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A quick intro to Markov Chains..

• The case of flider and spy..
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Prediction :  a holy grail

• Physical trajectories
– Automobiles, rockets, heavenly bodies

• Natural phenomena
– Weather

• Financial data
– Stock market

• World affairs
– Who is going to win the next election?

• Signals
– Audio, video..
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The wind and the target
• Aim: measure wind velocity accurately

– For some important task
• Using a noisy wind speed sensor

– E.g. arrows shot at a target

• Situation:  
– Wind speed at time t depends on speed at t-1

• 𝑺𝒕 = 𝑺𝒕"𝟏 + 𝝐𝒕
– Arrow position at time t depends on wind speed at time t

• 𝒀𝒕 = 𝑨𝑺𝒕 + 𝜸𝒕

• Challenge:  Given sequence of observation 𝒀𝟏, 𝒀𝟐,…, 𝒀𝒕
– Estimate current wind speed 𝑺𝒕
– Predict wind speed and arrow position at 𝑡 + 1: 𝑺𝒕"𝟏and 𝒀𝒕"𝟏
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A Common Trait

• Series data with trends
• Stochastic functions of stochastic functions (of stochastic functions of …)
• An underlying process that progresses (seemingly) randomly

– E.g. wind speed
– E.g. Current position of a vehicle
– E.g. current sentiment in stock market

• Random expressions of underlying process
– E.g Wind speed sensor measurement
– E.g. what you see from the vehicle
– E.g. current stock prices of various stock
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What a sensible agent must do
• Learn about the process
– From whatever they know

• E.g. learn the wind-speed function 
and the arrow-to-wind function

– Basic requirement for other 
procedures

• Track underlying processes
– Track the wind speed

• Predict future values
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A Specific Form of Process..
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X Y• Doubly stochastic processes

• One random process generates a “state” 
variable  X
– Random  process X ⬅ P(X; Q)

• Second-level process generates observations 
as a function of state  X

• Random process  Y ⬅ P(Y;  f(X, L))



Doubly Stochastic Process Model

• Doubly stochastic processes
are models
– May not be a true representation

of process underlying actual data

• First level variable may be a quantifiable variable
– Position/state of vehicle
– Second level variable is a stochastic function of position

• First level variable may not have meaning
– “Sentiment” of a stock market
– “Configuration” of vocal tract
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Markov Chain

• Process can go through a number of states
– Random walk, Brownian motion..

• From each state, it can go to any other state with a probability
– Which only depends on the current state

• Walk goes on forever
– Or until it hits an “absorbing wall”

• Output of the process – a sequence of states the process went 
through
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Stochastic Function of a Markov Chain

• First-level variable is usually abstract

• The first level variable assumed to be the output of a 
Markov Chain

• The second level variable is a random variable whose 
distribution is a function of the output of the Markov Chain

• Also called an HMM
• Another variant – stochastic function of Markov process

– Kalman Filtering..
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Stochastic Function of a Markov Chain

• Output:
– Y ⬅ P(Y; f(Si))

• Probability distribution is a function of the state
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A little parable
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A little parable
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You’ve been kidnapped

And blindfolded



A little parable
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You’ve been kidnapped

And blindfolded
You can only hear the car
You must find your way back home from wherever they
drop you off



Kidnapped

• Determine automatically, by only listening to a running 
automobile, if it is:
– Idling; or
– Travelling at constant velocity; or
– Accelerating; or
– Decelerating

• You are super acoustically sensitive and can determine 
sound pressure level (SPL)
– The SPL is measured once per second
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What you know
• An automobile that is at rest can accelerate, or 

continue to stay at rest
• An accelerating automobile can hit a steady-

state velocity, continue to accelerate, or 
decelerate

• A decelerating automobile can continue to 
decelerate, come to rest, cruise, or accelerate

• An automobile at a steady-state velocity can 
stay in steady state, accelerate or decelerate
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What else you know

• The probability distribution of the SPL of the 
sound is different in the various conditions
– As shown in figure

• In reality, depends on the car

• The distributions for the different conditions 
overlap
– Simply knowing the current sound level is not enough 

to know the state of the car 
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The Model!

