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Preliminaries : P(y|x) for Gaussian

e |f P(x,y) is Gaussian:

Ky ny ny i / : _g \

* The conditional probability of y given x is also Gaussian

— The slice in the figure is Gaussian

P(y|x)=N(u,+C,C. (x—u),C, —C, C.C)

yx ~xx T xy

e The mean of this Gaussian is a function of x
 The variance of y reduces if x is known

— Uncertainty is reduced
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Preliminaries : P(y|x) for Gaussian

3_I

28F

Best guess for Y
when X is not known 1%—

: a ¢
05+ / E
e 1Y 0 05 1 15 2 25 3 35

P(y|x)= mcyxcxxx u,),C, -C,C.C,)

yx - xx T xy

11-755/18797 3



MLSP
Preliminaries : P(y|x) for Gaussian

Update guess of Y based on information in X
Correction is O if X and Y are uncorrelated, i.e C,, = 0

Correction of Y using
information in X

2
Best guess for Y Y\

when X is not known 15¢

|

Mean of Y given X

-1.I5 -1 -I:I.IE 0 EI.I5 'i 1.I5 ; 2.I5 3I 3.I5\ .
X Given X value

P(y|2)= N, +C,.C(x=u),C, =C,C;C,)

\ yx~ xx /’ Yy JBE 288 oy
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Preliminaries : P(y|x) for Gaussian

Correction to Y = slope * (offset of X from mean)

Correction of Y using
information in X

2
Best guess for Y Y\

when X is not known 15¢

P(y|x)

-1 L

Mean of Y given X

1.5 N\ -1 0.5

/ \J\\
Given X value

2 2. 5 3 3.5
X offset

= N(u, +C,Cl(x—p,),C,, —C,CJC,)

Slope 5797 5
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Preliminaries : P(y|x) for Gaussian

Correction of Y using .
information in X

Best guess for Y |

when X is not known 15¢

| Uncertainty in Y
7 when X is not known

i 1 1 \ 1 1 1 i 1 1 / 1
_15Y5 0 i + 15 2 35 ] 35
¥

P(y|x)=N(u,+C,C.l(x—pu,),C,-C,C[C,)

y N yy yx o xx Xy
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Preliminaries : P(y|x) for Gaussian

Shrinkage of variance is O if X and Y are uncorrelated, i.e €, =0

Correction of Y using .
information in X

Best guess for Y |

when X is not known 15¢

| Reduced uncertainty
1 from knowing X

| Uncertainty in Y
7 when X is not known

Shrinkage of
uncertainty
from knowing X

/

P(y|x)=N(u,+C,C (x-u).C, -C,C.C,)

yxTxx T x
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Preliminaries : P(y|x) for Gaussian

Knowing X modifies the mean of Y and shrinks its variance

Variance of Y when
X is known.

3_I

Overall variance .:|
of Y when Xis —

2 55
unknown
1581

- I~

o5t 1 Mean of Y given X
. ¢ — (MAP estimate of Y)

st 1 Given X value

_1 L 1 1
1A - 0.5 0 0.5

1 1 1 1 1
1.5 2 25 3 35

— |

P(y|x)=N(u,+C,C (x-u),C, -C,C.C,)

yxX = XX yxX = XX
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Background: Sum of Gaussian RVs

S~ N(ﬂs» @S) €~ N(I"E! @S)

e Consider a random variable O obtained as above

 The expected value of O is given by
E[Ol = E[AS + ]| =Au, + u,

* Notation:
E|O| = po
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MLSEP
Background: Sum of Gaussian RVs

S~ N(ﬂs» @S) €~ N(I"E! @S)

* The variance of O is given by
Var(0) = 09 = E[(0 — po)(0 — pp)"|

* This is just the sum of the variance of AS and
the variance of &
O, = A0,AT + 0,

11-755/18797 10



MLSEP
Background: Sum of Gaussian RVs

S~ N(ﬂs» @S) €~ N(ﬂsr @S)

* The conditional probability of O:
P(O[S) = N(AS + u, 0,)

* The overall probability of O:
P(0) = N(Ap, + p,, AG5A" + 6,)
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Background: Sum of Gaussian RVs

S~ N(ﬂs» @S) €~ N(MSJ 08)

* The cross-correlation between O and S

Oos = E[(0 — 1o)(S — ps)" | = E[(A(S — ps) + (& — 1)) (S — py)" ]
= E|A(S — ) (S — ps)"+(g — 11)(S — 11s)" |

= AE|(S — ps)(S — )" | + E[(g — 1) (S — py)" |

= AE|(S — ps)(S — ps)" |

e =A0q

e The cross-correlation between O and S is
@05 — A@S
@SO — @SAT

12
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Background: Joint Prob. of O and S

0O =AS + ¢ Z:[g]

