Machine Learning for Signal Processing Predicting and Estimation from Time Series i**ng for Signal Processing
and Estimation from
ime Series
Bhiksha Raj**

iksha Raj
11-755/18797
11-755/18797

• If $P(x,y)$ is Gaussian:

$$
P(\mathbf{x}, \mathbf{y}) = N \begin{bmatrix} \mu_{\mathbf{x}} \\ \mu_{\mathbf{y}} \end{bmatrix}, \begin{bmatrix} C_{\mathbf{x}\mathbf{x}} & C_{\mathbf{x}\mathbf{y}} \\ C_{\mathbf{y}\mathbf{x}} & C_{\mathbf{y}\mathbf{y}} \end{bmatrix}
$$

• The conditional probability of y given x is also Gaussian

– The slice in the figure is Gaussian

The slice in the figure is Gaussian

\n
$$
P(y \mid x) = N(\mu_y + C_{yx} C_{xx}^{-1} (x - \mu_x), C_{yy} - C_{yx} C_{xx}^{-1} C_{xy})
$$
\nThe mean of this Gaussian is a function of x

\nThe variance of y reduces if x is known

\n– Uncertainty is reduced

\n
$$
11-755/18797
$$

- The mean of this Gaussian is a function of x
- The variance of y reduces if x is known
	- Uncertainty is reduced

Correction to $Y = slope * (offset of X from mean)$

Preliminaries : P(y|x) for Gaussian **Shrinkage of variance is 0 if X and Y are uncorrelated, i.e** $C_{yx} = 0$ **

Shrinkage of variance is 0 if X and Y are uncorrelated, i.e** $C_{yx} = 0$ **

Notion of Y using**

Knowing X modifies the mean of Y and shrinks its variance

- Consider a random variable O obtained as above
- The expected value of O is given by of *O* is given by
 $\mathbf{5} + \mathbf{\varepsilon}$ $] = A\mu_s + \mu_\varepsilon$
 $\mathbf{0}$ $] = \mu_0$
- Notation:

$$
0 = AS + \varepsilon
$$

$$
S \sim N(\mu_s, \Theta_s) \qquad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon)
$$

- The variance of O is given by
- This is just the sum of the variance of AS and the variance of ϵ $E[(O - \mu_O)(O - \mu_O)^T]$
of the variance of AS and
 $4O_S A^T + O_E$

$$
\boldsymbol{\Theta_O} = \boldsymbol{A\boldsymbol{\Theta_S}}\boldsymbol{A^{\text{T}}} + \boldsymbol{\Theta_{\varepsilon}}
$$

• The conditional probability of O:

• The overall probability of O: $N(AS + \mu_{\varepsilon}, \mathbf{\Theta}_{\varepsilon})$

lity of 0:
 $\frac{1}{11} + \mu_{\varepsilon} A \mathbf{\Theta}_{S} A^{T} + \mathbf{\Theta}_{\varepsilon})$

$$
0 = AS + \varepsilon
$$

$$
S \sim N(\mu_s, \Theta_s) \qquad \varepsilon \sim N(\mu_\varepsilon, \Theta_\varepsilon)
$$

- The cross-correlation between O and S $\[\cos = E[(U - \mu_0)(S - \mu_s)]\] = E[(A(S T$] = $F[(A(S - \mu)) +$ s) + ($\varepsilon - \mu_{\varepsilon}$))($S - \mu_{S}$)⁻] T $s/(3 - \mu_s)$ +($\epsilon - \mu_{\epsilon}/(3 T + (\mathbf{s} - \mathbf{u}) (\mathbf{S} - \mathbf{u})^T$ ϵ)(3 – μ_s)] T \mathbf{g} $(\mathbf{S} - \mathbf{\mu}_{\mathbf{S}})^{-}$ | + \mathbf{E} $(\mathbf{\varepsilon} - \mathbf{\mu}_{\mathbf{\varepsilon}})^{-}$ T + $F[(s-u)/(S-u)]$ ϵ)(3 – μ_s)] T $= AF[(S - \mu_s)(S - \mu_s)^T]$ T
- \bullet = $A \Theta_{s}$ \boldsymbol{S}
- The cross-correlation between O and S is

 $\boldsymbol{\Theta}_{\boldsymbol{\Omega} S} = A \boldsymbol{\Theta}_{\boldsymbol{S}}$ $\boldsymbol{\Theta}_{\boldsymbol{S}\boldsymbol{O}}=\boldsymbol{\Theta}_{\boldsymbol{S}}\boldsymbol{A}^T$ \boldsymbol{T} and the contract of t

Background: Joint Prob. of O and S

$$
0 = AS + \varepsilon \qquad Z = \begin{bmatrix} 0 \\ S \end{bmatrix}
$$

Background: Joint Prob. of O and S
 $\mathbf{0} = AS + \varepsilon$ $\mathbf{z} = \begin{bmatrix} 0 \\ S \end{bmatrix}$

• The joint probability of O and S (i.e. P(Z)) is

also Gaussian also Gaussian

$$
P(Z) = P(0, S) = N(\mu_Z, \Theta_Z)
$$

• Where

$$
\mu_Z = \begin{bmatrix} \mu_O \\ \mu_S \end{bmatrix} = \begin{bmatrix} A\mu_S + \mu_E \\ \mu_S \end{bmatrix}
$$

• Where
\n
$$
\mu_Z = \begin{bmatrix} \mu_0 \\ \mu_S \end{bmatrix} = \begin{bmatrix} A\mu_s + \mu_{\varepsilon} \\ \mu_S \end{bmatrix}
$$
\n•
$$
\Theta_Z = \begin{bmatrix} \Theta_0 & \Theta_{OS} \\ \Theta_{SO} & \Theta_S \end{bmatrix} = \begin{bmatrix} A\Theta_S A^T + \Theta_{\varepsilon} & A\Theta_S \\ \Theta_S A^T & \Theta_S \end{bmatrix}
$$

Preliminaries : Conditional of S given O: P(S|O)

14

$$
P(S|O) = N(\mu_S + \Theta_S A^{\text{T}} (A \Theta_S A^{\text{T}} + \Theta_{\varepsilon})^{-1} (O - A \mu_S - \mu_{\varepsilon}),
$$

$$
\Theta_S - \Theta_S A^{\text{T}} (A \Theta_S A^{\text{T}} + \Theta_{\varepsilon})^{-1} A \Theta_S)
$$

Poll 1

- -
	-
- **POII 1**
• X and Y are jointly Gaussian. Which of the following are true
— Knowing X affects our expectation of Y, in all cases
— Knowing X affects our expectation of Y if the two are correlated
— Knowing X reduces the va that depends on the observed X **POII 1**

A and Y are jointly Gaussian. Which of the following are true
 $-$ Knowing X affects our expectation of Y, in all cases
 $-$ Knowing X affects our expectation of Y if the two are correlated
 $-$ Knowing X reduce
	- observed X
- We are given that $Y = AX + e$, where X and e are Gaussian. Mark all that are true and Y are jointly Gaussian. Which of the following are true
 $-$ Knowing X affects our expectation of Y if the two are correlated
 $-$ Knowing X reduces the variance of the conditional distribution of Y by a value

that d Knowing X reduces the variance of Y by the same amc
observed X
are given that Y = AX + e, where X and e are Gau
true
Y and X are jointly Gaussian
The conditional distribution of X given Y is Gaussian
Knowing Y does not in where X and e are Gaussian. Mark all that