• The state-space model
– Assuming all transitions from a state are equally probable

– We will help you find your way back home in the next class
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What is an HMM
• The model assumes that the process can be in one of a number 

of states at any time instant

• The state of the process at any time instant depends only on the 
state at the previous instant (causality, Markovian)

• At each instant the process generates an observation from a 
probability distribution that is specific to the current state

• The generated observations are all that we get to see
– the actual state of the process is not directly observable 

• Hence the qualifier hidden
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• “Probabilistic function of a markov chain”
• Models a dynamical system
• System goes through a number of states

– Following a Markov chain model

• On arriving at any state it generates observations according to 
a state-specific probability distribution
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• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there are, 

and how they can follow one another

– A set of probability distributions, one for each state, which specifies the 
distribution of all vectors in that state
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HMM assumed to be 
generating data

How an HMM models a process

state 
distributions

state 
sequence

observation
sequence
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HMM Parameters
• The topology of the HMM

– Number of states and allowed 
transitions

– E.g. here we have 3 states and cannot 
go from the blue state to the red

• The transition probabilities
– Often represented as a matrix as here
– Tij is the probability that when in 

state i, the process will move to j

• The probability pi of beginning at 
any state si
– The complete set is represented as p

• The state output distributions
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Three Basic HMM Problems

• What is the probability that it will generate a 
specific observation sequence

• Given an observation sequence, how do we 
determine which observation was generated 
from which state
– The state segmentation problem

• How do we learn the parameters of the HMM 
from observation sequences 
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Computing the Probability of  an 
Observation Sequence

• Two aspects to producing the observation:
– Progressing through a sequence of states
– Producing observations from these states
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HMM assumed to be 
generating data

Progressing through states

state 
sequence

• The process begins at some state (red) here
• From that state, it makes an allowed transition

– To arrive at the same or any other state

• From that state it makes another allowed transition
– And so on
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Probability that the HMM will follow 
a particular state sequence

• P(s1) is the probability that the process will initially be in 
state s1

• P(sj | si) is the transition probability of moving to state sj at 
the next time instant when the system is currently in si
– Also denoted by Tij earlier

11755/18797 27

P s s s P s P s s P s s( , , ,...) ( ) ( | ) ( | )...1 2 3 1 2 1 3 2=



HMM assumed to be 
generating data

Generating Observations from States

state 
distributions

state 
sequence

observation
sequence

• At each time it generates an observation from the 
state it is in at that time
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P o o o s s s P o s P o s P o s( , , ,...| , , ,...) ( | ) ( | ) ( | )...1 2 3 1 2 3 1 1 2 2 3 3=

• P(oi | si) is the probability of generating 
observation oi when the system is in state si

Probability that the HMM will generate 
a particular observation sequence given 

a state sequence 
(state sequence known)

Computed from the Gaussian or Gaussian mixture for state s1
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HMM assumed to 
be generating data

Proceeding through States and 
Producing Observations

state 
distributions

state 
sequence

observation
sequence

• At each time it produces an observation and makes 
a transition
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Probability that the HMM will generate 
a particular state sequence and from it, 

a particular observation sequence

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 =

P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)1 2 3 1 2 3 1 2 3 =
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Probability of Generating an 
Observation Sequence

P o s P o s P o s P s P s s P s s
all possible
state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.
.

1 1 2 2 3 3 1 2 1 3 2å

P o o o s s s
all possible
state sequences

( , , ,..., , , ,...)
.
.

1 2 3 1 2 3 =åP o o o( , , ,...)1 2 3 =

• The precise state sequence is not known
• All possible state sequences must be considered

11755/18797 32



Computing it Efficiently

• Explicit summing over all state sequences is not 
tractable
– A very large number of possible state sequences

• Instead we use the forward algorithm

• A dynamic programming technique.
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Illustrative Example

• Example: a generic HMM with 5 states and a “terminating 
state”. 
– Left to right topology

• P(si) = 1 for state 1 and 0 for others

– The arrows represent transition for which the probability is not 0

• Notation:
– P(si | si) = Tij
– We represent P(ot | si) = bi(t) for brevity
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States and times…

Feature vectors
(time)

St
at

e 
in

de
x

• The Y-axis represents HMM states, X axis represents observations
• Every node represents the event of a particular observation being generated 

from a particular state
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The Trellis

Feature vectors
(time)

St
at

e 
in

de
x

• The trellis is a graphical representation of all possible paths through the HMM to 
produce a given observation

• Every edge in the graph represents a valid transition in the HMM over a single 
time step
– Each edge carries the state transition probability between the source and destination states

• Every node represents the event of a particular observation being generated 
from a particular state
– Each node for state 𝑠! at time 𝑡 carries the probability 𝑃(𝑂! |𝑠!)
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The Trellis

Feature vectors
(time)

St
at

e 
in

de
x

• Any path through the trellis is a sequence of states that the processes has 
traversed in generating the observations

• The probability of the path is the product of all the edge and node probabilities 
on the path
– 𝑃 𝑠" 𝑃(𝑂"|𝑠")∏!#$𝑃 𝑠! 𝑠!%$ 𝑃(𝑂!|𝑠!)
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Diversion: The Trellis

