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A quick intro to Markov Chains..

(D

* The case of flider and spy..
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Prediction : a holy grail

Physical trajectories
— Automobiles, rockets, heavenly bodies

Natural phenomena
— Weather

Financial data
— Stock market

World affairs
— Who is going to win the next election?

Signals

— Audio, video..
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The wind and the target

Aim: measure wind velocity accurately
— For some important task

Using a noisy wind speed sensor
— E.g. arrows shot at a target

Situation:
— Wind speed at time ¢ depends on speed at -1
* S =8;1t€
— Arrow position at time t depends on wind speed at time t
e Y, =AS;+ vy,
Challenge: Given sequence of observationY4,Y>,..., Y;
— Estimate current wind speed §;
— Predict wind speed and arrow positionatt + 1: S;,1and Y44
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A Common Trait

FEA S

Series data with trends

Stochastic functions of stochastic functions (of stochastic functions of ...)
An underlying process that progresses (seemingly) randomly

— E.g. wind speed

— E.g. Current position of a vehicle

— E.g. current sentiment in stock market

Random expressions of underlying process
— E.g Wind speed sensor measurement
— E.g. what you see from the vehicle

— E.g. current stock prices of various stock
11755/18797 5



What a sensible agent must do

* Learn about the process

— From whatever they know

e E.g. learn the wind-speed function
and the arrow-to-wind function

— Basic requirement for other
procedures

e Track underlying processes
— Track the wind speed

 Predict future values
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A Specific Form of Process..

Doubly stochastic processes

One random process generates a “state” .
variable X
— Random process X - P(X; ®)

Second-level process generates observations
as a function of state X

Random process Y - P(Y; f(X, A))
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Doubly Stochastic Process Model

* Doubly stochastic processes
are models

— May not be a true representation
of process underlying actual data

* First level variable may be a quantifiable variable
— Position/state of vehicle
— Second level variable is a stochastic function of position
* First level variable may not have meaning
— “Sentiment” of a stock market
— “Configuration” of vocal tract



Markov Chain

o
I/
e

Process can go through a number of states

— Random walk, Brownian motion..

From each state, it can go to any other state with a probability
— Which only depends on the current state

Walk goes on forever
— Or until it hits an “absorbing wall”

Output of the process — a sequence of states the process went
through

Mu:w
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Stochastic Function of a Markov Chain

First-level variable is usually abstract

On

The first level variable assumed to be the output of a
Markov Chain

The second level variable is a random variable whose
distribution is a function of the output of the Markov Chain

Also called an HMM
Another variant — stochastic function of Markov process

— Kalman Filtering..
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Stochastic Function of a Markov Chain

* Qutput:
— Y &I P(Y: £(S)))

* Probability distribution is a function of the state
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A little parable

You've been kidnapped

AYAYELP! TvE
\( o YL bEEN kidg
bL the
Police!
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A little parable

You've been kidnapped

YA NELP! Tve

- DEEN Kiduig
LL the
Police’
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—— __And blindfolded
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A little parable

You've been kidnapped

YA NELP! Tve

- DEEN Kiduig
LL the
Police’

AN
[

—— __And blindfolded

You can only Aear the car
You must find your way back home from wherever they
drop you of f
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Kidnapped

r
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P
——

Qe OF

Determine automatically, by only listening to a running
automobile, if it is:

— Idling; or

— Travelling at constant velocity; or

— Accelerating; or

— Decelerating

You are super acoustically sensitive and can determine
sound pressure level (SPL)

— The SPL is measured once per second
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What you know

An automobile that is at rest can accelerate, or
continue to stay at rest

An accelerating automobile can hit a steady-
state velocity, continue to accelerate, or
decelerate

A decelerating automobile can continue to
decelerate, come to rest, cruise, or accelerate

An automobile at a steady-state velocity can
stay in steady state, accelerate or decelerate
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What else you know

P(xlidle) P(xldecel) P(xIcruise) P(xlaccel)