X given Y is Gaussian

the variance of X, since Y is derived from X and

the expected value of X since Y is derived from X

11-755/18797

15
	-
	-
	- not vice versa
	- Knowing Y does not influence the expected value of X since Y is derived from X

Poll 1

- X and Y are jointly Gaussian. Which of the following are true
	- Knowing X affects our expectation of Y, in all cases
	- Knowing X affects our expectation of Y if the two are correlated
	- Knowing X reduces the variance of the conditional distribution of Y by a value that depends on the observed X
	- Knowing X reduces the variance of Y by the same amount regardless of the observed X
- We are given that $Y = AX + e$, where X and e are Gaussian. Mark all that are true where X and e are Gaussian. Mark all that
 f X given Y is Gaussian

the variance of X, since Y is derived from X and

the expected value of X since Y is derived from X

11-755/18797

16
	- Y and X are jointly Gaussian
	- The conditional distribution of X given Y is Gaussian
	- Knowing Y does not influence the variance of X, since Y is derived from X and not vice versa
	- Knowing Y does not influence the expected value of X since Y is derived from X and not vice versa

The little parable

You've been kidnapped

You can only hear the car You must find your way back home from wherever they drop you off

Kidnapped!

- Determine by only *listening* to a running automobile, if it is:
	- Idling; or
	- Travelling at constant velocity; or
	- Accelerating; or
	- Decelerating
- You only record energy level (SPL) in the sound elocity; or
level (SPL) in the sound
nce per second
11-755/18797
	- The SPL is measured once per second

What we know

- An automobile that is at rest can accelerate, or continue to stay at rest
- An accelerating automobile can hit a steadystate velocity, continue to accelerate, or decelerate A automobile can interacted y
state velocity, continue to accelerate, or
decelerate
• A decelerating automobile can continue to
decelerate, come to rest, cruise, or accelerate
• A automobile at a steady-state velocity can

- A decelerating automobile can continue to decelerate, come to rest, cruise, or accelerate mobile can continue to

rest, cruise, or accelerate

teady-state velocity can

accelerate or decelerate

11-755/18797
- stay in steady state, accelerate or decelerate

What else we know

- The probability distribution of the SPL of the sound is different in the various conditions
	- As shown in figure
		-
- The distributions for the different conditions overlap
- Simply knowing the current sound level is not enough to know the state of the car the car

the different conditions

International level is not enough

the car

I1-755/18797

20

- The state-space model
	- Assuming all transitions from a state are equally probable
	- This is a Hidden Markov Model!

Estimating the state at $T = 0$ -

- A T=0, before the first observation, we know nothing of the state THE STRING S
	- Assume all states are equally likely

The first observation: T=0

- At T=0 you observe the sound level $x_0 = 68dB$ SPL
- The observation modifies our belief in the state of the system the sound level $x_0 = 68$ dB

bdifies our belief in the state
 $x_0 = 68$ dB
 $x_0 = 68$ dB

The first observation: T=0

The first observation: T=0

Estimating state *after* at observing x_0

- Combine prior information about state and evidence from observation
- We want $P(\text{state}|\mathbf{x}_0)$
- We can compute it using Bayes rule as

we can compute it using Bayes rule as

\n
$$
P(state|x_0) = \frac{P(state)P(x_0|state)}{\sum_{state} P(state')P(x_0|state')}
$$

The Posterior

• Multiply the two, term by term, and normalize them so that they sum to 1.0

Estimating the state at $T = 0+$

- At T=0, after the first observation x_0 , we update our belief about the states **observation** x_0 **, we update**
states
provided some evidence about
m
in the state of the system
 $11-755/18797$
28
	- The first observation provided some evidence about the state of the system
	- It modifies our belief in the state of the system

Predicting the state at T=1

- Predicting the probability of idling at T=1
	- $-$ P(idling | idling) = 0.5;
	- $-$ P(idling | deceleration) = 0.25
	- $-$ P(*idling* at T=1| x_0) = $P(I_{T=0}|x_0) P(I|I) + P(D_{T=0}|x_0) P(I|D) = 2.1 \times 10^{-5}$
- In general, for any state S
	- $P(S_{T=1}$ $T=0$ ² ($I=0$ 1.0)² (I

Predicting the state at $T = 1$

Updating after the observation at T=1

• At T=1 we observe $x_1 = 63dB$ SPL $x_1 = 63dB$ SPL
11-755/18797 31

Updating after the observation at T=1

The second observation: T=1

Estimating state *after* at observing x_1

- Combine prior information from the observation at time T=0, AND evidence from observation at $T=1$ to estimate state at $T=1$
- We want $P(\text{state}|\mathbf{x}_0, \mathbf{x}_1)$
- We can compute it using Bayes rule as

 $P(state|\mathbf{x}_0, \mathbf{x}_1) = \frac{P(state|\mathbf{x}_0)P(\mathbf{x}_1|state)}{\sum_{state} P(state'|\mathbf{x}_0)P(\mathbf{x}_1|state')}$

The Posterior at T = 1

• Multiply the two, term by term, and normalize them so that they sum to 1.0

Estimating the state at $T = 1+$

- The updated probability at T=1 incorporates information from both x_0 and x_1
	- $-$ It is NOT a local decision based on x_1 alone
- Because of the Markov nature of the process, the state at T=0 affects the state at T=1 y at T=1 incorporates
 x_0 and x_1
n based on x_1 alone
nature of the process, the state at
T=1
r the state at T=1
 x_1 -755/18797
	- x_0 provides evidence for the state at T=1
Overall Process

Time

Computation

Overall procedure

- At T=0 the predicted state distribution is the initial state probability
- At each time T, the current estimate of the distribution over states considers all observations $x_0 \dots x_{T}$
	- A natural outcome of the Markov nature of the model
- At T=0 the predicted state distribution is the initial state
probability
• At each time T, the current estimate of the distribution over
states considers *all* observations $x_0 ... x_T$
– A natural outcome of the Markov nat for HMMs to within a normalizing constant distribution is the initial state
estimate of the distribution over
tions $x_0 ... x_T$
arkov nature of the model
lentical to the forward computation
nalizing constant
11-755/18797

Comparison to Forward Algorithm

• Forward Algorithm:

Forward Algorithm:

\n
$$
- P(x_{0:T}, S_T) = P(x_T|S_T) \sum_{S_{T-1}} P(x_{0:T-1}, S_{T-1}) P(S_T|S_{T-1})
$$
\nPerbict

\nNormalized:

\n
$$
- P(S_T|x_{0:T}) = (\sum_{S_{T}} P(x_{0:T}, S_{T}))^{-1} P(x_{0:T}, S_T) = C P(x_{0:T}, S_T)
$$
\n
$$
11-755/18797
$$
\n39

