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Preliminaries : for Gaussian

• The conditional probability of y given x is also Gaussian
– The slice in the figure is Gaussian

• The mean of this Gaussian is a function of x
• The variance of y reduces if x is known

– Uncertainty is reduced
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• If is Gaussian:

),(),( 

















yyyx

xyxx

y

xyx
CC

CC
NP




)),(()|( 11
xyxxyxyyxxxyxy CCCCxCCNxyP   



)),(()|( 11
xyxxyxyyxxxyxy CCCCxCCNxyP   

Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Mean of Y given X

Given X value

Update guess of Y based on information in X
Correction is 0 if  X and Y are uncorrelated, i.e Cyx = 0
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Mean of Y given X

Given X value

offset

Slope

Correction to Y = slope * (offset of X from mean)
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Uncertainty in Y
when X is not known
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Uncertainty in Y
when X is not known

Reduced uncertainty
from knowing X

Shrinkage of 
uncertainty
from knowing X

Shrinkage of variance is 0 if  X and Y are uncorrelated, i.e Cyx = 0



Preliminaries : P(y|x) for Gaussian
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Given X value

Mean of Y given X
(MAP estimate of Y)

Variance of Y when
X is known

Overall variance 
of Y when X is 
unknown

Knowing X modifies the mean of Y and shrinks its variance



Background: Sum of Gaussian RVs

• Consider a random variable O obtained as above

• The expected value of O is given by
 

• Notation:
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Background: Sum of Gaussian RVs

• The variance of O is given by

• This is just the sum of the variance of and 
the variance of 
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Background: Sum of Gaussian RVs

• The conditional probability of O:

• The overall probability of O:
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Background: Sum of Gaussian RVs

• The cross-correlation between O and S
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• The cross-correlation between O and S is 

𝑶𝑺 𝑺

𝑺𝑶 𝑺
𝑻
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Background: Joint Prob. of O and S

• The joint probability of O and S (i.e. P(Z)) is also 
Gaussian

• Where

•
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Preliminaries : Conditional of S given 
O: P(S|O)
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Poll 1

• If P(x, y) is joint Gaussian distribution, then the 
conditional probability of y given x P(y |x) is also 
Gaussian.
– True
– False

• If X is a Gaussian random variable, than a linear 
transformation of X is also a Gaussian variable
– True
– False
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Poll 1

• If P(x, y) is joint Gaussian distribution, then the 
conditional probability of y given x P(y |x) is also 
Gaussian.
– True
– False

• If X is a Gaussian random variable, than a linear 
transformation of X is also a Gaussian variable
– True
– False
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Recap: Examples of Generative 
Models

• Generative models can be 
simple, one step models of 
the generating
– E.g. Gaussians, 

Multinomials

• Or a multi-step generating 
process
– E.g. Gaussian Mixtures
– E.g. Linear Gaussian 

Models
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Recap: ML Estimation of Generative 
Models

• Must estimate the parameters of 
the model from observed data

• Maximum likelihood estimation: 
Choose parameters to maximize the 
(log) likelihood of observed data

18
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Recap: ML estimation from 
incomplete data

• In many situations, our observed data are 
missing information
– E.g. components of the data
– E.g. “inside” information about how the data are 

drawn by the model

• In these cases, the ML estimate must only 
consider the observed data 

ఏ
∈ை

– But the observed data are incomplete

• Observation probability must be 
obtained from the complete data probability, 
by marginalizing out missing components
– This can cause ML estimation to become 

challenging
19

Observation 𝑂 consists of only
the unblackened components

𝑜 ⋯

𝑜

𝑃(𝑜)
𝑘



Recap: The Expectation Maximization 
Algorithm

• Define the auxiliary function:

• Which is the ELBO plus a term that doesn’t depend on 

• Iteratively compute

• Guaranteed to increase with every iteration
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Recap: EM principle