I\

4

S
* The probability distribution of the SPL of the
sound is different in the various conditions

— As shown in figure
* In reality, depends on the car
 The distributions for the different conditions
overlap

— Simply knowing the current sound level is not enough
to know the state of the car
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The Model! Mg

0.33
70
_ Accel\erating state
P(xlidle) 0.5 33 33
0.5
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Idifng sYate 0.23 10.33 Crising stat
65
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45 25 0251
o . o
' I 0.5 0.5 0 0

Decelerating state * U /3 1/3 1/3
60 C 0 1/3 1/3 1/3
D

0.25 0.25 0.25 0.25

* The state-space model
— Assuming all transitions from a state are equally probable

— We will help you find your way back home in the next class
11-755/18797 18
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What is an HMM

The model assumes that the process can be in one of a number
of states at any time instant

The state of the process at any time instant depends only on the
state at the previous instant (causality, Markovian)

At each instant the process generates an observation from a
probability distribution that is specific to the current state

The generated observations are all that we get to see

— the actual state of the process is not directly observable
* Hence the qualifier hidden
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What is an HMM

A A

“Probabilistic function of a markov chain”
Models a dynamical system

System goes through a number of states
— Following a Markov chain model

On arriving at any state it generates observations according to
a state-specific probability distribution

11755/18797 20
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Hidden Markov Models

OO®

v

A A )\

A Hidden Markov Model consists of two components

Decelerating state

— A state/transition backbone that specifies how many states there are,
and how they can follow one another

— A set of probability distributions, one for each state, which specifies the
distribution of all vectors in that state

O O O R Markov chain
A_A | Data distributions

11755/18797
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How an HMM models a process

HMM assumed to be
generating data

state

sequence Q—».—»O—»Q—»Q—»Q—»Q—»C—>O—>Q—>C—>C—>O—>Q—>C—>Q—>.

e AAAMhummArdhmdddd
N
IRERREERREEN

distributions

observation
seguence

11755/18797



HMM Parameters
0.6

The topology of the HMM

— Number of states and allowed
transitions

— E.g. here we have 3 states and cannot
go from the blue state to the red

The transition probabilities
— Often represented as a matrix as here
— Tj is the probability that when in
state i, the process will move to j
The probability w; of beginning at
any state s
— The complete set is represented as

The state output distributions

11755/18797
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Three Basic HMM Problems

 What is the probability that it will generate a
specific observation sequence

* Given an observation sequence, how do we
determine which observation was generated
from which state

— The state segmentation problem

* How do we learn the parameters of the HMM
from observation sequences
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Computing the Probability of an
Observation Sequence

* Two aspects to producing the observation:
— Progressing through a sequence of states

— Producing observations from these states
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Progressing through states

> M
HMM assumed to be
generating data é

state

sequence —0—0—0—0—0—0—0 000000000

* The process begins at some state (red) here

* From that state, it makes an allowed transition
— To arrive at the same or any other state

* From that state it makes another allowed transition

— And so on

11755/18797 26
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Probability that the HMM will follow
a particular state sequence

P(5,,5,8,5.-:) = P(5,) P(s,)5,) (5,5, ).

* P(s;) is the probability that the process will initially be in
state s,

* P(s; ] s;) is the transition probability of moving to state s; at
the next time instant when the system is currently in s;
— Also denoted by T; earlier

11755/18797 27
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Generating Observations from States

AQ @ s

HMM assumed to be
generating data
A A

state

sequence ® ® © ® © © © © © 0 0 0 0 0 9 0 o

state
distributions

observation
seguence

—_ -
N
—_ -
- P
— 4—’4
- -
- -
-
— 4_’4
— 47’4
— 47’4
— <—E<
-—p
- b

* At each time it generates an observation from the
state it is in at that time

11755/18797 28



Probability that the HMM will generate ™M-=¢
a particular observation sequence given
a state sequence
(state sequence known)