* The joint probability of O and S (i.e. P(2)) is
also Gaussian
P(Z) = P(0,S) = N(uz,0z)
* Where

_ [Ho] _ [Apus + ug

Mz = ﬂs] B [ Us ]
AOAT + 0, A0
OA" O

11-755/18797 T 13
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Preliminaries : Conditional of S ™
given O: P(S|O)
H-II é | 0=4Ss+¢

1.8}

/u

1 1
15 -1 D5 0 EI5 15 2 25 3 35

P(S|0) = N(ug + (950@01(0 1o), 05—05005'0,5)

-1
P(S|0) = N(us + O5AT(AOAT + 0,) (0 — Apg — ),
05—05AT(A054T + 0,) " 40)




Poll 1

X and Y are jointly Gaussian. Which of the following are true

Knowing X affects our expectation of Y, in all cases
Knowing X affects our expectation of Y if the two are correlated

Knowing X reduces the variance of the conditional distribution of Y by a value
that depends on the observed X

Knowing X reduces the variance of Y by the same amount regardless of the
observed X

We are given that Y = AX + e, where X and e are Gaussian. Mark all that
are true

Y and X are jointly Gaussian
The conditional distribution of X given Y is Gaussian

Knowing Y does not influence the variance of X, since Y is derived from X and
not vice versa

Knowing Y does not influence the expected value of X since Y is derived from X
and not vice versa
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Poll 1

X and Y are jointly Gaussian. Which of the following are true

Knowing X affects our expectation of Y, in all cases
Knowing X affects our expectation of Y if the two are correlated

Knowing X reduces the variance of the conditional distribution of Y by a value
that depends on the observed X

Knowing X reduces the variance of Y by the same amount regardless of the
observed X
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The little parable

You've been kidnapped

You can only hear the car
You must find your way back home from wherever they
drop you of f



MLSP

Kldnapped'

Determine by only listening to a running automobile, if
itis:

— Idling; or

— Travelling at constant velocity; or

— Accelerating; or

— Decelerating

You only record energy level (SPL) in the sound

— The SPL is measured once per second
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What we know

An automobile that is at rest can accelerate, or
continue to stay at rest

An accelerating automobile can hit a steady-
state velocity, continue to accelerate, or
decelerate

A decelerating automobile can continue to
decelerate, come to rest, cruise, or accelerate

A automobile at a steady-state velocity can
stay in steady state, accelerate or decelerate
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What else we know

P(x/idle) P(x|decel) P(x|cruise) P(x|accel)

SN

* The probability distribution of the SPL of the
sound is different in the various conditions

— As shown in figure
* In reality, depends on the car
 The distributions for the different conditions
overlap

— Simply knowing the current sound level is not enough
to know the state of the car
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The MOdEI! (x]accel)
0.33
70
Accel\erating state
P(x|idle) 0.5 .33 0.33
0.5
0.33
dIfng s¥ate 0.2910.33 Crisiny stat
65
0.25
45 25 0.25/\
%

1A _c b
0.33 I 05 05 O 0

Decelerating state A 0 /3 1/3 1/3
60 C 0 1/3 1/3 1/3
D

0.25 0.25 0.25 0.25
* The state-space model

— Assuming all transitions from a state are equally probable
— This is a Hidden Markov Model!

21



Estimating the state at T = 0-

0.25 0.25 0.25 0.25

|dling Declerating  Cruising Accelerating

3

e AT=0, before the first observation, we know
nothing of the state

— Assume all states are equally likely

11-755/18797 22
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The first observation: T=0

P(x/idle) P(x|decel) P(x|cruise) P(x|accel)

AAYON

68dB

* At T=0 you observe the sound level x, = 68dB
SPL

— The observation modifies our belief in the state
of the system

11-755/18797 23



The first observation: T=0

P(xlidle)

P(x|decel) P(x|cruise) P(x|accel)

FAAD AN

68dB

Pisiiie) | Pisldecelraton) | lxlcuising)
0 .

0.0001

These don't have to sum to 1 0.7

Can even be greater than 1!

0

0.5

0.0001

|dling

Declerating  Cruising Accelerating

11-755/18797

P(x | cruising) P(x |acceleration)
0.5 0.7

24



The first observation: T=0

P(x/idle) P(x|decel) P(x|cruise) P(x|accel)

e /\

7

P(xq|state)

0 0.0001

68dB (.7
0.5

|dling Declerating

Cruising  Accelerating

Prior: P(state)

Remember the prior

0.25 0.25

0.25 0.25

|dling Declerating

Cruising  Accelerating

s

)

25
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Estimating state after at observing x,

 Combine prior information about state and
evidence from observation

* We want P(state|Xxy)
 We can compute it using Bayes rule as

P(state)P(xqy|state)
Ystater P(state’) P (x|state’)