• Iteratively:
• Complete the data according to the posterior probabilities computed by 

the current model
– By explicitly considering every possible value, with its posterior-based proportionality
– Or by sampling the posterior probability distribution 

• Upon completion each incomplete observation implicitly or explicitly becomes many (potentially 
infinite) complete observations

• Reestimate the model from completed data

𝑜

𝑜

𝑃(𝑜)

⋯ ⋯ ⋯
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Principal Component Analysis
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace
results in the lowest total (squared) error

Minimize the sum of the 
squared lengths of these lines
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data

Principal axis we’re 
searching for
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data

Principal axis we’re 
searching for

Search through all
subspaces to find the
one with minimum
projection error
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

Computing projection error for
a single instance 

Assume w.l.o.g that
is a unit vector
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

Computing projection error for
a single instance 

Assume w.l.o.g that
is a unit vector
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

ଶ 𝑇 ଶ

(Pythogoras’ theorem)
Computing projection error for
a single instance 
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

ଶ 𝑇 ଶ

(Pythogoras’ theorem)
𝑇 𝑇 𝑇

Computing projection error for
a single instance 
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we can find a closed form solution
• Total projection error for all data:

𝐿 =  𝑥𝑇𝑥 − 𝑤𝑇𝑥𝑥𝑇𝑤 
௫

• Minimizing this w.r.t 𝑤 (subject to 𝑤 = unit vector) gives you the Eigenvalue equation

 𝑥𝑥𝑇 
௫

𝑤 = 𝜆𝑤

• This can be solved to find the principal subspace 34



There’s also an iterative solution

• Objective:  find a vector (subspace) 𝑤 and a position 𝑧 on 𝑤 such that 𝑧𝑤 ≈ 𝑥 most closely (in an L2
sense) for the entire (training) data

• Let 𝑋 = [𝑥ଵ𝑥ଶ … 𝑥ே] be the entire training set (arranged as a matrix)
– Objective:   find vector bases (for the subspace) 𝑊 and the set of position vectors 𝑍 = [𝑧ଵ𝑧ଶ … 𝑧ே] for all 

vectors in 𝑋 such that 𝑊𝑍 ≈ 𝑋

• Initialize 𝑊
• Iterate until convergence:

– Given 𝑊,  find the best position vectors 𝑍:    𝑍 ← 𝑊ା𝑋

– Given position vectors 𝑍, find the best subspace: 𝑊 ← 𝑋𝑍ା 

– Guaranteed to find the principal subspace 35



The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Given find the best position vectors on the W subspace for each training 
instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance
36



The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance

This individually minimizes the length
of lines from the points to the plane
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squared length of lines from the points 
to their “attachments” on the plane
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The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance
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A failed attempt at animation

• Someone with animated-gif generation skills, 
help me…
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A minor issue: Scaling invariance

• The estimation is scale invariant
• We can increase the length of , and compensate for it by reducing 

– Can shrink the coordinate values by lengthening the bases and vice 
versa

• The solution is not unique!

𝑥

𝑧𝑤
𝑤

𝑥

𝑧′𝑤′

𝑤′

ା
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Rotation/scaling invariance

• We can rotate and scale the vectors in W without changing the 
actual subspace they compose

• The representation of any point in the hyperspace in terms of these 
vectors will also change
– The s in the two cases will be related through a linear transform 

• The subspace is invariant to transformations of z

ଵ
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ଵ
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ଶ
ᇱ
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ᇱ
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ᇱ

"
ଵ
" "

ଶ
"
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Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA

– Constraining the variance of to be unity (or the identity matrix)

• While the s estimated with the two solutions will be different, 
the resulting discovered principal subspace will be the same

𝑥

𝑧𝑤

𝑤
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Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA

– Constraining the variance of to be unity (or the identity matrix)

• While the s estimated with the two solutions will be different, 
the resulting discovered principal subspace will be the same

𝑥

𝑧𝑤

𝑤
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So what are we doing in the iterative 
solution?