- $P(S_T | x_{0:T}) = (\sum_{S'T} P(x_{0:T}, S'T)})^{-1} P(x_{0:T}, S_T) = C P(x_{0:T}, S_T)$) and the set of $\overline{}$

Decomposing the Algorithm

$$
P(S_t, X_{0:t}) = P(X_t | S_t) \sum_{S_{t-1}} P(S_t | S_{t-1}) P(S_{t-1}, X_{0:t-1})
$$

Predict: $P(S_t|X_{0:t-1}) = \sum_{S_{t-1}} P(S_t|S_{t-1}) P(S_{t-1}|X_{0:t-1})$

$$
P(S_t|X_{0:t-1}) = \sum_{S_{t-1}} P(S_t|S_{t-1}) P(S_{t-1}|X_{0:t-1})
$$

$$
P(S_t|X_{0:t}) = \frac{P(S_t|X_{0:t-1}) P(X_t|S_t)}{\sum_{S} P(S|X_{0:t-1}) P(X_t|S)}
$$

Estimating a Unique state

- What we have estimated is a *distribution* over the states
- If we had to guess \boldsymbol{a} state, we would pick the most likely state from the distributions

•
$$
State(T=0) = Accelerating
$$

• State($T=1$) = Cruising

Estimating the state

- The state is estimated from the updated distribution
	- The updated distribution is propagated into time, not the state

Predicting the next observation

- The probability distribution for the observations at the next time is a mixture:
- $P(X_t|X_{0:t-1}) = \sum_{S_t} P(X_t|S_t)P(S_t|X_{0:t-1})$
- The actual observation can be predicted from $P(x_T | x_{0:T-1})$

Predicting the next observation

- Can use any of the various estimators of x_T from $P(x_T|x_{0:T-1})$
- MAP estimate: $-$ argmax_{x_T} $P(x_T|x_{0:T-1})$
- MMSE estimate:
	- $-$ Expectation($x_T|x_{0:T-1})$

Difference from Viterbi decoding

- Estimating only the *current* state at any time
	- Not the state sequence
	- Although we are considering all past observations
- The most likely state at T and T+1 may be such that there is no valid transition between S_T and S_{T+1} e at T and T+1 may be such
d transition between S_T
11-755/18797

Poll 2

- To find your way back home…
- **Poll 2**

Formal point of time type that way back home...

At each time t you *predict* your beliefs about what your state

will be at the *next time t+1* based on all you have observed until

now (time t) will be at the *next time t+1* based on all you have observed until now (time t)
- For a set of time the state and the state of time tyou *predict* your beliefs about what your state will be at the *next time* t+1 based on all you have observed until now (time t)
- At each time t, you *update* your beli that you made when still at t-1, based on the latest observation $O(t)$ - At each time t you *predict* your beliefs about what your state

— At each time t you *predict* your beliefs about what your state

will be at the *next time t+1* based on all you have observed until

now (time t)

— At – At each time t, you *update* your beliefs about the state at t,
that you made when still at t-1, based on the latest observation
O(t)
– At each time t you predict your belief at the state at t+1, and
then update your be
	- then update your belief after observing O(t+1)
	- At each time you predict the distribution of the state at t+1, and then update your predicted distribution based on O(t+1) at t-1, based on the latest observation
t your belief at the state at t+1, and
after observing O(t+1)
the distribution of the state at t+1, and
ed distribution based on O(t+1)
state must be derived from the
r the state
11
	- estimated distribution for the state

Poll 2

- To find your way back home…
	- At each time t you *predict* your beliefs about what your state will be at the *next time t+1* based on all you have observed until now (time t)
	- At each time t, you *update* your beliefs about the state at t, that you made when still at t-1, based on the latest observation O(t) - At each time t your *predict* your beliefs about what your
state will be at the *next time t+1* based on all you have
observed until now (time t)
- At each time t, you *update* your beliefs about the state at t,
that yo
	- At each time t you predict the actual state at t+1, and then
	- and then update your predicted distribution based on O(t+1) **1 at t-1, based on the latest**

	tt the actual state at t+1, and then

	e state after observing $O(t+1)$
 **: the distribution of the state at t+1,

	ledicted distribution based on** $O(t+1)$ **

	l state must be derived from the

	o**
	- Your guess for the actual state must be derived from the estimated distribution for the state

A continuous state model

- HMM assumes a very coarsely quantized state space – Idling / accelerating / cruising / decelerating
- Actual state can be finer
	- Idling, accelerating at various rates, decelerating at various rates, cruising at various speeds
- Solution: Many more states (one for each acceleration - Idling / accelerating / cruising / decelerating
Actual state can be finer
- Idling, accelerating at various rates, decelerating at variou
rates, cruising at various speeds
Solution: Many more states (one for each acceler Is speeds
tates (one for each acceleration
ing speed)?
valued state
11-755/18797
11-755/18797
- Solution: A *continuous* valued state

Tracking and Prediction: The wind and the target **Tracking and Predi
The wind and the 1
Aim: measure wind velocity
Jsing a noisy wind speed sensor
- E.g. arrows shot at a target
Windows and the state**

- Aim: measure wind velocity
- Using a noisy wind speed sensor
	-

• State: Wind speed at time t depends on speed at time $t-1$

$$
S_t = S_{t-1} + \epsilon_t
$$

• Observation: Arrow position at time t depends on wind speed at time t 11755/18797 49

$$
\boldsymbol{Y}_t = \boldsymbol{A}\boldsymbol{S}_t + \boldsymbol{\gamma}_t
$$

The real-valued state model

• A state equation describing the dynamics of the system

$$
S_t = f(S_{t-1}, \mathcal{E}_t)
$$

- s_t is the state of the system at time t
- ε _t is a driving function, which is assumed to be random
- The state of the system at any time depends only on the state at the previous time instant and the driving term at the current time
- An observation equation relating state to observation

$$
o_t = g(s_t, \gamma_t)
$$

- o_t is the observation at time t
- $\gamma_{\rm t}$ is the noise affecting the observation (also random)
- The observation at any time depends only on the current state of the system and the noise ng state to observation
 $\left(\frac{1}{2}, \gamma_t\right)^T$

servation (also random)

pends only on the current state of the

11-755/18797

50

States are still "hidden"

$$
S_t = f(S_{t-1}, \mathcal{E}_t)
$$

$$
O_t = g(S_t, \gamma_t)
$$

- The state is a continuous valued parameter that is not directly seen
	- The state is the position of the automobile or the star
- The observations are dependent on the state and are the only way of knowing about the state
	- Sensor readings (for the automobile) or recorded image (for the telescope)

Statistical Prediction and Estimation

- Given an *a priori* probability distribution for the state
	- $-P₀(s)$: Our belief in the state of the system before we observe any data
		- Probability of state of navlab
		- Probability of state of stars
- Given a sequence of observations $o_0..o_t$ of stars
f observations $o_0..o_t$
me *t*
11-755/18797 52
- Estimate state at time t

Prediction and update at $t = 0$

- Prediction
	- Initial probability distribution for state
	- $P(s_0) = P_0(s_0)$)
- Update:
	- Then we observe o_0
	- We must update our belief in the state