P(state|xy) =



The Posterior

0.7

P(Xp|state)

0.5

0 0.0001

|dling Declerating  Cruising Accelerating

Prior: P(state)

0.25 0.25 0.25 0.25 _

ol —
] ]

|dling Declerating  Cruising Accelerating

Il

* Multiply the two, term by term, and normalize
them so that they sum to 1.0

11-755/18797 27
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Estimating the state at T = 0+

P(St-0lX0) 0.57

0.42
0.0 8.3x10° -

ldling Decelerating  Cruising Accelerating

=

* At T=0, after the first observation x,, we update
our belief about the states

— The first observation provided some evidence about
the state of the system

— It modifies our belief in the state of the system

11-755/18797 28
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Predicting the state at T=1

‘\ BN

3 0.42 Q | 0.5
00 8.3x10° ©) A o0 1/3 1/3 1/3

Iding  Decel Cruising  Accel / C 0 1/3 1/3 1/3

D 025 025 0.25 0.25
* Predicting the probability of idling at T=1
— P(idling | idling) = 0.5;
— P(idling | deceleration) = 0.25

— P(idling at T=1| x,)) =
P(l_o|xo) P(I|D) + P(Dr_g[x,) P(I[D) = 2.1 x 107

* |n general, for any state S
* P(S7=11%0) = ZST=OP(ST=O|XO)P(ST=1|ST=O)

29



Predicting the stateat T=1

0.42
0.0 8.3x10% -

ldling Decelerating Cruising Accelerating

P(Sr=alXo) = ) P(Sr—olX)P(Sr=1lS1=0)

oT=0 ’
P(S7-1]X0) 0.33 033 033 < >

Rounded.
In reality, they
sum to 1.0

C >/ J ’

2.1x10°

11-755/18797 30
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Updating after the observation at T=1

P(x/idle) P(x|decel) P(x|cruise) P(x|accel)

3 AP

[/

63dB

* At T=1 we observe x,; =63dB SPL

11-755/18797 31
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Updating after the observation at T=1 |

P(x/idle) P(x|decel) P(x|cruise) P(x|accel)

3 1N

63dB

m P(x |deceleration) | P(x| cruising) P(x |acceleration)
0 0.2 0.5

0.01

‘ P(x|state) ‘ 0.5

0.2
0 0.02

|dling Declerating  Cruising Accelerating

11-755/18797 32
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The second observation: T=1

P(x/idle) P(x|decel) P(x|cruise) P(x|accel)

45
Y e = (@AY i
63dB
P(xq|state) 0.5
0.2 ﬂ
0 - 0.02
|dling Declerating  Cruising Accelerating
Prior: P(state|x,) Remember the prior

0.33 0.3 0.33 —~
oo |

|dling Declerating  Cruising Accelerating 33
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Estimating state after at observing x,

* Combine prior information from the
observation at time T=0, AND evidence from
observation at T=1 to estimate state at T=1

 We want P(state|Xxg, Xq)
* We can compute it using Bayes rule as

P(state|xy)P(x,|state)
Y stater P(state’|xo)P (x4 |state’)

P(state|xy,X1) =

11-755/18797 34
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The PosterioratT=1
0.5

0.2
0 0.02

|dling Declerating  Cruising Accelerating

Prior: P(state|x,)
0.33 0.33 0.33

iy —
2.1x10°

|dling Declerating  Cruising Accelerating

* Multiply the two, term by term, and normalize
them so that they sum to 1.0

11-755/18797 35
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Estimating the state at T = 1+

0.713

0.285

0.0 - 0.0014

ldling Decelerating Cruising Accelerating

 The updated probability at T=1 incorporates
information from both x, and x,

— It is NOT a local decision based on x, alone

-~

— Because of the Markov nature of the process, the state at

T=0 affects the state at T=1
* X, provides evidence for the state at T=1

11-755/18797
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Overall Process

Time Computation
T=0- : A priori probability = P(S,) = P(S)
T=0+: UpdateafterX, = P(S,|X,) = C.P(Sy)P(X,|S,)

T=1- (Prediction before X;)* P(S;

T = 1+: Update after X,

« P(S;

Xo) = ZSOP(51|50)P(50|X0)
Xo.1) = C.P(5,1Xy)P(X,]S1)

T=2- (Prediction before X,)* P(S,

T = 2+: Update after X,

° P(Sz

XO:l) — 251P(52|51)P(51|X0:1)
XO:Z) — CP(SZ|X01)P(X2|SZ)

T=1t- (Prediction before X,) °

T = t+: Update after X,

P(5t|X0:t—1) —

2.5,y P(SelSe-1)P(Se-11Xo:6-1)
° P(Stlxo:t) — C-P(Stlxo:t—l)P(thst)