• For every training vector ,  we are missing the information about 
where the vector lies on the principal subspace hyperplane

• If we had , we could uniquely identify the plane

?
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for 
the plane
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
• Reestimate the plane using the s
• Iterate
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Iterative solution

• This looks like EM
– In fact it is

• But what is the generative model?
• And what distribution is this encoding?
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Iterative solution

• This looks like EM
– In fact it is

• But what is the generative model?
• And what distribution is this encoding?

– If we assume the zs have Gaussian distribution
54



Poll 2

• Mark true statements
– Generative models require a large amount of 

example/training data to learn properly
– The amount of training data required is smaller if the 

Maximum-likelihood Estimator has closed form formulae
– EM algorithm can be used to learn the parameters of 

generative model for which closed form Maximum 
Likelihood Estimators are not available

– PCA can be implemented in an iterative way, by alternately 
estimating the principal component bases, and the 
coordinates of the data vectors in terms of these bases
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Poll 2

• Mark true statements
– Generative models require a large amount of example/training 

data to learn properly
– The amount of training data required is smaller if the Maximum-

likelihood Estimator has closed form formulae
– EM algorithm can be used to learn the parameters of 

generative model for which closed form Maximum Likelihood 
Estimators are not available

– PCA can be implemented in an iterative way, by alternately 
estimating the principal component bases, and the coordinates 
of the data vectors in terms of these bases
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The generative story behind PCA

• PCA actually has a generative story
• In order to generate any point

– We first take a Gaussian step on the principal plane
– Then we take an orthogonal Gaussian step from where we land to generate a 

point
– PCA finds the plane and the characteristics of the Gaussian steps from the 

data

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane
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• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix 
• Matrix of principal Eigen vectors scaled by Eigen values

– is a 0-mean Gaussian noise that is orthogonal to the principal subspace
• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace! 

The generative story behind PCA

்
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• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix 
• Matrix of principal Eigen vectors scaled by Eigen values

– is a 0-mean Gaussian noise that is orthogonal to the principal subspace
• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace! 

The generative story behind PCA

PCA implicitly obtains maximum likelihood estimate of and , from training data 
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• Alternate view:  stretches and rotates the -dimensional planar space of z into 
a K-dimensional planar subspace (manifold) of the data space

• The circular distribution of in the -dimensional space transforms into an 
ellipsoidal distribution on a -dimensional hyperplane the data space

• Samples are drawn from the ellipsoidal distribution on the hyperplane, and noise 
is added to them

Recap: The generative story behind PCA

்
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• PCA models a Gaussian distribution:
𝑥ො = 𝐴𝑧 ⇒                   𝑃 𝑥ො = 𝑁(0, 𝐴𝐴்)

𝑥 = 𝑥ො + 𝐸 ⇒                  𝑃 𝑥 = 𝑁(0, 𝐴𝐴் + 𝐷)

• The probability density of is Gaussian lying mostly close to a hyperplane
– With correlated structure on the plane
– And uncorrelated components orthogonal to the plane

• Also

The probability modelled by PCA
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𝑥 = 𝑥ො + 𝐸 ⇒                  𝑃 𝑥 = 𝑁(0, 𝐴𝐴் + 𝐷)

• The probability density of is Gaussian lying mostly close to a hyperplane
– With correlated structure on the plane
– And uncorrelated components orthogonal to the plane

• Also

The probability modelled by PCA
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• How?