P(Onoz9039---|S19S2>S39-") — P(Ol|S1)P(02|52)P(03|S3)"'

i

Computed from the Gaussian or Gaussian mixture for state s;

* P(o;| s)) is the probability of generating
observation o, when the system is in state s;

11755/18797 29



Proceeding through States and MLSP
Producing Observations
state

e

sequence .—».—»Q—>Q—>C—>.—>C—>C—>.—>.—>C—>‘—>.—>Q—"—>.—>‘

HMM assumed to
be generating data

distributions

e A AR AR Ak
I o O O A A A
1111111111111

observation I I
sequence
e At each time it produces an observation and makes
a transition

11755/18797 30
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Probability that the HMM will generate
a particular state sequence and from it,
a particular observation sequence

P(Ola 29 39 ) 1: 29 39 )_

P(01> 0,,0;,. )P(Sp $5583 5. )_
P(o,|s,) P(0,|s,) P(0,|s;)... P(s,) P(s,]s,) P(s;]s,)...

15155,5555-
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Probability of Generating an
Observation Sequence

* The precise state sequence is not known
* All possible state sequences must be considered

P(Ol, 0, ,0 ): Z P(Ol, 0, ,0 °-9S19S25S39°"):

all .possible

State .sequences

X P(o]s)P(o)]s,) P(oy]s,)... P(s) P(s,]s) P(si]s)...

state .sequences

11755/18797 32
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Computing it Efficiently

* Explicit summing over all state sequences is not

tractable
— A very large number of possible state sequences

* Instead we use the forward algorithm

* A dynamic programming technique.
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lllustrative Example

 Example: a generic HMM with 5 states and a “terminating
state”.

— Left to right topology
* P(s;) =1 for state 1 and O for others

— The arrows represent transition for which the probability is not 0



State index

States and times...

O

Feature vectors
(time)

== QO O O 0 0 O
== O O OO0 O

The Y-axis represents HMM states, X axis represents observations

== O O O O 0O O

== QO O O © O O

=0 O OO0 0 O

O

= O O OO0 O

v

= O O 0 0 0 O

= 0 O O 0 O O

Every node represents the event of a particular observation being generated

from a particular state

11755/18797
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The Trellis

O 9 9

L&
L7
/7

O

§

3\
\

Y
Y

[

Feature vectors
(time)

»
|

[,

The trellis is a graphical representation of all possible paths through the HMM to
produce a given observation

Every edge in the graph represents a valid transition in the HMM over a single
time step

— Each edge carries the state transition probability between the source and destination states
Every node represents the event of a particular observation being generated

from a particular state

— Each node for state s; at time t carries the probability P(O; |s;)
36



State index
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The Trelli

S
@ o O

Feature vectors
(time)
[ ]

Any path through the trellis is a sequence of states that the processes has
traversed in generating the observations

The probability of the path is the product of all the edge and node probabilities
on the path

—  P(so)P(0Oglso) [1¢=1 P(s¢lse—1)P(O¢lse)
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State index
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Diversion: The Trellis

O

)

Total probability of all
paths through the highlighted
subgraph ending at (s,1)

® o(s,)
O

O——0O0—0 Feature vectors
t-1 t

_ t.
1 O

The trellis is a graphical representation of all possible paths through the HMM to
produce a given observation

T () ()
SN D I

s
AN
v

»
»

The Y-axis represents HMM states, X axis represents observations

Every edge in the graph represents a valid transition in the HMM over a single
time step

Every node represents the event of a particular observation being generated
from a particular state

11755/18797 38
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The Forward Algorithm

a(s,t)=P(x,,x,,...,x,,State(t) = s)

O O
© O
g O O
2 O ® s
2 A
O {t% <i> > time

e afs,t) is the total probability of ALL state

sequences that end at state s at time t, and
all observations until x,

11755/18797 39
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The Forward Algorithm

a(s,t)=P(x,,x,,...,x,,State(t) = s)

first

ou s,z
( ’ ) forward recursion

O O
© ©

3 © O
s| AN O @
2 O Q
o1, t—])O—»O

> time

a(s,t) = Za(s t—1)P(s|s")P(x, | s)

e ofs,t) can be recursively computed in terms of
o(s’,t’), the forward probabilities at time t-1