Feature vectors
(time)

St
at

e 
in

de
x

t-1 t

s

• The trellis is a graphical representation of all possible paths through the HMM to 
produce a given observation

• The Y-axis represents HMM states, X axis represents observations
• Every edge in the graph represents a valid transition in the HMM over a single 

time step 
• Every node represents the event of a particular observation being generated 

from a particular state
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The Forward Algorithm

time

St
at

e 
in

de
x

t-1 t

s

• a(s,t) is the total probability of ALL state 
sequences that end at state s at time t, and 
all observations until xt
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The Forward Algorithm

time
t-1 t

Can be recursively 
estimated starting 
from the first time 
instant 
(forward recursion)

s

St
at

e 
in
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x

• a(s,t) can be recursively computed in terms of 
a(s’,t’), the forward probabilities at time t-1 
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å=
s

TsTotalprob ),(a
The Forward Algorithm

time

St
at

e 
in
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x

T

• In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state

• General model: The total probability of the observation is 
the sum of the alpha values at all states
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Problem 2: State segmentation

• Given only a sequence of observations, how 
do we determine which sequence of states 
was followed in producing it?
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HMM assumed to be 
generating data

The HMM as a generator

state 
distributions

state 
sequence

observation
sequence

• The process goes through a series of states and 
produces observations from them
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HMM assumed to be 
generating data

state 
distributions

state 
sequence

observation
sequence

• The observations do not reveal the underlying state
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HMM assumed to be 
generating data

state 
distributions

state 
sequence

observation
sequence

• State segmentation: Estimate state sequence given 
observations
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P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 =

Estimating the State Sequence
• Many different state sequences are capable of 

producing the observation

• Solution: Identify the most probable state sequence
– The state sequence for which the probability of 

progressing through that sequence and generating the 
observation sequence is maximum

– i.e is maximum
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Estimating the state sequence
• Once again, exhaustive evaluation is impossibly 

expensive
• But once again a simple dynamic-programming 

solution is available

• Needed:
)|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss
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Estimating the state sequence
• Once again, exhaustive evaluation is impossibly 

expensive
• But once again a simple dynamic-programming 

solution is available

• Needed:
)|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss
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HMM assumed to be 
generating data

The HMM as a generator

state 
distributions

state 
sequence

observation
sequence

• Each enclosed term represents one forward 
transition and a subsequent emission
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The state sequence

• The probability of a state sequence ?,?,?,?,sx,sy ending at 
time t, and producing all observations until ot
– P(o1..t-1, ?,?,?,?, sx , ot,sy) = P(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)

• The best state sequence that ends with sx,sy at t will have 
a probability equal to the probability of the best state 
sequence ending at t-1 at sx times P(ot|sy)P(sy|sx)
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Extending the state sequence

state 
distributions

state 
sequence

observation
sequence

• The probability of a state sequence ?,?,?,?,sx,sy
ending at time t and producing observations until ot
– P(o1..t-1,ot, ?,?,?,?, sx ,sy) = P(o1..t-1,?,?,?,?, sx )P(ot|sy)P(sy|sx)
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Trellis
• The graph below shows the set of all possible state 

sequences through this HMM in five time instants
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The cost of extending a state 
sequence

• The cost of extending a state sequence ending at sx is 
only dependent on the transition from sx to sy, and 
the observation probability at sy
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The cost of extending a state 
sequence

• The best path to sy through sx is simply an 
extension of the best path to sx
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The Recursion

• The overall best path to sy is an extension of 
the best path to one of the states at the 
previous time
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The Recursion

n Prob. of best path to sy = 
Maxsx BestP(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)
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Finding the best state sequence

• The simple algorithm just presented is called the VITERBI 
algorithm in the literature
– After A.J.Viterbi, who invented this dynamic programming algorithm for a 

completely different purpose: decoding error correction codes!
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Viterbi Search (contd.)
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timeInitial state initialized with path-score = P(s1)b1(1)

In this example all other states have score 0 since P(si) = 0 for 
them



Viterbi Search (contd.)
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time

State with best path-score
State with path-score < best
State without a valid path-score

P (t)j = max [P (t-1) t   b  (t)]i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j
Score for state j, given the input at time t



Viterbi Search (contd.)
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time

P (t)j = max [P (t-1) t   b  (t)]i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j
Score for state j, given the input at time t



Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)
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Viterbi Search (contd.)

11755/18797 67

time



Viterbi Search (contd.)
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THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION



Problem3: Training HMM parameters

• We can compute the probability of an observation, 
and the best state sequence given an observation, 
using the HMM’s parameters

• But where do the HMM parameters come from?

• They must be learned from a collection of 
observation sequences
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