The probability modelled by PCA

63



்

• The parameters of the PCA generative model are A and D 
• The ML estimator is

, ௗ ்

் ் ିଵ

௫

– Where 𝑑 is the dimensionality of the space

• Combined with the constraints on the number of columns in (dimensions of 
principal subspace), and that ் , this will give us the principal subspace

ML estimation of PCA parameters
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• There is missing information about the observation 
– Information about intermediate values drawn in 

generating 

– We don’t know 

• If we knew for each , estimating (and ) would be 
simple

Missing information for PCA
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PCA with complete information

• Given complete information 
– Representing ଵ ଶ ,   ଵ ଶ

• Differentiating w.r.t and equating to 0, we get the easy solution

– (Some sloppy math ( is not invertible), but the solution is right)

66
But we don’t have z.  It is missing



EM for PCA

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
– is a delta, because is orthogonal to 

• Reestimate the plane using the s
• Iterate

67



The distribution modelled by PCA

• If is Gaussian, is Gaussian
• and are Gaussian => is Gaussian
• PCA model:  The observed data are Gaussian

– Gaussian data lying very close to a principal subspace
– Comprising “clean” Gaussian data on the subspace plus orthogonal noise

68



Poll 3

• PCA implicitly obtains maximum likelihood estimate of the 
transformation (the direction of the new bases) and the 
covariance of noise that embed its anisotropy.
– True
– False

• When the observed data are (nearly) Gaussian, it can be 
decomposed to Gaussian data lying very close to a principal 
subspace plus parallel noise lying in the same plane
– True
– False
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• PCA implicitly obtains maximum likelihood estimate of the 
transformation (the direction of the new bases) and the 
covariance of noise that embed its anisotropy.
– True
– False
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Can we do better?

• PCA assumes the noise is always orthogonal to the data
– Not always true
– Noise in images can look like images, random noise can sound like 

speech, etc.

• Let’s us generalize the model to permit non-orthogonal noise

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane
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The Linear Gaussian Model

• Update the model:  The noise added to the output of the encoder can lie in any 
direction
– Uncorrelated, but not just orthogonal to the principal subspace

• Generative model: to generate any point
– Take a Gaussian step on the hyperplane
– Add full-rank Gaussian uncorrelated noise that is independent of the position on the 

hyperplane
• Uncorrelated: diagonal covariance matrix
• Direction of noise is unconstrained

– Need not be orthogonal to the plane

is full rank

72



The linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities
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Revisiting the linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities

• This is still a parametric model for a Gaussian distribution
– Parameters are and (assuming 0 mean)

்
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Revisiting the linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities

• This is in fact a parametric model for a Gaussian distribution
– Parameters are and (assuming 0 mean)

்

Also known as Factor Analysis:
A is the loading matrix
z are the factors
D is diagonal
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The probability distribution modelled 
by the LGM

• The noise added to the output of the encoder can lie in any direction
்

்

• The probability density of is Gaussian lying mostly close to a hyperplane
– With uncorrelated Gaussian 

• Also

76

is full rank diagonal



The linear Gaussian model

• Is a generative model for Gaussians
• Data distribution are Gaussian lying largely on a hyperplane with 

some Gaussian “fuzz”
– Only components on the plane are correlated with one another

• No correlations off the plane

– Which allows us to model some correlations between components
• Halfway between a Gaussian with a diagonal covariance, and one with a full 

covariance
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𝑃 𝑥 = 𝑁(0, 𝐴𝐴் + 𝐷)

• The parameters of the LGM generative model are A and D 
• The ML estimator is

argmax
,

 log
1

(2𝜋)ௗ 𝐴𝐴் + 𝐷
exp −0.5𝑥்(𝐴𝐴் + 𝐷)ିଵ𝑥

௫

– Where 𝑑 is the dimensionality of the space

• As it turns out, this does not have a nice closed form solution
– Because 𝐷 is full rank

ML estimation of LGM parameters

78

is full rank diagonal



• There is missing information about the observation 
– Information about intermediate values drawn in 

generating 
– We don’t know 

• If we knew the for each , estimating (and ) 
would be very simple

Missing information for LGMs

79
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LGM with complete information

• Given complete information ,   

• Differentiating w.r.t and equating to 0, we get an easy solution
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LGM with complete information

,

் ିଵ

(௫,௭)