11-755/18797 37




Overall procedure

T=T+1
| =11 < |

P(Sy | Xg.1.1) = 25 P (St | Xp:1-) P(S1[Sty) P(Sy | xp.1) = C. P(Sy | Xg.1.) P(X1[Sy)
Predict the ) U.pda.te the
.. ) distribution of the
distribution of the >

stateat T

stateat T )
after observing x;

=)
PREDICT 3\ UPDATE

At T=0 the predicted state distribution is the initial state
probability

At each time T, the current estimate of the distribution over
states considers all observations x; ... X;
— A natural outcome of the Markov nature of the model

The prediction+update is identical to the forward computation

for HMMs to within a normalizing constant
11-755/18797 38
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Comparison to Forward Algorithm

P(Sy | Xp.1y) = 2sT_1 P(Sty | Xp:11) P(S1lSty) P(St | Xo.1) = C. P(St [ X¢.1-1) P(X1|St)
. Update the
L . P.rEdI.Ct the distribution of the
distribution of the > state at T =
stateat T after observing x;
PREDICT UPDATE

* Forward Algorithm:
— P(Xy.S1) = P(X1/St) 2sT_1 P(X¢.1.1> S1.1) P(S1/Stp)

PREDICT
UPDATE

* Normalized:

— P(Stlxp.p) = (ZS’T P(xy.158’ 1) " P(Xg.15S1) = C P(Xy.15S1)

11-755/18797 39



Decomposing the Algorithm

P(StJXO:t) — P(thst) z P(Stlst—l)P(St—lJXO:t—l)

St—1

Predict: P(S¢|Xo.c-1) = ZSt_lP(Stlst—l)P(St—lle:t—l)

P(S,|Xo.t-1)P(X|S;)
%5 P(S1Xo:t-1)P(X{[5)

Update: P(Stlx():t) —
. @

A
- ﬁj\‘f]

i

11-755/18797 40
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Estimating a Unique state

What we have estimated is a distribution over
the states

If we had to guess a state, we would pick the
most likely state from the distributions

0.57

State(T=0) = Accelerating o soxw _-

Idling Decelerating Cruising Accelerating

0.713

State(T=1) = Cruising

11-755/18797 41
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Estimating the state

P(Sy | Xp.m1) =g, Pry|Xer1) PSSty P(St | Xp.1) = C. P(Sy | Xg.1p) P(Xq[Sy)
. Update the
‘ Predict th L
: .r |.c © distribution of the
distribution of the > state at T —
stateat T .

© after observing x;
g 1 —
# v T o=

Estimate(S;) = argmax STP(ST | Xo.7) < Estimate(S;) >

* The state is estimated from the updated
distribution

— The updated distribution is propagated into time, not
the state

11-755/18797 42



MLSP
Predicting the next observation

P(Sy | Xp.m1) =g, Pry|Xer1) PSSty P(St | Xp.1) = C. P(Sy | Xg.1p) P(Xq[Sy)
. Update the
‘ P h o
: .rEdI.Ct the distribution of the
distribution of the > state at T —
T .
state at after observing x;

|
v

C Predict Pl lxpry) __D=====>C__ Predictx, D

* The probability distribution for the observations at the
next time is a mixture:

° P(thxo:t—l) — ZS P(X |St)P(St|XO:t—1)

* The actual observation can be predicted from P(x;|x,.1. 1)

11-755/18797
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Predicting the next observation

* Can use any of the various estimators of X
from P(xrXg.1.1)

* MAP estimate:

— argmax, P(XpXq.1.1)

 MIMSE estimate:

— Expectation(XT|Xo;T-1)
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Difference from Viterbi decoding

e Estimating only the current state at any time

— Not the state sequence
— Although we are considering all past observations

* The most likely state at T and T+1 may be such
that there is no valid transition between S;
and S,
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Poll 2

* To find your way back home...

At each time t you *predict™ your beliefs about what your state
will be at the next time t+1 based on all you have observed until
now (time t)

At each time t, you *update™ your beliefs about the state at t,
that you made when still at t-1, based on the latest observation
O(t)

At each time t you predict your belief at the state at t+1, and
then update your belief after observing O(t+1)

At each time you predict the distribution of the state at t+1, and
then update your predicted distribution based on O(t+1)

Your guess for the actual state must be derived from the
estimated distribution for the state



Poll 2

* To find your way back home...

At each time t you *predict® your beliefs about what your
state will be at the next time t+1 based on all you have
observed until now (time t)

At each time t, you *update™* your beliefs about the state at t,
that you made when still at t-1, based on the latest
observation O(t)

At each time t you predict the actual state at t+1, and then
update your guess for the state after observing O(t+1)

At each time you predict the distribution of the state at t+1,
and then update your predicted distribution based on O(t+1)

Your guess for the actual state must be derived from the
estimated distribution for the state
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A continuous state model

HMM assumes a very coarsely quantized state space

— Idling / accelerating / cruising / decelerating

Actual state can be finer

— Idling, accelerating at various rates, decelerating at various
rates, cruising at various speeds

Solution: Many more states (one for each acceleration
/deceleration rate, crusing speed)?