Then we observe
$$
o_0
$$

\nWe must update our belief in the state
\n
$$
P(s_0 | o_0) = \frac{P(s_0)P(o_0 | s)}{P(o_0)} = \frac{P_0(s_0)P(o_0 | s_0)}{P(o_0)}
$$
\n
$$
o_0 | o_0) = C.P_0(s_0)P(o_0 | s_0)
$$
\n
$$
11-755/18797
$$
\n
$$
11-755/18797
$$
\n
$$
53
$$

• $P(s_0|o_0) = C.P_0(s_0)P(o_0|s_0)$)

Prediction and update at $t = 0$

- Prediction
	- Initial probability distribution for state
	- $P(s_0) = P_0(s_0)$)
- Update:
	- Then we observe o_0
	- We must update our belief in the state

Then we observe
$$
o_0
$$

\nWe must update our belief in the state
\n
$$
P(s_0 | o_0) = \frac{P(s_0)P(o_0 | s)}{P(o_0)} = \frac{P_0(s_0)P(o_0 | s_0)}{P(o_0)}
$$
\n
$$
o_0 | o_0) = C.P_0(s_0)P(o_0 | s_0)
$$
\n
$$
11-755/18797
$$
\n
$$
11-755/18797
$$

• $P(s_0|o_0) = C.P_0(s_0)P(o_0|s_0)$)

The observation probability: P(o|s)

$$
\bullet \qquad o_t = g(s_t, \gamma_t)
$$

- This is a (possibly many-to-one) stochastic function of state s_t and noise γ_t
- Noise $\gamma_{\rm t}$ is random. Assume it is the same dimensionality as o_t
- Let $P_{\gamma}(y_t)$ be the probability distribution of y_t
- Let $\{ \gamma : g(s_t, \gamma) = o_t \}$ be all γ that result in o_t

$$
y_{t}
$$
) be the probability distribution of γ_{t} .
\n
$$
g(s_{t}, \gamma) = o_{t}
$$
 be all γ that result in o_{t}
\n
$$
P(o_{t} | s_{t}) = \sum_{\gamma : g(s_{t}, \gamma) = o_{t}} \frac{P_{\gamma}(\gamma)}{|J_{\gamma}(g(s_{t}, \gamma))|}
$$

The observation probability **The observation p**
• $P(o|s) = ?$ $o_t = g(s_t, \gamma_t)$

•
$$
P(o|s) = ?
$$
 $o_t = g(s_t, \gamma_t)$

$$
P(o_t | s_t) = \sum_{\gamma:g(s_t, \gamma) = o_t} \frac{P_{\gamma}(\gamma)}{|J_{\gamma}(g(s_t, \gamma))|}
$$

• The J is a Jacobian

$$
|J_{\gamma}(g(s_t, \gamma))| = \begin{vmatrix} \frac{\partial o_t(1)}{\partial \gamma(1)} & \cdots & \frac{\partial o_t(1)}{\partial \gamma(n)} \\ \vdots & \ddots & \vdots \\ \frac{\partial o_t(n)}{\partial \gamma(1)} & \cdots & \frac{\partial o_t(n)}{\partial \gamma(n)} \end{vmatrix}
$$

• For scalar functions of scalar variables, it is simply a derivative: $\begin{array}{ccc} \frac{\partial o_r(1)}{\partial \gamma(1)} & \cdots & \frac{\partial o_r(1)}{\partial \gamma(n)} \ \vdots & \ddots & \vdots \ \frac{\partial o_r(n)}{\partial \gamma(1)} & \cdots & \frac{\partial o_r(n)}{\partial \gamma(n)} \ \end{array}$
scalar variables, it is simply a
 $\frac{\partial o_r}{\partial \gamma}$ γ $|J_{\gamma}(g(s_{t},\gamma))|=$ $\widehat{\partial}'$ $\overline{\partial} o_t$

Predicting the next state at t=1

• Given $P(s_0|o_0)$, what is the probability of the state at $t=1$

$$
P(s_1 | o_0) = \int_{\{s_0\}} P(s_1, s_0 | o_0) ds_0 = \int_{\{s_0\}} P(s_1 | s_0) P(s_0 | o_0) ds_0
$$

• State progression function:

$$
S_t = f(S_{t-1}, \mathcal{E}_t)
$$

 $-\varepsilon_{\rm t}$ is a driving term with probability distribution ${\mathsf P}_{\varepsilon}(\varepsilon_{\rm t})$)

• $P(s_t|s_{t-1})$ can be computed similarly to $P(o|s)$ $- P(s_1 | s_0)$ is an instance of this -1, ε _t)

th probability distribution P_e(ε _t)

buted similarly to P(o |s)

e of this

e of this

And moving on

- $P(s_1|o_0)$ is the predicted state distribution for $t=1$
- Then we observe O_1
	- We must update the probability distribution for s_1 11-755/18797 58
	- $-P(s_1|o_{0:1}) = CP(s_1|o_0)P(o_1|s_1)$)
- We can continue on

Discrete vs. Continuous state systems

Discrete vs. Continuous State Systems **vs. Continuous State S**
 $S_t = \begin{bmatrix} \frac{0.2 & 0.3 & 0.4}{0.4} \\ \frac{1}{0.2 & 0.3 & 0.4}{0.4} & \frac{1}{0.4} \\ 0 & 0 & 0.4 \end{bmatrix}$

$$
S_t = f(S_{t-1}, \mathcal{E}_t)
$$

 $o_t = g(s_t, \gamma_t)$

$\pi = \frac{0.1}{0.1}$
 $\pi = \frac{0.1}{0.1}$

Prediction at time t:
 $t|0_{0:t-1}) = \sum_{S_{t-1}} P(S_{t-1}|0_{0:t-1}) P(S_t|S_{t-1})$

Update after observing O_t:
 $(S_t|O_{0:t}) = C.P(S_t|O_{0:t-1}) P(O_t|S_t)$
 $P(S_t|O_t|S_t)$ $t|U_{0:t-1}| = \int_{-1}^{1} f(S_{t-1}|U_{0:t-1}) F(S_t|S_{t-1})$ $\qquad \qquad \left| P(S_t|U_{0:t-1}) \right| = 0$ S_{t-1}

:

 $P(S_t | O_{0:t}) = C \cdot P(S_t | O_{0:t-1}) P(O_t | S_t)$

$$
P(S_t | O_{0:t-1}) = \int_{-\infty}^{\infty} P(S_{t-1} | O_{0:t-1}) P(S_t | S_{t-1}) dS_{t-1}
$$

$$
P(S_t | O_{0:t}) = C.P(S_t | O_{0:t-1}) P(O_t | S_t)
$$

Discrete vs. Continuous State Systems

Discrete vs. Continuous State S
\n
$$
\begin{array}{ccc}\n & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\hline\n & \text{...} & \text{...} & \text{...} &
$$

$$
S_t = f(S_{t-1}, \mathcal{E}_t)
$$

 $o_t = g(s_t, \gamma_t)$

$$
P(s)
$$

 $P(s_t | s_{t-1})$

 $P(O|S)$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}
$$

Transition prob $P(s_t = j | s_{t-1} = i)$

Observation prob $P(O|S)$

Special case: Linear Gaussian model

$$
s_t = A_t s_{t-1} + \varepsilon_t
$$

 $\mathbf{0} \mathbf{o}_t = B_t \mathbf{s}_t + \gamma_t$

Special case: Linear Gaussian model

\n
$$
s_{t} = A_{t} s_{t-1} + \varepsilon_{t}
$$
\n
$$
P(\varepsilon) = \frac{1}{\sqrt{(2\pi)^{d} |\Theta_{\varepsilon}|}} \exp(-0.5(\varepsilon - \mu_{\varepsilon})^{T} \Theta_{\varepsilon}^{-1} (\varepsilon - \mu_{\varepsilon}))
$$
\n
$$
o_{t} = B_{t} s_{t} + \gamma_{t}
$$
\n
$$
P(\gamma) = \frac{1}{\sqrt{(2\pi)^{d} |\Theta_{\gamma}|}} \exp(-0.5(\gamma - \mu_{\gamma})^{T} \Theta_{\gamma}^{-1} (\gamma - \mu_{\gamma}))
$$
\nlinear state dynamics equation.

- A linear state dynamics equation
	- $-$ Probability of state driving term ε is Gaussian
	- Sometimes viewed as a driving term μ_{ε} and additive zeromean noise a driving term μ_{ε} and additive zero-
quation
ion noise γ is Gaussian
rameters assumed known
11-755/18797
11-755/18797
- A *linear* observation equation
	- Probability of observation noise γ is Gaussian
- A_t , B_t and Gaussian parameters assumed known
	- May vary with time

Linear model example The wind and the target

• State: Wind speed at time t depends on speed at time $t-1$

$$
S_t = S_{t-1} + \epsilon
$$

• Observation: Arrow position at time t depends on wind speed at time t -1 + ϵ_t

position at time *t* depends on
 $S_t + \gamma_t$

$$
\boldsymbol{\theta}_t = \boldsymbol{B}\boldsymbol{S}_t + \boldsymbol{\gamma}_t
$$

Model Parameters:
\n**The initial state probability**
\n
$$
P_0(s) = \frac{1}{\sqrt{(2\pi)^d |R|}} \exp(-0.5(s-\overline{s})R^{-1}(s-\overline{s})^T)
$$

 $P_0(s) = Gaussian(s; \overline{s}, R)$

• We also assume the initial state distribution to be Gaussian $\begin{aligned} \text{\emph{a}}\ \text{\emph{b}}\ \text{\emph{b}}\ \text{\emph{b}}\ \text{\emph{b}}\ \text{\emph{b}}\ \text{\emph{b}}\ \text{\emph{b}}\ \text{\emph{b}}\ \text{\emph{c}}\ \text{\emph{c}}\ \text{\emph{c}}\ \text{\emph{c}}\ \text{\emph{d}}\ \text{\emph{c}}\ \text{\emph{e}}\ \text{\emph{e}}\ \text{\emph{e}}\ \text{\emph{e}}\ \text{\emph{e}}\ \text{\emph{e}}\ \text{\emph{e}}\ \text{\emph{e}}\ \text{\emph{e}}$

– Often assumed zero mean

$$
s_t = A_t s_{t-1} + \varepsilon_t
$$

$$
o_t = B_t s_t + \gamma_t
$$

Model Parameters: The observation probability $\overline{\rho}_t = B_t S_t + \gamma_t$ $P(\gamma) = Gaussian(\gamma; \mu_\gamma, \Theta_\gamma)$

$$
P(o_t | s_t) = Gaussian(o_t; \mu_{\gamma} + B_t s_t, \Theta_{\gamma})
$$

- The probability of the observation, given the state, is simply the probability of the noise, with the mean shifted
	- Since the only uncertainty is from the noise
- The new mean is the mean of the distribution of the noise + the value of the observation in the absence of noise of the noise, with the mean
nty is from the noise
ean of the distribution of the
eobservation in the absence of
i11-755/18797
65

Model Parameters: State transition probability

$$
s_{t+1} = A_t s_t + \varepsilon_t \qquad P(\varepsilon) = Gaussian(\varepsilon; \mu_{\varepsilon}, \Theta_{\varepsilon})
$$

$$
P(s_{t+1} | s_t) = Gaussian(s_t; \mu_{\varepsilon} + A_t s_t, \Theta_{\varepsilon})
$$

• The probability of the state at time t, given the state at t-1, is simply the probability of the driving term, with the mean shifted he state at time t, given the
y the probability of the
he mean shifted
11-755/18797

$$
\sum_{s} \sum_{s} s_{t+1} = A_{t}S_{t} + \varepsilon_{t}
$$

Prediction at time 0:

$$
P(S_0) = P_0(S_0)
$$

Update after O_0 : :

$$
P(S_0|O_0) = C.P(S_0)P(O_0|S_0)
$$

Prediction at time 1:

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 : :

$$
\sum_{i=1}^{\infty} \sum_{s} s_{t+1} = A_t s_t + \varepsilon_t
$$

Prediction at time 0:

$$
P(S_0) = P_0(S_0)
$$

Update after O_0 : :

$$
P(S_0|O_0) = C.P(S_0)P(O_0|S_0)
$$

Prediction at time 1:

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 : :

Model Parameters:
\n**The initial state probability**
\n
$$
P_0(s) = \frac{1}{\sqrt{(2\pi)^d |R_0|}} \exp(-0.5(s-\overline{s}_0)R_0^{-1}(s-\overline{s}_0)^T)
$$
\n
$$
P_0(s) = Gaussian(s; \overline{s}_0, R_0)
$$

- We assume the *initial* state distribution to be Gaussian *ial* state distribution to be
 p mean

mean
	- Often assumed zero mean

$$
\sum_{i=1}^{\infty} \sum_{s} s_{t+1} = A_t s_t + \varepsilon_t
$$

Prediction at time 0:

$$
P(S_0) = P_0(S_0)
$$

a priori probability distribution of state s

$$
= N(\bar{s}_0, R_0)
$$

Update after O_0 : :

$$
P(S_0|O_0) = C.P(S_0)P(O_0|S_0)
$$

Prediction at time 1:

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 : :

$$
\begin{array}{c}\n\circ \\
\circ \\
\circ \\
\circ \\
\circ\n\end{array}
$$
\n
$$
\begin{array}{c}\nS_{t+1} = A_t S_t \\
\circ \\
\circ \\
\circ \\
\circ \\
\circ \\
\circ\n\end{array}
$$

$$
S_{t+1} = A_t S_t + \mathcal{E}_t
$$

$$
O_t = B_t S_t + \gamma_t
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 : :

$$
P(S_0|O_0) = C.P(S_0)P(O_0|S_0)
$$

Prediction at time 1:

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 : :

Recap: Conditional of S given O: MLSP P(S|O) for Gaussian RVs

72
Recap: Conditional of S given O: MLSP P(S|O) for Gaussian RVs

$$
P(S|O) = N(\mu_S + \Theta_S B^{\mathrm{T}} (B \Theta_S B^{\mathrm{T}} + \Theta_\gamma)^{-1} (O - B\mu_S - \mu_\gamma),
$$

$$
\Theta_S - \Theta_S B^{\mathrm{T}} (B \Theta_S B^{\mathrm{T}} + \Theta_\gamma)^{-1} B\Theta_S)
$$