• Differentiating w.r.t and and equating to 0, we get an easy solution
• Solution for 


் ିଵ

(௫,௭)

்

(௫,௭)

்

(௫,௭)

்

௭

ିଵ

• Solution for 


் ିଵ

(௫,௭)

்

௫

்

(௫,௭)
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LGM with complete information

,

் ିଵ

(௫,௭)

• Differentiating w.r.t and and equating to 0, we get an easy solution
• Solution for 


் ିଵ

(௫,௭)

்

(௫,௭)

்

(௫,௭)

்

௭

ିଵ

• Solution for 


் ିଵ

(௫,௭)

்

௫

்

(௫,௭)

82

Unfortunately we do not
observe 𝑧.
It is missing; the observations
are incomplete



Expectation Maximization for LGM

• Complete the data
• Option 1: 

– In every possible way proportional to 
– Compute the solution from the completed data

83



The posterior 

• is Gaussian 
– We saw this

• The joint distribution of and is also Gaussian
– Trust me

• The conditional distribution of given is also Gaussian
் ் ିଵ ் ் ିଵ

– Trust me
84
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Expectation Maximization for LGM

• Complete the data
• Option 1: 

– In every possible way proportional to 
– Compute the solution from the completed data

85
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Expectation Maximization for LGM

• Complete the data in every possible way proportional to 
– Compute the solution from the completed data

–
,

ଵ

ଶ
் ିଵ

(௫,௭)

• The values for each are distributed according to . 
Segregating the summation by 

,

் ିଵ
ஶ

ିஶ௫
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LGM with incomplete information
argmax

,
 න 𝑝(𝑧|𝑥) −

1

2
log 𝐷 −0.5 𝑥 − 𝐴𝑧 ்𝐷ିଵ 𝑥 − 𝐴𝑧

ஶ

ିஶ௫

𝑑𝑧

• Differentiating w.r.t 𝐴 and 𝐷and equating to 0, we get an easy solution
• Solution for 𝐴

𝛻  න 𝑝 𝑧 𝑥 𝑥 − 𝐴𝑧 ்𝐷ିଵ 𝑥 − 𝐴𝑧 𝑑𝑧
ஶ

ିஶ௫

= 0    ⇒

 න 𝑝 𝑧 𝑥 𝑥 − 𝐴𝑧 𝑧்𝑑𝑧
ஶ

ିஶ௫ 

= 0     ⇒       𝐴 =  න 𝑝 𝑧 𝑥 𝑥𝑧்𝑑𝑧
ஶ

ିஶ௫

 න 𝑝 𝑧 𝑥 𝑧𝑧்𝑑𝑧
ஶ

ିஶ௫

ିଵ

• Solution for 𝐷

𝛻 𝑁log 𝐷 +  න 𝑝 𝑧 𝑥 𝑥 − 𝐴𝑧 ்𝐷ିଵ 𝑥 − 𝐴𝑧 𝑑𝑧
ஶ

ିஶ௫

= 0      ⇒

𝐷 = 𝑑𝑖𝑎𝑔
1

𝑁
 𝑥𝑥்

௫

− 𝐴  න 𝑝 𝑧 𝑥 𝑥𝑧்𝑑𝑧
ஶ

ିஶ௫
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These are closed form solutions, 
Key: All terms integrate over all possible completion of incomplete observations, where the
proportionality attached to any completion of x is P(z|x)



LGM with incomplete information
• It is actually an iterative algorithm (EM):

• Solution for 

• Solution for 
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These are closed form solutions, 
Key: All terms integrate over all possible completion of incomplete observations, where the
proportionality attached to any completion of x is P(z|x)



LGM with incomplete information
• It is actually an iterative algorithm (EM):

• Solution for 

• Solution for 
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These are closed form solutions, 
Key: All terms integrate over all possible completion of incomplete observations, where the
proportionality attached to any completion of x is P(z|x)



LGM with incomplete information
• It is actually an iterative algorithm (EM):