11755/18797 40



The Forward Algorithm
Totalprob = ZO[(S,T)

0 0
X
()
©
£
o ] ] ]
e
(4]
]
wn \ \ \
:u =u =u > tlme

T

* In the final observation the alpha at each state gives the
probability of all state sequences ending at that state

!Vad‘rd-v-gl I‘L‘n' Sg'laskmnq I‘u:w

* | General model: The total probability of the observation is
the sum of the alpha values at all states
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Problem 2: State segmentation

* Given only a sequence of observations, how
do we determine which sequence of states
was followed in producing it?
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The HMM as a generator

> M
HMM assumed to be
generating data é

state

sequence ._>._>‘_>Q_>Q_>._>Q—>Q—>Q—>.—>Q—>Q—>.—>.—>Q—>.—>Q

distributions

observation
seguence

e A AR AR Ak
I o O O A A A
1111111111111

* The process goes through a series of states and
produces observations from them

11755/18797 43
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States are hidden

A@ @ M

HMM assumed to be
generating data é

state

sequence

state

IR
EERRRRRRRRERRERE

observation
seguence

* The observations do not reveal the underlying state

11755/18797 44
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The state segmentation problem

> M
HMM assumed to be
generating data é

sequence *—0 000000000000 >0—->0—0

- LI

st [N IR T T Y T T T T T T O I O
sequence

* State segmentation: Estimate state sequence given
observations

11755/18797 45
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Estimating the State Sequence

* Many different state sequences are capable of
producing the observation

e Solution: Identify the most probable state sequence

— The state sequence for which the probability of
progressing through that sequence and generating the
observation sequence is maximum

— e P(o,,0,,0,,...,5,,S,,S,,...) |smaximum
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Estimating the state sequence

* Once again, exhaustive evaluation is impossibly
expensive

* But once again a simple dynamic-programming
solution is available

P(0,,0,,0,,...,8,,8,,8,,...) =

P(0,ls,) P(0,15,) P(0,]s,)... P(s,) P(s,]5,) P(s.]s, )...

* Needed:

argmax, . P(o,[s)P(s,)P(0,|5,)P(s, | 5,)P(05 | 5;)P(s5s,)

83,

11755/18797 47
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Estimating the state sequence

* Once again, exhaustive evaluation is impossibly
expensive

* But once again a simple dynamic-programming
solution is available

P(0,,0,,0,,...,8,,8,,8,,...) =

P(0,ls,) P(0,15,) P(0,]s,)... P(s,) P(s,]5,) P(s.]s, )...

* Needed:
arg maXSI,Sz,S3,...P(03 |S3 )P(S3 |Sz)

11755/18797 48
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The HMM as a generator

> M
HMM assumed to be
generating data é

state

sequence .-».-»HHHH‘—»‘—»‘—».—»@—».—».—»‘—».—»‘

distributions

observation
seguence

e AAAMAmmmAsaMuAddid
L EE R LR
11111 rriii

* Each enclosed term represents one forward
transition and a subsequent emission
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The state sequence

* The probability of a state sequence ?2,7,?,7,s,,s, ending at

992 °*9¥X? y

time 7, and producing all observations until o,
_ P(Ol..t-h ?9?9?9?9 Sx Otasy) - P(Ol..t-la?a?a?a?a Sx ) P(01|Sy)P(Sy|Sx)

* The best state sequence that ends with s,,s,, at ¢ will have
a probability equal to the probability of the best state
sequence ending at ¢-1 at s, times P(o/s,)P(s,]s,)
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Extending the state sequence

state Sx Sy

sequence .—> — > > > —> —> —> —> —>.—>.—>‘—>.—>.