MLSP Recap: Conditional of S given O: P(S|O) for Gaussian RVs

$$
P(S_0|O_0) = N(\overline{S}_0 + R_0B^T\left(BR_0B^T + \mathcal{O}_{\gamma}\right)^{-1}(O_0 - B\overline{S}_0 - \mu_{\gamma}),
$$

$$
R_0 - R_0B^T\left(BR_0B^T + \mathcal{O}_{\gamma}\right)^{-1}BR_0)
$$

$$
\int_{\alpha}^{\infty} \cos \theta \, d\theta \, d\theta
$$
\n
$$
S_{t+1} = A_t S_t + \varepsilon_t
$$
\n
$$
O_t = B_t S_t + \gamma_t
$$

$$
S_{t+1} = A_t S_t + \mathcal{E}_t
$$

$$
O_t = B_t S_t + \gamma_t
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 : :

 $P(S_0|O_0) = C.P(S_0)P(O_0|S_0)$

 $P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)$

Prediction at time 1: $f(1|U_0) = \int F(0|U_0)F(0|1|0)dU_0$ ∞ $-\infty$

Update after O_1 : :

 $P(S_1|O_{0.1}) = C. P(S_1|O_0)P(O_1|S_1)$

$$
\sum_{s} \sum_{s} S_{t+1} = A_{t}S_{t} + \varepsilon_{t}
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 : : Prediction at time 1: \sim $\frac{\partial |U_0|}{\partial I} = N(S_0, K_0)$ $\hat{s}_0 = \bar{s}_0 + K_0 (0_0 - B\bar{s_0} - \mu_\gamma)$ $\hat{R}_0 = (I - K_0) R_0$ ∞ $K_0 = R_0 B^T (B R_0 B^T + \theta_\gamma)^{-1}$
 $\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s_0} - \mu_\gamma)$ $\boxed{\hat{R}_0 = (I - K_0) R_0}$ $\boldsymbol{K_0} = \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} \big(\boldsymbol{B} \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} + \boldsymbol{\varTheta}_{\boldsymbol{\gamma}} \big)^{-1} \hspace{2mm} \Bigg|$

$$
P(S_1|O_0) = \int_{-\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 : :

$$
\int_{\alpha}^{\infty} \sqrt{\frac{S_{t+1} - A_t S_t + \varepsilon_t}{O_t = B_t S_t + \gamma_t}}
$$

$$
o_t = B_t s_t + \gamma_t
$$

Prediction at time 0:

$$
\frac{P(S_0) = N(\bar{s}_0, R_0)}{\text{Update after O0:}\n\left| \frac{P(S_0) = N(\bar{s}_0, R_0)}{P(S_0 | O_0) = C \cdot P(S_0) P(O_0 | S_0)} \right|}\n= N(\bar{s}_0 + R_0 B^{\text{T}} (B R_0 B^{\text{T}} + \Theta_\gamma)^{-1} (O_0 - B \bar{s}_0 - \mu_\gamma),
$$
\n
$$
R_0 - R_0 B^{\text{T}} (B R_0 B^{\text{T}} + \Theta_\gamma)^{-1} B R_0
$$

Prediction at time 1:

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 :

Introducting shorthand notation

$$
P(S_0|O_0) = N(\bar{s}_0 + R_0 B^{\text{T}} (BR_0 B^{\text{T}} + \Theta_\gamma))^{-1} (O_0 - B\bar{s}_0 - \mu_\gamma),
$$

$$
R_0 - R_0 B^{\text{T}} (BR_0 B^{\text{T}} + \Theta_\gamma))^{-1} BR_0
$$

$$
\hat{S}_0 = \overline{S}_0 + R_0 B^{\text{T}} \left(B R_0 B^{\text{T}} + \Theta_\gamma \right)^{-1} \left(O - B \overline{S}_0 - \mu_\gamma \right)
$$

$$
\hat{R}_0 = R_0 - R_0 B^{\text{T}} \left(B R_0 B^{\text{T}} + \Theta_\gamma \right)^{-1} B R_0
$$

$$
P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)
$$

Introducting shorthand notation

$$
P(S_0|O_0) = N(\bar{s}_0 + R_0 B^{\text{T}} (BR_0 B^{\text{T}} + \Theta_\gamma))^{-1} (O_0 - B\bar{s}_0 - \mu_\gamma),
$$

$$
R_0 - R_0 B^{\text{T}} (BR_0 B^{\text{T}} + \Theta_\gamma)^{-1} BR_0)
$$

$$
K_0 = R_0 B^T (BR_0 B^T + \Theta_\gamma)^{-1}
$$

$$
\hat{S}_0 = \overline{S}_0 + K_0 (0 - B\overline{S}_0 - \mu_\gamma)
$$

$$
\hat{R}_0 = (I - K_0 B)R_0
$$

$$
P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)
$$

$$
\sum_{s} \sum_{s} S_{t+1} = A_{t}S_{t} + \varepsilon_{t}
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 : : Prediction at time 1: \sim $\frac{\partial |U_0|}{\partial I} = N(S_0, K_0)$ $\hat{s}_0 = \bar{s}_0 + K_0 (0_0 - B\bar{s_0} - \mu_\gamma)$ $\hat{R}_0 = (I - K_0) R_0$ ∞ $K_0 = R_0 B^T (B R_0 B^T + \theta_\gamma)^{-1}$
 $\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s_0} - \mu_\gamma)$ $\boxed{\hat{R}_0 = (I - K_0) R_0}$ $\boldsymbol{K_0} = \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} \big(\boldsymbol{B} \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} + \boldsymbol{\varTheta}_{\boldsymbol{\gamma}} \big)^{-1} \hspace{2mm} \Bigg|$

$$
P(S_1|O_0) = \int_{-\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 : :

$$
\sum_{i=1}^{\infty} \sum_{s} s_{t+1} = A_t s_t + \varepsilon_t
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 : :

$$
S_{t+1} = A_t S_t + \mathcal{E}_t
$$

\n
$$
O_t = B_t S_t + \gamma_t
$$

\n
$$
P(S_0) = N(\bar{s}_0, R_0)
$$

\n
$$
K_0 = R_0 B^T (B R_0 B^T + \theta_Y)^{-1}
$$

\n
$$
P(S_0 | O_0) = N(\hat{s}_0, \hat{R}_0)
$$

\n
$$
\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s}_0 - \mu_Y)
$$

\n
$$
\hat{R}_0 = (I - K_0 B) R_0
$$

Prediction at time 1:

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0
$$

Update after O_1 : :

The prediction equation

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0)P(S_1|S_0)dS_0
$$

\n
$$
P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)
$$

\n
$$
P(S_1|S_0) = N(AS_0 + \mu_{\varepsilon}, \Theta_{\varepsilon})
$$

\n
$$
S_{t+1} = A_t S_t + \varepsilon_t
$$

• The integral of the product of two Gaussians

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} Gaussian(S_0; \hat{s}_0, \hat{R}_0) Gaussian(S_1; AS_0, \Theta_{\varepsilon})dS_0
$$

The Prediction Equation

• The integral of the product of two Gaussians is Gaussian!