• Solution for 

𝑇

• Solution for 

𝑇
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These are closed form solutions, 
Key: All terms integrate over all possible completion of incomplete observations, where the
proportionality attached to any completion of x is P(z|x)



LGM with incomplete information
• It is actually an iterative algorithm (EM):

• Solution for 

𝑇

• Solution for 

𝑇
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These are closed form solutions, 
Key: All terms integrate over all possible completion of incomplete observations, where the
proportionality attached to any completion of x is P(z|x)



LGM with incomplete information
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Expectation Maximization for LGM

• Complete the data
• Option 2: 

– By drawing samples from
– Compute the solution from the completed data
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LGM from drawn samples
• Since we now have a collection of complete vectors, we can use the usual 

complete-data formulae
• Solution for 

ାଵ ்

(௫,௭)

்

௭

ିଵ

• Solution for 

ାଵ ்

௫

 ்

(௫,௭)
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These are closed form solutions

Draw missing components from P(z|x; 𝐴, 𝐷) to complete the data

Estimate parameters from completed data



Poll 4

• Select all that are true
– PCA is a specific instance of Linear Gaussian 

Models
– LGM need all dimensions of the observation to be 

observed and cannot handle the case of missing 
information.

– We can get global optimal of LGM easily through 
the EM algorithm.
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Poll 4

• Select all that are true
– PCA is a specific instance of Linear Gaussian 

Models
– LGM need all dimensions of the observation to be 

observed and cannot handle the case of missing 
information.

– We can get global optimal of LGM easily through 
the EM algorithm.
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LGMs: The intuition

• The linear transform stretches and rotates the K-dimensional input space onto a K-
dimensional hyperplane in the data space

• The isotropic Gaussian in the input space becomes a stretched and rotated 
Gaussian on the hyperplane
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LGMs: The intuition

• Drawing samples: The first step places the somewhere on 
the plane described by 
– The distribution of points on the plane is also Gaussian
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LGMs: The intuition

• LGM model:  The first step places the somewhere on the plane described by 
– The distribution of points on the plane is also Gaussian

• Second step:  Add Gaussian noise to produce points that aren’t necessarily on the 
plane
– Noise added is not revealed
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EM for LGMs: The intuition

• In an LGM the way to produce any data instance is not unique
• Conversely, given only the data point, the “shadow” on the principal 

plane cannot be uniquely known
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EM Solution

• The posterior probability gives you the location 
of all the points on the plane that could have generated 

and their probabilities



EM Solution

• Attach the point to every location on the plane, according to 
– Or to a sample of points on the plane drawn from 𝑃(𝑧|𝑥)

• There will be more attachments where is higher, and fewer where it is 
lower



EM Solution

• Attach every training point in this manner
• Let the plane rotate and stretch until the total tension (sum squared 

length) of all the attachments is minimize
• Repeat attachment and rotation until convergence…

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane



Summarizing LGMs
• LGMs are models for Gaussian distributions
• Specifically, they model the distribution of data 

as Gaussian, where most of the variation is 
along a linear manifold
– They do this by transforming a Gaussian RV z 

through a linear transform 𝑓(𝑧)  =  𝐴𝑧 that 
transforms the K-dim input space of z into a 𝐾-
dimensional hyperplane (linear manifold) in the data 
space

• They are excellent models for data that actually 
fit these assumptions
– Often, we can simply assume that data lie near 

linear manifolds and model them with LGMs
– PCA, an instance of LGMs, is very popular
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Story for the day
• EM: An iterative technique to estimate probability models 

for data with missing components or information
– By iteratively “completing” the data and reestimating

parameters

• PCA:  Is actually a generative model for Gaussian data
– Data lie close to a linear manifold, with orthogonal noise

• Factor Analysis: Also a generative model for Gaussian data
– Data lie close to a linear manifold
– Like PCA, but without directional constraints on the noise
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