Solution: A continuous valued state



Tracking and Prediction: aaad
The wind and the target

Aim: measure wind velocity
Using a noisy wind speed sensor

— E.g. arrows shot at a target

State: Wind speed at time ¢ depends on speed at
time -1

wind speed attime t
Y =AS; + v,

11755/18797 49
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The real-valued state model

A state equation describing the dynamics of the system
s, = J(S,1,€,)

— 5, is the state of the system attime t
— & is adriving function, which is assumed to be random

The state of the system at any time depends only on the state at the
previous time instant and the driving term at the current time

An observation equation relating state to observation

0, :g(St97/t)

— o0, is the observation at time t
— v, is the noise affecting the observation (also random)

The observation at any time depends only on the current state of the
system and the noise

11-755/18797 50



States are still “hidden”

* The state is a continuous valued parameter that is not directly
seen

— The state is the position of the automobile or the star

 The observations are dependent on the state and are the only way
of knowing about the state

— Sensor readings (for the automobile) or recorded image (for the telescope)
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Statistical Prediction and Estimation

* Given an a priori probability distribution for
the state

— Py(s): Our belief in the state of the system before
we observe any data

* Probability of state of navlab
* Probability of state of stars

* Given a sequence of observations o,..0,
* Estimate state at time t

11-755/18797 52
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Prediction and update att=0

* Prediction
— Initial probability distribution for state

— P(So) = Po(so)

* Update:
— Then we observe o,
— We must update our belief in the state

P(sy)P(0, |5) _ B (5y)P(0, | $)
P(o,) ) P(o,)

P(sy|0,) =

* P(sglog) = C.Py(sg)P(0g]5)

11-755/18797 53
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Prediction and update att=0

* Prediction
— Initial probability distribution for state

— P(So) = Po(so)

* Update:
— Then we observe o,
— We must update our belief in the state

P(s, |0) = L8P0 |5) PO(SO@
0 19 P(o,) P(o;

* P(sglog) = C.Py(sg)P(0g]5)

11-755/18797 54
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The observation probability: P(o|s) E

° Ot — g(Stﬁj/t)
— This is a (possibly many-to-one) stochastic function
of state s, and noise v,

— Noise v, is random. Assume it is the same
dimensionality as o,

* Let P (y,) be the probability distribution of v,

* Let {y:g(s,y)=o,} be all y that result in o,

E()
i _ Y
(0,]s,) Wg(;):@ 1 J,(g(s,,7))]

11-755/18797 95




The observation probability

* P(ols)=7? o, =g(s,,7,)

P (7)
b _ Y
(0, ]5,) Wg(g;):()t 1 J,(g(s,,7))]

* The Jis a Jacobian

do, (1) do,(1)
dy(1) dy(n)
| S, (g(s, 7)) =] e g :
do,(n) 0o, (n)
oy (1) oy(n)

* For scalar functions of scalar variables, it is simply a

derivative: oo,
| J,(g(s,, 7)) = or

11-755/18797
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Predicting the next state at t=1

* Given P(s,|0,), what is the probability of the state
at t=1

P(s,|0)= | P(s,,50]00)ds, = [ P(s | 5,)P(s, | 0,)ds,
S0} {s0}

e State progression function:

S, = f(St—lagt)

— g, is a driving term with probability distribution P_(g,)

* P(s,|s,,) can be computed similarly to P(o|s)

— P(s,|s,) is an instance of this

11-755/18797 Y
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And moving on

* P(s;]|0,) is the predicted state distribution for
t=1

* Then we observe o,

— We must update the probability distribution for s,
— P(s{]0g.1) = CP(s{]04)P(04]5;)

e We can continue on



Discrete vs. Continuous state systems

Prediction at time O:
P(Sp) = m(Sp)

Py(s)

/\ s, = f(8,.1,&,)

0, :g(Swyz)

P(So) = Py(So)

Update after O,:
P(S0|0¢) = C.1(So)P(0g|So)

P(So|00) = C-P(SO)P(00|SO)

Prediction at time 1:

P($1100) = ZP(50|00)P(51|50)
So

P($1100) = j P(S0]00)P(S11S0)dS,

Update after O;:
P($110¢.1) = C.P(51]100)P(01]51)

P($110¢.1) = C.P(5110¢)P(01]51)