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} Gaussian(S_0; \hat{s}_0, \hat{R}_0) Gaussian(S_1; AS_0 + \mu_{\varepsilon}, \Theta_{\varepsilon})dS_0
$$

$$
= \int_{-\infty}^{\infty} C_1 \exp(-0.5(S_0 - \hat{s}_0) \hat{R}_0^{-1} (S_0 - \hat{s}_0)^T). C_2 \exp(-0.5(S_1 - AS_0 - \mu_{\varepsilon}) \Theta_{\varepsilon}^{-1} (S_1 - AS_0 - \mu_{\varepsilon})^T) dS_0
$$

 $=$ Gaussian(S₁; $A\hat{s}_0 + \mu_{\varepsilon}$, $\Theta_{\varepsilon} + A\hat{R}_0A^T$)

$$
P(S_1|O_0) = N(A\hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A\hat{R}_0A^T)
$$

$$
\sum_{s}^{\infty} \sum_{s} s_{t+1} = A_{t}S_{t} + \varepsilon_{t}
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 :

$$
P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0) \quad \frac{\hat{s}_0 = \bar{s}_0 + K_0(O_0 - B\bar{s}_0 - \mu_\gamma)}{\hat{R}_0 = (I - K_0B)R_0}
$$

 $K_0 = R_0 B^{\text{T}} (B R_0 B^{\text{T}} + \Theta_0)^{-1}$

Prediction at time 1:

$$
P(S_1|O_0) = \int_{-\infty}^{\infty} P(S_0|O_0) P(S_1|S_0) dS_0 \qquad \boxed{= N(A\hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A\hat{R}_0 A^T)}
$$

Update after O_1 :

More shorthand notation

$$
P(S_1|O_0) = N(A\hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A\hat{R}_0A^T)
$$

$$
\bar{s}_1 = A\hat{s}_0 + \mu_{\varepsilon}
$$

$$
R_1 = \Theta_{\varepsilon} + A\widehat{R}_0 A^T
$$

$$
P(S_1|O_0) = N(\overline{s}_1, R_1)
$$

$$
\sum_{s}^{\infty} \sum_{s} s_{t+1} = A_{t}S_{t} + \varepsilon_{t}
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 :

$$
P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)
$$

$$
\hat{s}_0 = \bar{s}_0 + K_0(O_0 - B\bar{s}_0 - \mu_Y)
$$

$$
\hat{R}_0 = (I - K_0B)R_0
$$

 $\overline{\mathbf{c}}$, $-4\hat{\mathbf{c}}$, \perp μ

 $K_0 = R_0 B^T (B R_0 B^T + \theta_\nu)^{-1}$

Prediction at time 1:

$$
P(S_1|O_0) = N(\overline{s}_1, R_1) \qquad R_1 = \theta_{\varepsilon} + A\widehat{R}_0 A^T
$$

Update after O_1 :

$$
\sum_{i=1}^{\infty} \sum_{s} s_{t+1} = A_t s_t + \varepsilon_t
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_0 : : Prediction at time 1: $\hat{\mathbf{S}}_0 = N(S_0, K_0)$ $\hat{\mathbf{S}}_0 = \bar{\mathbf{S}}_0 + K_0 (\mathbf{0}_0 - \mathbf{B} \bar{\mathbf{S}}_0 - \mathbf{\mu}_{\gamma})$ $\hat{\mathbf{R}}_0 = (I - K_0 \mathbf{B}) \mathbf{R}_0$ $R_1 = \theta_{\varepsilon} + A\hat{R}_0 A^T$ $\bar{s}_1 = A\hat{s}_0 + \mu_{\varepsilon}$ \boldsymbol{T} $K_0 = R_0 B^T (B R_0 B^T + \theta_\gamma)^{-1}$
 $\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s_0} - \mu_\gamma)$ $\hat{R}_0 = (I - K_0 B) R_0$
 $\bar{s}_1 = A \hat{s}_0 + \mu_\varepsilon$ $\boldsymbol{K_0} = \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} \big(\boldsymbol{B} \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} + \boldsymbol{\varTheta}_{\boldsymbol{\gamma}} \big)^{-1}$

Update after O_1 : :

$$
\sum_{i=1}^{\infty} \sum_{s} s_{t+1} = A_t s_t + \varepsilon_t
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_1 : : Update after O_0 : : Prediction at time 1: $P(S_1|O_{0:1}) = C.P(S_1|O_0)P(O_1|S_1) = N(\hat{s}_1, \hat{R}_1)$ $\hat{\mathbf{S}}_0 = N(S_0, K_0)$ $\hat{\mathbf{S}}_0 = \bar{\mathbf{S}}_0 + K_0 (\mathbf{0}_0 - \mathbf{B} \bar{\mathbf{S}}_0 - \mathbf{\mu}_{\gamma})$ $\hat{\mathbf{R}}_0 = (I - K_0 \mathbf{R}) \mathbf{R}_0$ $R_1 = \theta_{\varepsilon} + A\hat{R}_0 A^T$ $\bar{s}_1 = A\hat{s}_0 + \mu_{\varepsilon}$ \boldsymbol{T} 1, \mathbf{K}_1) \mathbf{K}_2 $\left(\mathbf{\Theta}_{\gamma}\right)^{-1}$
 $\mathbf{\widehat{R}}_{0} = (I - K_{0}B) R_{0}$ $\hat{R}_1 = (I - K_1 B) R_1$ $\boldsymbol{K_0} = \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} \big(\boldsymbol{B} \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} + \boldsymbol{\varTheta}_{\boldsymbol{\gamma}} \big)^{-1}$ $\hat{s}_1 = \bar{s}_1 + K_1 (\bm{\theta}_1 - B \bar{s}_1 - \mu_\gamma)$ $K_1 = R_1 B^T (B R_1 B^T + \mathbf{\Theta}_{\gamma})^{-1}$

$$
\sum_{i=1}^{\infty} \sum_{s} s_{t+1} = A_t s_t + \varepsilon_t
$$

Prediction at time 0:

$$
P(S_0) = N(\overline{s}_0, R_0)
$$

Update after O_1 : : Update after O_0 : : Prediction at time 1: $P(S_0|O_0) = N(\hat{s}_0, \hat{R}_0)$ $\hat{s}_0 = \bar{s}_0 + K_0(O_0 - B\bar{s}_0 - \mu_Y)$ $\hat{R}_0 = (I - K_0B)R_0$ $R_1 = \theta_{\varepsilon} + A\hat{R}_0 A^T$ $\overline{s}_1 = A\hat{s}_0 + \mu_{\varepsilon}$ \boldsymbol{T} $P(S_1 | O_{0.1}) = N(\hat{s}_1, \hat{R}_1)$ $K_0 = R_0 B^{T} (BR_0 B^{T} + \theta_{\gamma})^{-1}$
 $\hat{s}_0 = \bar{s}_0 + K_0 (O_0 - B \bar{s_0} - \mu_{\gamma})$ $\hat{R}_0 = (I - K_0 B) R_0$
 $\bar{s}_1 = A \hat{s}_0 + \mu_{\varepsilon}$ $\boldsymbol{K_0} = \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} \big(\boldsymbol{B} \boldsymbol{R}_0 \boldsymbol{B}^\mathrm{T} + \boldsymbol{\varTheta}_{\boldsymbol{\gamma}} \big)^{-1}$ $\hat{s}_1 = \bar{s}_1 + K_1 (\theta_1 - B \bar{s}_1 - \mu_\gamma)$ $\hat{R}_1 = (I - K_1 B) R_1$ $\pmb{K}_\mathbf{1} = \pmb{R}_1 \pmb{B}^\mathrm{T} \big(\pmb{B} \pmb{R}_1 \pmb{B}^\mathrm{T} + \pmb{\varTheta}_{\pmb{\gamma}} \big)^{-\mathbf{1}}$

