(x;,x,) + K(x,,Xx,) - 2K(x/,X,)
satisfies the following requirements for a
“distance”

—d(x,x)=0

—d(x,y) >=0

— d(x,w) + d(w,y) >=d(x,y)



Typical Kernel Functions

Linear: K(x,y) =x'y + ¢

Polynomial K(x,y) = (ax'y + ¢)"
Gaussian: K(x,y) = exp(-| | x-y| | %/c?)
Exponential: K(x,y) = exp(-| |x-y| | /A)

Several others

— Choosing the right Kernel with the right
parameters for your problem is an artform

MLSP

Vishinedasming o Sl
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Kernel K-means

K(x,y)= (xTy +c)* =

* Perform the K-mean in the Kernel space

— The space of z = O(x)

* The algorithm..

83
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

1
m cluster N Z O (xi )

cluster 1€cluster

Alternately the weighted average

mcluster = 1 sz’q)(xi) — C Zwiq)(xi)

Wi iecluster iecluster
iecluster
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

L Yo

cluster N
cluster 1€cluster

RECALL: We may never actually be able to compute this mean because

D(x) is not known

Alternately the weighted average

Mepuster = Z 2 w(x)=C Y wd(x,)

i 1ecluster iecluster
iecluster
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K—means
* |[nitialize the clusters with a |
: m = Z D(x,)
random set of K points cluster £ i
. L cluster i€cluster
— N ster 1S NO. Of points in cluster
* For each data point x, find the closest cluster
cluster(x)=min_, . d(x,cluster)=min_, || P(x)—-m_, °

d(x,clusrer>=||@(x)—mm||2=[<D<x)— — Z@(x»] [@(x)— Yo

cluster iecluster cluster iecluster

:(CI)(x)TCD(x)—z > CD(x)TCD(xl.)+N21 > ZCD(XZ.)TCD(XJ.)]

cluster iecluster cluster iecluster jecluster

= K(x,x)— 2 ZK(X,X,-)JF 1 Z ZK(xiaxj)

2
N cluster iccluster N cluster 1€cluster jecluster
Computed entirely using only the kernel function!
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K—means

1. Initialize a set of clusters
randomly

87
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K—means

1. Initialize a set of clusters
randomly

The centroids are virtual:
we don't actually compute
them explicitly!

1
m cluster — Z Wi xi

Wi iecluster
iecluster

88
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K—means

1. Initialize a set of clusters
randomly

2. For each data point x, find the RN
distance from the centroid for
each cluster ) "o
d = distance(x,m ) g

cluster

d = K(x,x)-2C Z w.K (x,x,)+C” Z Zwiij(xl.,xj)

iecluster iecluster jecluster

cluster



K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

MLSP



K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

.
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

MLSP



K—means

Initialize a set of clusters
randomly

For each data point x, find the RS
distance from the centroid for $
each cluster Py
*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

.
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.
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.*
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

*d = distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

Vi inedaamig
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

*  Cluster for which d g, is
minimum

———

MLSP
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

«  Cluster for which d e |
minimum

When all data points are
clustered, recompute centroids

m

cluster — Z
Z Wl iecluster

iecluster

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
inner products in it
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Kernel K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

*d

= distance(x, m

cluster cluster )

Put data point in the cluster of the
closest centroid

«  Cluster for which d e |
minimum

When all data points are
clustered, recompute centroids

m

cluster — Z
Z Wl iecluster

iecluster

If not converged, go back to 2

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
inner products in it
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g For SgralProcessing Grex

Poll 4

e Mark all that are true

— Kernel methods transform the data linearly into a higher
dimensional space

— Kernel methods transform the data non-linearly into a
higher dimensional space

— Euclidean distance based clustering in the Kernel space can
discover non-convex clusters in the original data

— The computational cost of computing the Euclidean
distance in the Kernel space depends on the
dimensionality of the Kernel space
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Poll 4

Mark all that are true

— Kernel methods transform the data linearly into a higher
dimensional space

— Kernel methods transform the data non-linearly into a
higher dimensional space

— Euclidean distance based clustering in the Kernel space
can discover non-convex clusters in the original data

— The computational cost of computing the Euclidean
distance in the Kernel space depends on the
dimensionality of the Kernel space
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How many clusters?

* Assumptions:

— Dimensionality of kernel space > no. of clusters

— Clusters represent separate directions in Kernel spaces

* Kernel correlation matrix K
- K;; = K(x;,x;)

* Find Eigen values A and Eigen vectors e of kernel
matrix

— No. of clusters = no. of dominant A, (17e.) terms
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Spectral Methods

“Spectral” methods attempt to find “principal”
subspaces of the high-dimensional kernel space
Clustering is performed in the principal subspaces
— Normalized cuts

— Spectral clustering

Involves finding Eigenvectors and Eigen values of
Kernel matrix

Fortunately, provably analogous to Kernel K-
means
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Other clustering methods

* Regression based clustering

* Find a regression representing each cluster

e Associate each point to the cluster with the
best regression

— Related to kernel methods
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Clustering..

* Many many other variants
— Many applications..

— Important: Appropriate choice of feature

* Appropriate choice of feature may eliminate need for kernel trick..

* Key Features:
— |dentifies latent structure in the distribution of the data

— Provides an L2-sense optimal quantized representation of
the data

e We will build on this in the next class



