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Preliminaries : P(y|x) for Gaussian

• The conditional probability of y given x is also Gaussian
– The slice in the figure is Gaussian

• The mean of this Gaussian is a function of x
• The variance of y reduces if x is known

– Uncertainty is reduced
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• If P(x,y) is Gaussian:

),(),( 

















yyyx

xyxx

y

xyx
CC

CC
NP




)),(()|( 11
xyxxyxyyxxxyxy CCCCxCCNxyP   



)),(()|( 11
xyxxyxyyxxxyxy CCCCxCCNxyP   

Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Mean of Y given X

Given X value

Update guess of Y based on information in X
Correction is 0 if  X and Y are uncorrelated, i.e Cyx = 0
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Mean of Y given X

Given X value

offset

Slope

Correction to Y = slope * (offset of X from mean)
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Uncertainty in Y
when X is not known
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Preliminaries : P(y|x) for Gaussian
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Best guess for Y
when X is not known

Correction  of Y using 
information in X

Uncertainty in Y
when X is not known

Reduced uncertainty
from knowing X

Shrinkage of 
uncertainty
from knowing X

Shrinkage of variance is 0 if  X and Y are uncorrelated, i.e Cyx = 0



Preliminaries : P(y|x) for Gaussian
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Given X value

Mean of Y given X
(MAP estimate of Y)

Variance of Y when
X is known

Overall variance 
of Y when X is 
unknown

Knowing X modifies the mean of Y and shrinks its variance



Background: Sum of Gaussian RVs

• Consider a random variable O obtained as above

• The expected value of O is given by
 

• Notation:
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Background: Sum of Gaussian RVs

• The variance of O is given by

• This is just the sum of the variance of and 
the variance of 
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Background: Sum of Gaussian RVs

• The conditional probability of O:

• The overall probability of O:
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Background: Sum of Gaussian RVs

• The cross-correlation between O and S
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Background: Joint Prob. of O and S

• The joint probability of O and S (i.e. P(Z)) is 
also Gaussian

• Where

•
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Preliminaries : Conditional of S 
given O: P(S|O)
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Poll 1

• X and Y are jointly Gaussian. Which of the following are true
– Knowing X affects our expectation of Y, in all cases
– Knowing X affects our expectation of Y if the two are correlated
– Knowing X reduces the variance of the conditional distribution of Y by a value 

that depends on the observed X
– Knowing X reduces the variance of Y by the same amount regardless of the 

observed X

• We are given that Y  = AX + e, where X and e are Gaussian. Mark all that 
are true
– Y and X are jointly Gaussian
– The conditional distribution of X given Y is Gaussian
– Knowing Y does not influence the variance of X, since Y is derived from X and 

not vice versa
– Knowing Y does not influence the expected value of X since Y is derived from X 

and not vice versa
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The little parable
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You’ve been kidnapped

And blindfolded
You can only hear the car
You must find your way back home from wherever they
drop you off



Kidnapped!

• Determine by only listening to a running automobile, if 
it is:
– Idling; or
– Travelling at constant velocity; or
– Accelerating; or
– Decelerating

• You only record energy level (SPL) in the sound
– The SPL is measured once per second
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What we know
• An automobile that is at rest can accelerate, or 

continue to stay at rest

• An accelerating automobile can hit a steady-
state velocity, continue to accelerate, or 
decelerate

• A decelerating automobile can continue to 
decelerate, come to rest, cruise, or accelerate

• A automobile at a steady-state velocity can 
stay in steady state, accelerate or decelerate
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What else we know

• The probability distribution of the SPL of the 
sound is different in the various conditions
– As shown in figure

• In reality, depends on the car

• The distributions for the different conditions 
overlap
– Simply knowing the current sound level is not enough 

to know the state of the car 
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The Model!

• The state-space model
– Assuming all transitions from a state are equally probable
– This is a Hidden Markov Model!
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Estimating the state at T = 0-

• A T=0, before the first observation, we know 
nothing of the state
– Assume all states are equally likely 
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The first observation: T=0

• At T=0 you observe the sound level x0 = 68dB 
SPL

– The observation modifies our belief in the state 
of the system
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The first observation: T=0
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Can even be greater than 1!