Poll 3

- Tracking state with a continuous-state system is strictly analogous to doing so with

 Tracking state with a continuous-state system is strictly analogous to doing so with

 True

 False an HMM
	- True
	- False
- When the state and observation relations are given by equations between continuous variables, rather than probabilistic dependencies, state estimation becomes a deterministic procedure
	- True
	- False
- In a linear Gaussian model, where the initial state distribution is Gaussian and − True

− False

When the state and observation relations are given by equations between

continuous variables, rather than probabilistic dependencies, state estimation

becomes a deterministic procedure

− True

− Fals probability distributions are: Vhen the state and observation relations are given by equations between
ontinuous variables, rather than probabilistic dependencies, state estimation
ecomes a deterministic procedure
— True
— Ralse
1 a linear Gaussian mode
	-
	-
	-

Poll 3

- Tracking state with a continuous-state system is strictly analogous to doing so with an HMM
	- True
	- False
- When the state and observation relations are given by equations between continuous variables, rather than probabilistic dependencies, state estimation becomes a deterministic procedure
	- True
	- False
- In a linear Gaussian model, where the initial state distribution is Gaussian and state and observation equations are affine, the predicted and updated state probability distributions are:
	- Always Gaussian
	- Predicted distributions are Gaussian, but updated distributions may not be
	- Neither is assured to be Gaussian

Gaussian Continuous State Linear Systems Gaussian Continuou

Linear System
 $s_{t+1} = A_t s_t + \varepsilon_t$
 $o_t = B_t s_t + \gamma_t$

Prediction at time t:
 $P(S_t | O_{0:t-1}) = \int_0^\infty P(S_{t-1} | O_{0:t-1}) P_s$ \overrightarrow{s} $o_t = B_t s_t + \gamma_t$ $S_{t+1} = A_t S_t + \varepsilon_t$

 $P_{\rm o}(\rm s)$

$$
P(S_t|O_{0:t-1}) = \int_{-\infty}^{\infty} P(S_{t-1}|O_{0:t-1}) P(S_t|S_{t-1}) dS_{t-1}
$$

Update after observing O_t : :

$$
P(S_t | O_{0:t}) = C.P(S_t | O_{0:t-1})P(O_t | S_t)
$$

Gaussian Continuous State Linear Systems $S_{t+1} = A_t S_t + \varepsilon_t$ $o_t = B_t s_t + \gamma_t$ $\overline{\mathcal{S}}$

Prediction at time to

 $P_o(s)$

$$
P(S_t|O_{0:t-1}) = N(\bar{s}_t, R_t)
$$

$$
\bar{s}_t = A\hat{s}_{t-1} + \mu_{\varepsilon}
$$

$$
R_t = \Theta_{\varepsilon} + A\hat{R}_{t-1}A^T
$$

Update after observing O.:

$$
P(S_t|O_{0:t}) = N(\hat{s}_t, \hat{R}_t)
$$

$$
K_t = R_1 B^T (BR_1 B^T + \Theta_\gamma)^{-1}
$$

$$
\hat{s}_t = \bar{s}_t + K_t (Ot - B\bar{s}_t - \mu_\gamma)
$$

$$
\hat{R}_t = (I - K_t B) R_t
$$

Gaussian Continuous State Linear Systems

$$
S_{t+1} = A_t S_t + \mathcal{E}_t
$$

$$
O_t = B_t S_t + \gamma_t
$$

Prediction at time t:

$$
P(S_t|O_{0:t-1}) = N(\bar{s}_t, R_t)
$$

Update after observing O.:

 $P(S_t|O_{0:t}) = N(\hat{s}_t, \hat{R}_t)$

KALMAN FILTER

$$
\bar{s}_t = A\hat{s}_{t-1} + \mu_{\varepsilon}
$$

$$
R_t = \Theta_{\varepsilon} + A\hat{R}_{t-1}A^T
$$

$$
K_t = R_1 B^T (BR_1 B^T + \Theta_\gamma)^{-1}
$$

$$
\hat{s}_t = \bar{s}_t + K_t (Ot - B\bar{s}_t - \mu_\gamma)
$$

$$
\hat{R}_t = (I - K_t B) R_t
$$

The Kalman filter
(based on state equation)

• Prediction (based on state equation)

$$
\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon} \qquad \qquad s_t = A_t s_{t-1} + \varepsilon_t
$$

$$
R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T
$$

• Update (using observation and observation equation) -1 T $o_t = B_t s_t + \gamma_t$

$$
K_{t} = R_{t}B_{t}^{T}\left(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma}\right)^{-1} \quad \ \ \sigma_{t} = B_{t}s_{t} + \gamma_{t}
$$
\n
$$
\hat{s}_{t} = \overline{s}_{t} + K_{t}\left(\sigma_{t} - B_{t}\overline{s}_{t} - \mu_{\gamma}\right)
$$
\n
$$
\hat{R}_{t} = \left(I - K_{t}B_{t}\right)R_{t}
$$
\n
$$
11-755/18797
$$

$$
\hat{R}_t = (I - K_t B_t) R_t
$$

Explaining the Kalman Filter
ediction
ediction

• Prediction

$$
\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon}
$$

$$
S_t = A_t S_{t-1} + \mathcal{E}_t
$$

$$
o_t = B_t s_t + \gamma_t
$$

$$
R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T
$$

• The Kalman filter can be explained but working through
 $K_t(o_t - B_t\overline{s}_t - \mu_\gamma)$
 $I - K_tB_t$) R_t <u>UT WOPKING TNP(</u> $\overline{}$ uthout work<mark>ı</mark>r Explaining the Nation
 $s_t = A_ts_{t-1} + \varepsilon_t$
 $\overline{s}_t = A_t\hat{s}_{t-1} + \mu_{\varepsilon}$
 $\overline{s}_t = \Theta_{\varepsilon} + A_t\hat{R}_{t-1}A_t^T$

The Kalman filter can be explained

intuitively without working through intuitively without working through the math

$$
\hat{S}_t = \overline{S}_t + K_t (O_t - B_t \overline{S}_t - \mu_\gamma)
$$

$$
\hat{R}_{t} = (I - K_{t}B_{t})R_{t}
$$

NEXT CLASS! $\frac{1}{1-755/18797}$