V V V V V

m T?T?TT‘*‘““
1111111

I
|

J\I]IIIII

t

observation
seguence

* The probability of a state sequence ?,?,?,?,s,,s,
ending at time t and producing observations until o,
_ P(Ol 150t ‘? ? ‘7 ‘? Sx »S ) P(Ol t- 19?7?7?9?9 Sx )P(0t|Sy)P(Sy|Sx)
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Trellis

 The graph below shows the set of all possible state
sequences through this HMM in five time instants

), \ ) \ ) O > time
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The cost of extending a state

sequence

* The cost of extending a state sequence ending at s, is
only dependent on the transition from s, to s, and
the observation probability at s,

() () ()
g g P(0/s,P(,J5)
O O %
O <
Yo7

> time

~O—CO0—C0O-0
o



The cost of extending a state

sequence

* The best path to s, through s, is simply an

extension of the best path to s,

Za02097,

11755/18797

BeStP(Ol_.t_l,?,?,?,?,
P(Ot|Sy)P(Sy|Sx)

> time

Sx )
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The Recursion

* The overall best path to s, is an extension of
the best path to one of the states at the
previous time

——) «uumuw .}‘ Sy
/ i
# ﬁ * ’.0
— —

y > time
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The Recursion

= Prob. of best path to s, =
Max, BestP(o, (1,2,7,2,2, s, ) P(0/s,)P(s)[s,)

y > time
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Finding the best state sequence

* The simple algorithm just presented is called the VITERBI
algorithm in the literature

— After A.J.Viterbi, who invented this dynamic programming algorithm for a
completely different purpose: decoding error correction codes!

11755/18797 o7



!Vad'\}u-vig For SgnaProcessing Gty

Viterbi Search (contd.)

ASSS

Initial state initialized with path-score = P(s;)b;(1)

@& OO0 00O

> time
In this example all other statgs-have score 0 since P(s;) = 0 for -
them
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Viterbi Search (contd.)

@ State with best path-score
(O State with path-score < best
@O State without a valid path-score

1}.(t = mlax [Pi (z-1) tij bj (1)]

State transition probability, i to j
Score for state j, given the input at time ¢

Total path-score ending up at state j at time ¢

> time

11755/18797 959



!rm«m—-.,l IL«) SepaProcesing G

Viterbi Search (contd.)

pSeS o

® ® ® P.(t) =max [P.(t-1) t..b.(?)]
J l ! g J
<> <> <> State transition probability, i to j
O O O Score for state j, given the input at time ¢
Total path-score ending up at state j at time ¢
O O )
o

O > {ime
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Viterbi Search (contd.)

pSeS o

O O O
© © O
O Ci/ O
o o /0
C.D/OZQ

O

> time
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Viterbi Search (contd.)

pSeS

O O O O
O O O O
O Ci/@ O
O C é EQ O
C')/( O
@ O O > time
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Viterbi Search (contd.)

O
O
O
O

(D

I\\K
(D)—( )
\x
()—( )
NN

(D _(_ ()
v U I JYJ

K
‘r\
("\\
O—@

> time
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Viterbi Search (contd.)

O-@-QQ
@O/(/H
N

()

@@O/V/V

64
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Viterbi Search (contd.)

O-@-QQ
@O/(/H
N

()

@@O/V/V

65
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Viterbi Search (contd.)

AR S

O O O O O O
© © O O ©
O ci/@ /6 /@/@
0 ¢ /@/ <’>// o
ci/c o /@ O

O O ( O (O— time
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Viterbi Search (contd.)

Q00O

11755/18797
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Viterbi Search (contd.)

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

MLSP

i/O

O O O O O
© © O 0 ©
/ /./
© o0 /0 /0 C
O <>/////;>/‘£//i>/// o
iiééﬁj: k)/éﬁjfk> q
005 0—<

)
> time

11755/18797
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Problem3: Training HMM parameters

* We can compute the probability of an observation,
and the best state sequence given an observation,
using the HMM'’s parameters

 But where do the HMM parameters come from?

* They must be learned from a collection of
observation sequences