The first observation: T=0
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• Combine prior information about state and 
evidence from observation

• We want 
• We can compute it using Bayes rule as
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Estimating state after at observing x0



The Posterior

• Multiply the two, term by term, and normalize 
them so that they sum to 1.0
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Estimating the state at T = 0+

• At T=0, after the first observation x0, we update 
our belief about the states
– The first observation provided some evidence about 

the state of the system
– It modifies our belief in the state of the system
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Predicting the state at T=1

• Predicting the probability of idling at T=1
– P(idling | idling) = 0.5; 

– P(idling | deceleration) = 0.25

– P(idling at T=1| x0) = 
P(IT=0|x0) P(I|I) + P(DT=0|x0) P(I|D) = 2.1 x 10-5

• In general, for any state S
•

೅సబ
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Predicting the state at T = 1
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Updating after the observation at T=1

• At T=1 we observe  x1 = 63dB SPL
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Updating after the observation at T=1
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The second observation: T=1
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• Combine prior information from the 
observation at time T=0, AND evidence from 
observation at T=1 to estimate state at T=1

• We want 
• We can compute it using Bayes rule as

11-755/18797 34

Estimating state after at observing x1



The Posterior at T = 1

• Multiply the two, term by term, and normalize 
them so that they sum to 1.0
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Estimating the state at T = 1+

• The updated probability at T=1 incorporates 
information from both x0 and x1

– It is NOT a local decision based on x1 alone
– Because of the Markov nature of the process, the state at 

T=0 affects the state at T=1
• x0 provides evidence for the state at T=1
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Overall Process
Time

• T=0- :  A priori probability
• T = 0+:  Update after X0

• T=1- (Prediction before X1)
• T = 1+: Update after X1

• T=2- (Prediction before X2)
• T = 2+: Update after X2

• …
• T= t- (Prediction before Xt)

• T = t+: Update after Xt

Computation
•

•

•
଴

•

•
ଵ

•

• …
•

೟షభ

•

11-755/18797 37



Overall procedure

• At T=0 the predicted state distribution is the initial state 
probability

• At each time T, the current estimate of the distribution over 
states considers all observations x0 ... xT
– A natural outcome of the Markov nature of the model

• The prediction+update is identical to the forward computation 
for HMMs to within a normalizing constant
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Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)

PREDICT UPDATE



Comparison to Forward Algorithm

• Forward Algorithm:
– P(x0:T,ST)  = P(xT|ST) SST-1

P(x0:T-1, ST-1) P(ST|ST-1)

• Normalized:
– P(ST|x0:T)  = (SS’T

P(x0:T,S’T))-1 P(x0:T,ST) = C P(x0:T,ST)
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Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

PREDICT UPDATE

PREDICT

UPDATE

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Decomposing the Algorithm

Predict: 

Update: ௧
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Estimating a Unique state

• What we have estimated is a distribution over 
the states

• If we had to guess a state, we would pick the 
most likely state from the distributions

• State(T=0) = Accelerating

• State(T=1) = Cruising
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Estimating the state

• The state is estimated from the updated 
distribution
– The updated distribution is propagated into time, not 

the state
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Estimate(ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Estimate(ST) = argmax ST
P(ST | x0:T)

P(ST | x0:T-1)  = SST-1
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Predicting the next observation

• The probability distribution for the observations at the 
next time is a mixture:

•

• The actual observation can be predicted from P(xT|x0:T-1)
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Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Predict xT

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Predicting the next observation

• Can use any of the various estimators of xT

from P(xT|x0:T-1)

• MAP estimate:
– argmaxxT

P(xT|x0:T-1)

• MMSE estimate:
– Expectation(xT|x0:T-1)

11-755/18797 44



Difference from Viterbi decoding

• Estimating only the current state at any time
– Not the state sequence
– Although we are considering all past observations

• The most likely state at T and T+1 may be such 
that there is no valid transition between ST
and ST+1
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Poll 2

• To find your way back home…
– At each time t you *predict* your beliefs about what your state 

will be at the next time t+1  based on all you have observed until 
now (time t)

– At each time t, you *update* your beliefs about the state at t, 
that you made when still at t-1, based on the latest observation 
O(t)

– At each time t you predict your belief at the state at t+1, and 
then update your belief after observing O(t+1)

– At each time you predict the distribution of the state at t+1, and 
then update your predicted distribution based on O(t+1)

– Your guess for the actual state must be derived from the 
estimated distribution for the state
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– At each time you predict the distribution of the state at t+1, 
and then update your predicted distribution based on O(t+1)

– Your guess for the actual state must be derived from the 
estimated distribution for the state
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A continuous state model

• HMM assumes a very coarsely quantized state space
– Idling / accelerating / cruising / decelerating

• Actual state can be finer
– Idling, accelerating at various rates, decelerating at various 

rates, cruising at various speeds

• Solution:  Many more states (one for each acceleration 
/deceleration rate, crusing speed)?