Discrete vs. Continuous State Systems

T =

0.1 0|-2 0I3 T St — f(St—lﬂgt)
1 2 3
0, :g(Swyz)

|
0

Prediction at time t

P(5¢100.t-1) = Z P(St-1100.6-1)P(S¢[S¢-1) P(S:|10¢.t-1) = f P(S;_1]10¢.t—1)P(S¢|Si—1)dS;_4

St—1

Update after observing O;:

P(St|00:t) — C-P(5t|00:t—1)P(0t|St) P(5t|00:t) — C-P(St|00:t—1)P(0t|St)




Discrete vs. Continuous State Systems

o S :f(St—lﬂgt)
0, =g(s,,7,)

=
Il
ol ©
—
_\_'O
N
N—o
w
Q)_

Parameters
Initial state prob. 7T P(s)
Transition prob  P(s; = J|S¢—q1 = 1) P(s¢lsi—1)

Observation prob  p(|g) P(0|s)
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Special case: Linear Gaussian model

1
P(g)= expl—=0.5(6 —p1,) O (6 - 1,)
4 Jen' e, ( )

1
P(y) = ~0.5(y—p, f Oy -
5 o, = 2 J(zﬂ)ﬂ@y'e@( -u Yo (r-1,)

* Alinear state dynamics equation

— Probability of state driving term € is Gaussian

— Sometimes viewed as a driving term p. and additive zero-
mean noise

* Alinear observation equation

— Probability of observation noise y is Gaussian

* A,, B, and Gaussian parameters assumed known

— May vary with time
11-755/18797 62



Linear model example aa
The wind and the target

e State: Wind speed at time ¢ depends on speed at
time #-1

* Observation: Arrow position at time t depends on
wind speed at time t
Oy =BS; + v,

11755/18797 63



Model Parameters: MLSE

The initial state probability

P (s)= : CXP(— O-S(S _§)R_1 (S _E)T)

Jer) | R|
P, (s) = Gaussian(s;s, R)

e We also assume the initial state distribution to
be Gaussian

— Often assumed zero mean s, =As,_ +

Ot :BtSt+7/t



Model Parameters: hLSP

The observation probability
o =Bs +y,  P(y)=Gaussian(y;p,,0,)

P(o, | s,) = Gaussian(o,; i, + B,s

tt?

Q)

* The probability of the observation, given the state, is

simply the probability of the noise, with the mean
shifted

— Since the only uncertainty is from the noise

e The new mean is the mean of the distribution of the

noise + the value of the observation in the absence of
noise



Model Parameters: MLSP
State transition probability

s, =As +e&  P(&)=Gaussian(e; 1,,0,)

P(s,.,|s,) = Gaussian(s,;u, + A4s

rt?

®8)

r+1

* The probability of the state at time t, given the
state at t-1, is simply the probability of the
driving term, with the mean shifted



Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:
P(So) — PO(SO)

Update after O,:
P(S0|0¢) = C.P(So)P(0p|So)

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:
P(So) = Py(So)

Update after O,:
P(S0|0¢) = C.P(So)P(0p|So)

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



Model Parameters: MLSE

The initial state probability

S) = :
J27)! | R, |

P exp(-0.5(s—5, )R; (s -5, )

P, (s) = Gaussian(s;s,, R,)

e We assume the initial state distribution to be
Gaussian

— Often assumed zero mean



Continuous state systems

Py(s)

/\ s =A4s +¢&,

S
Ot :BtSt+7/t

Prediction at time O:
P(So) = Py(So)

a priori probability
distribution of state s

= N(5¢, Ry)

Update after O,:
P(S0|0¢) = C.P(So)P(0p|So)

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:
P(So) — N(EO'RO)

Update after O,:
P(S0|00) = C.P(S0)P(00|Sp)

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



Recap: Conditional of S given O: ™
P(S|O) for Gaussian RVs

L | > 0=Bs+y

-

1.8}

; /i
/u

1 1
15 -1 D5 0 EI5 15 2 25 3 35

P(S|0) = N(ug + (950@01(0 1o), 05—05005'0,5)

72



Recap: Conditional of S given O: ™
P(S|O) for Gaussian RVs

L | > 0=Bs+y

-

| GSO —_ @SBT
@0 —_ BasBT + @Y

1.8}

; /i
/u

1 1
15 -1 D5 0 EI5 15 2 25 3 35

P(S|0) = N(ug + (950@01(0 1o), 05—05005'0,5)

-1
P(S|0) = N(us + OsB"(BOsB™ + 0,) (0 — Bus — ),
-1
Os—0sBT(BOSBT + 0,) BOy)




Recap: Conditional of S given O: ™
P(S|O) for Gaussian RVs

zill Illéll | 0=BS+¢

-

1.8}

/u

1o SR P(S) — N(SO' O)

~1
P(Sy|0,) = N(5o+ RoB"(BR,BT + 0,,) (0,— B5,— 1),
R, — R,B"(BR,BT + 0,)” BR,)