• Solution: A continuous valued state
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Tracking and Prediction:
The wind and the target

• Aim: measure wind velocity
• Using a noisy wind speed sensor

– E.g. arrows shot at a target

• State: Wind speed at time t depends on speed at 
time t-1

• Observation: Arrow position at time t depends on 
wind speed at time t
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The real-valued state model
• A state equation describing the dynamics of the system

– st is the state of the system at time t
– et is a driving function, which is assumed to be random

• The state of the system at any time depends only on the state at the 
previous time instant and the driving term at the current time

• An observation equation relating state to observation

– ot is the observation at time t
– gt is the noise affecting the observation (also random)

• The observation at any time depends only on the current state of the 
system and the noise
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States are still “hidden”

• The state is a continuous valued parameter that is not directly 
seen
– The state is the position of the automobile or the star

• The observations are dependent on the state and are the only way 
of knowing about the state
– Sensor readings (for the automobile) or recorded image (for the telescope)
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Statistical Prediction and Estimation

• Given an a priori probability distribution for 
the state
– P0(s):  Our belief in the state of the system before 

we observe any data
• Probability of state of navlab
• Probability of state of stars

• Given a sequence of observations o0..ot

• Estimate state at time t
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Prediction and update at t = 0

• Prediction
– Initial probability distribution for state
– P(s0) = P0(s0)

• Update:
– Then we observe o0

– We must update our belief in the state

• P(s0|o0) = C.P0(s0)P(o0|s0)
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Prediction and update at t = 0

• Prediction
– Initial probability distribution for state
– P(s0) = P0(s0)

• Update:
– Then we observe o0

– We must update our belief in the state

• P(s0|o0) = C.P0(s0)P(o0|s0)
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The observation probability: P(o|s)

•
– This is a (possibly many-to-one) stochastic function 

of state st and noise gt

– Noise gt is random. Assume it is the same 
dimensionality as ot

• Let Pg(gt) be the probability distribution of gt

• Let  {g:g(st,g)=ot} be all g that result in ot
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The observation probability
• P(o|s) = ?

• The J is a Jacobian

• For scalar functions of scalar variables, it is simply a 
derivative:  
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Predicting the next state at t=1
• Given P(s0|o0), what is the probability of the state 

at t=1

• State progression function:

– et is a driving term with probability distribution Pe(et)

• P(st|st-1) can be computed similarly to P(o|s)
– P(s1|s0) is an instance of this
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And moving on

• P(s1|o0) is the predicted state distribution for 
t=1

• Then we observe o1

– We must update the probability distribution for s1

– P(s1|o0:1) = CP(s1|o0)P(o1|s1)

• We can continue on
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Update after O1: 

Discrete vs. Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Update after observing  Ot: 

Discrete vs. Continuous State Systems

Prediction at time t: 
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Initial state prob.

Discrete vs. Continuous State Systems

Parameters
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Special case: Linear Gaussian model

• A linear state dynamics equation
– Probability of state driving term e is Gaussian
– Sometimes viewed as a driving term e and additive zero-

mean noise

• A linear observation equation
– Probability of observation noise g is Gaussian

• At, Bt and Gaussian parameters assumed known
– May vary with time
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Linear model example
The wind and the target

• State: Wind speed at time t depends on speed at 
time t-1

• Observation: Arrow position at time t depends on 
wind speed at time t
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Model Parameters: 
The initial state probability

• We also assume the initial state distribution to 
be Gaussian
– Often assumed zero mean
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Model Parameters:
The observation probability

• The probability of the observation, given the state, is 
simply the probability of the noise, with the mean 
shifted
– Since the only uncertainty is from the noise

• The new mean is the mean of the distribution of the 
noise + the value of the observation in the absence of 
noise
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Model Parameters:
State transition probability

• The probability of the state at time t, given the 
state at t-1, is simply the probability of the 
driving term, with the mean shifted
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Update after O1: 

Continuous state systems
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Model Parameters: 
The initial state probability

• We assume the initial state distribution to be 
Gaussian
– Often assumed zero mean
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Update after O1: 
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Update after O1: 
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Update after O1: 
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The prediction equation

• The integral of the product of two Gaussians
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The Prediction Equation
• The integral of the product of two Gaussians is 

Gaussian!
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Poll 3
• Tracking state with a continuous-state system is strictly analogous to doing so with 

an HMM
– True
– False

• When the state and observation relations are given by equations between 
continuous variables, rather than probabilistic dependencies, state estimation 
becomes a deterministic procedure

– True
– False

• In a linear Gaussian model, where the initial state distribution is Gaussian and 
state and observation equations are affine, the predicted and updated state 
probability distributions are:

– Always Gaussian
– Predicted distributions are Gaussian, but updated distributions may not be
– Neither is assured to be Gaussian
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The Kalman filter
• Prediction (based on state equation)

• Update (using observation and observation 
equation)
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Explaining the Kalman Filter
• Prediction

• Update
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The Kalman filter can be explained 
intuitively without working through 
the math

NEXT CLASS!