74



Continuous state systems

Py(s)

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Prediction at time O:
P(So) — N(EO'RO)

Update after O,:
P(S5100) = €. P(So)P(0o1S0)

P(S|00) = N(3o, Ry)

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



Continuous state systems

/\ s =A4s +¢&,

Py(s)

S

Prediction at time O:

Ot :Bl‘St_I_}/t

P(Sy) = N(Eo' Ro)

Update after O,:

P(S100) = N(30,Ro)

Ko = R,B"(BR,BT +6,) "

80 = 5o + Ko (0, — BS, — i)

Ry = — Ky R,

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:

P(S1|0¢.1) = C.P(51]10¢)P(04]S1)




Continuous state systems

/\ s =A4s +¢&,

S
Ot :BtSt+7/t

Py(s)

Prediction at time O:
P(So) — N(§0'R0)

Update after Oy: = N(3, + R,BT(BR,BT + @y)_l(OO — B5y— 1),

P(Sy|00) = C.P(Sy)P(05]So) R, — R,BT(BR,BT + @,) 'BR,)
0 0 0 Y 0

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



MLSP
Introducting shorthand notation

P(S,|09) = N(5, + RoBT(BR,BT + 0,) " (0, — BS, — i1,),
R, — R,BT(BR,B + 0,)” BR,)

-1
0 =S+ ROBT(BROBT + @y) (O — Bs, — ﬂy)

)

)

-1
o =R,— R,B"(BR,B" + 0,) BR,

P(So‘oo) — N(go; ﬁo)

78



MLSP
Introducting shorthand notation

P(S,|09) = N(5, + RoBT(BR,BT + 0,) " (0, — BS, — i1,),
R, — R,BT(BR,B + 0,)” BR,)

Ko = RyBT(BR,BT + 0,)”

So = So + Ko (0 — Bs, — 1)
Ry = (I - K(B)R,

P(So‘oo) — N(go; ﬁo)

79



Continuous state systems

/\ s =A4s +¢&,

Py(s)

S

Prediction at time O:

Ot :Bl‘St_I_}/t

P(Sy) = N(Eo' Ro)

Update after O,:

P(S100) = N(30,Ro)

Ko = R,B"(BR,BT +6,) "

80 = 5o + Ko (0, — BS, — i)

Ry = — Ky R,

Prediction at time 1:

P(51]10o) =J P(S0|00)P(S11S0)dS,

Update after O;:

P(S1|0¢.1) = C.P(51]10¢)P(04]S1)




Continuous state systems

Py(s)

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Prediction at time O:
P(SO) — N(Eo' Ro)

Update after O,:
P(S0]00) = N(§Or§0)

Ko = R,B"(BR,BT +6,) "

So = So + Ko(0y — BS, — p1y) Ry = (I - K(B)R,

Prediction at time 1:

P(5,10) = f P(So]00)P(S1150)dSs

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)
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The prediction equation

P(5,]0) = j P(Sy|06)P (S, 1S0)dS,

P(S0100) = N(g'o»ﬁo) /P(g) =N(4,;,9,)
P(S{1Sy) = N(AS, + 1, 0,) S = A8, + &,

* The integral of the product of two Gaussians

P(S{|0,) =j Gaussian(Sy; 3o, Ry)Gaussian(Sy; ASy, 0,)dS,




MLSP

The Prediction Equation

* The integral of the product of two Gaussians is
Gaussian!

P(5.|0,) = f Gaussian(Sy; 3o, Ry)Gaussian(Sy; ASy + pe, 0:)dS,

= j Clexp(—O.S(SO —30)Ry™* (So — §0)T)- C,exp(—0.5(S; — ASy — )0z 1 (S1 — ASp — ue)")dSo

= Gaussian(Sy; A8y + U, O, + ARyAT)

P(51100) = N(A3y + pie, 0, + AR AT)




Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:
P(SO) — N(Eo' Ro)

Update after O,: Ko = R,B"(BR,B" +6,) "

P(So100) = N(S0, Ro) 80 =5+ Ko(0y— B5,— 1) Ro = (I - KoB) R,

Prediction at time 1:

P(S,]00) = f P(So|00)P(S1]S0)dS, = N(A$y + g, O, + ARGAT)

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



MLSP
More shorthand notation

P(51|00) — N(A§O T U, ®e + AﬁOAT)

§1 — A§0+H£

Rl — @S +Aﬁ0AT

P(S40o) = N(s1,R4)

85



Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:
P(SO) — N(go' Ro)

Update after O,: Ko = R,B"(BR,B" +6,) "

P(So]00) = N (%o, Ro) 80 =5+ Ko(0y— B5,— 1) Ro= (I - K¢B)R,

Prediction at time 1:

S1 = ASo + 1,
P($1|100) = N(S1,R1) | [ R, =0, + AR A"

Update after O;:
P(81100:1) = C.P(8110¢)P(04]51)



Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:
P(SO) — N(go» Ro)

Update after O,: Ko = R,B"(BR,B" +6,) "

P(So]00) = N (%o, Ro) 80 =5+ Ko(0y— B5,— 1) Ro= (I - K¢B)R,

Prediction at time 1: _ ~
S1 = ASo + K,

P(5110¢) = N (51, Ry) R, = 0, + AR AT

Update after O;:

P($1]10¢.1) = C-P(S1|00)P(01|S1)



Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:

P(Sy) = N(go» Ro)

Update after O,: Ko = R,B"(BR,B" +6,) "

P(S0100) = N (80, Ro) S0 =5,+Ko(0p—B5;—1,)  Ro=(I-Kg

Prediction at time 1: _ ~
S1 = ASo + K,

P(5110¢) = N (51, Ry) R, = 0, + AR AT

Update after O;: K, = R,B"(BR,B" +6,)""

P(S1100:1) = C.P(51100)P(01|S1)= N(31, Ry) S5 Buct Kal(02 T B8 Tey)
R,=(—-KB)R,

R



Continuous state systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time O:

P(Sy) = N(go» Ro)

Update after O,: Ko = R,B"(BR,B" +6,) "

P(So]00) = N (%o, Ro) 80 =5+ Ko(0y— B5,— 1) Ro= (I - K¢B)R,

Prediction at time 1: _ ~
S1 = ASo + K,

P(5110¢) = N (51, Ry) R, = 0, + AR AT

Update after O;: K, = R,B"(BR,B" +6,)""

K’1 = (I - K1B) R1
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Ting o 53 Procesing o

Poll 3

Tracking state with a continuous-state system is strictly analogous to doing so with
an HMM

— True
— False

When the state and observation relations are given by equations between
continuous variables, rather than probabilistic dependencies, state estimation
becomes a deterministic procedure

— True

— False

In a linear Gaussian model, where the initial state distribution is Gaussian and
state and observation equations are affine, the predicted and updated state
probability distributions are:

— Always Gaussian

— Predicted distributions are Gaussian, but updated distributions may not be

— Neitheris assured to be Gaussian



Ting o 53 Procesing o

Poll 3

Tracking state with a continuous-state system is strictly analogous to doing so with
an HMM

— True
— False

When the state and observation relations are given by equations between
continuous variables, rather than probabilistic dependencies, state estimation
becomes a deterministic procedure

— True

— False

In a linear Gaussian model, where the initial state distribution is Gaussian and
state and observation equations are affine, the predicted and updated state
probability distributions are:

— Always Gaussian

— Predicted distributions are Gaussian, but updated distributions may not be

— Neitheris assured to be Gaussian



Gaussian Continuous State
Linear Systems

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time t

PBel00-1) = j P(St-1100:t-1)P(S¢St-1)dS¢-1

Update after observing O;:

P(St|00:t) — C-P(5t|00:t—1)P(0t|St)

Ny,
=

W
X

A\
N




Gaussian Continuous State
Linear Systems -

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

Prediction at time t
St = ASp—1 + Ue

P(S¢10¢.t-1) = N(5¢, Rt) R, = 0, + AR,_ AT

Update after observing O;:
K. = R,BT(BR,BT +0,)
P(S¢|00.t) = N(3¢ Ry) e =5 + K, (0t — B5, — )

S
ﬁt = (I —K:B)R,



Gaussian Continuous State
Linear Systems B

/\ s =A4s +¢&,

S
Ot :Bl‘St_I_}/t

Py(s)

KALMAN FILTER

Prediction at time t
St = ASp—1 + Ue

P(S¢10¢.t-1) = N(5¢, Rt) R, = 0, + AR,_ AT

Update after observing O;:

K. = R,BT(BR,BT +0,)

P(S¢|00.t) = N(3¢ Ry) e =5 + K, (0t — B5, — )

$
R.=(U—-KB)R,
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The Kalman filter

* Prediction (based on state equation)
§t = At.é‘\t_l + M. S, = AtSt—l + &,

R=0_+AR A

t =177

e Update (using observation and observation

equation) i _
K,=RB'(BRB +0,) O =PStT

/A A )

S, =5, +Kt(0t — B3, —,uy)

jét — (]_KtBt )Rt



MLSP
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Explaining the Kalman Filter

S = AzSt—l T &,

 Prediction
§t — AtSt—l T U, 0, = BtSt +7,

R=0_+AR A

t =177

» The Kalman filter can be explained
intuitively without working through
the math

S, =S8, +K,\0,—D,s, — 1)

jét — (]_KtBt )Rt

NEXT CLASS!



