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Preliminaries : P(y|x) for Gaussian

• The conditional probability of y given x is also Gaussian
– The slice in the figure is Gaussian

• The mean of this Gaussian is a function of x
• The variance of y reduces if x is known

– Uncertainty is reduced
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• If P(x,y) is Gaussian:
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Background: Sum of Gaussian RVs

• The conditional probability of O:

• The overall probability of O:
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Background: Joint Prob. of O and S

• The joint probability of O and S (i.e. P(Z)) is 
also Gaussian

• Where

•
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Preliminaries : Conditional of S 
given O: P(S|O)
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Estimating the state

• The state is estimated from the updated 
distribution
– The updated distribution is propagated into time, not 

the state
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Estimate(ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Estimate(ST) = argmax ST
P(ST | x0:T)

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Predicting the next observation

• The probability distribution for the observations at the 
next time is a mixture:

•

• The actual observation can be predicted from P(xT|x0:T-1)
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Predict P(xT|x0:T-1)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Predict xT

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Predicting the next observation

• Can use any of the various estimators of xT

from P(xT|x0:T-1)

• MAP estimate:
– argmaxxT

P(xT|x0:T-1)

• MMSE estimate:
– Expectation(xT|x0:T-1)
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Difference from Viterbi decoding

• Estimating only the current state at any time
– Not the state sequence
– Although we are considering all past observations

• The most likely state at T and T+1 may be such 
that there is no valid transition between ST
and ST+1
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The real-valued state model
• A state equation describing the dynamics of the system

– st is the state of the system at time t
– et is a driving function, which is assumed to be random

• The state of the system at any time depends only on the state at 
the previous time instant and the driving term at the current time

• An observation equation relating state to observation

– ot is the observation at time t
– gt is the noise affecting the observation (also random)

• The observation at any time depends only on the current state of 
the system and the noise
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Update after O1: 

Discrete vs. Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)

s

p 
0.2

0.3
0.4

0.1

0 1 2 3

0

1 2

3 ),( ttt sgo g

),( 1 ttt sfs e

    

         

ଵ    ଵ 

ௌబ

ଵ    ଵ  

ஶ

ିஶ

ଵ :ଵ ଵ  ଵ ଵ ଵ :ଵ ଵ  ଵ ଵ



Update after observing  Ot: 

Discrete vs. Continuous State Systems

Prediction at time t: 
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Initial state prob.

Discrete vs. Continuous State Systems

Parameters
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Special case: Linear Gaussian model

• A linear state dynamics equation
– Probability of state driving term e is Gaussian
– Sometimes viewed as a driving term e and additive 

zero-mean noise
• A linear observation equation

– Probability of observation noise g is Gaussian
• At, Bt and Gaussian parameters assumed known

– May vary with time
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Linear model example
The wind and the target

• State: Wind speed at time t depends on speed at 
time t-1

• Observation: Arrow position at time t depends on 
wind speed at time t
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Model Parameters: 
The initial state probability

• We also assume the initial state distribution to 
be Gaussian
– Often assumed zero mean
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Model Parameters:
The observation probability

• The probability of the observation, given the state, is 
simply the probability of the noise, with the mean 
shifted
– Since the only uncertainty is from the noise

• The new mean is the mean of the distribution of the 
noise + the value of the observation in the absence of 
noise
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Model Parameters:
State transition probability

• The probability of the state at time t, given the 
state at t-1, is simply the probability of the 
driving term, with the mean shifted
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)

s
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Continuous state systems



Model Parameters: 
The initial state probability

• We assume the initial state distribution to be 
Gaussian
– Often assumed zero mean
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)

s
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)

s
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Recap: Conditional of S given O: 
P(S|O) for Gaussian RVs
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)

s
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Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
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s

𝟎 𝟎 𝟎

   

ଵ    ଵ  

ஶ

ିஶ

ଵ :ଵ ଵ  ଵ ଵ

tttt sAs e1

tttt sBo g

Continuous state systems

𝑹𝟎 = (𝑰 − 𝑲𝟎) 𝑹𝟎𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩 𝑩𝑹0𝑩 + 𝜣𝜸
ି𝟏



Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)
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Introducting shorthand notation
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Introducting shorthand notation

32



Update after O1: 

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)

s
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Continuous state systems

𝑹𝟎 = (𝑰 − 𝑲𝟎) 𝑹𝟎𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩 𝑩𝑹0𝑩 + 𝜣𝜸
ି𝟏



Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
0(

s)
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    𝑹𝟎 = (𝑰 − 𝑲𝟎) 𝑹𝟎𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩 𝑩𝑹0𝑩 + 𝜣𝜸
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The prediction equation

• The integral of the product of two Gaussians
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The Prediction Equation
• The integral of the product of two Gaussians is 

Gaussian!
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
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    𝑹𝟎 = (𝑰 − 𝑲𝟎) 𝑹𝟎𝒔ො𝟎 = 𝒔ത0 + 𝑲𝟎(𝑶𝟎 − 𝑩𝒔0ഥ − 𝝁𝜸)

𝑲𝟎 = 𝑹0𝑩 𝑩𝑹0𝑩 + 𝜣𝜸
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More shorthand notation
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 
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Update after O1: 

Continuous state systems

Update after O0: 

Prediction at time 1: 

Prediction at time 0: 

P
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Update after observing  Ot: 

Gaussian Continuous State 
Linear Systems

Prediction at time t: 
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Update after observing  Ot: 

Prediction at time t: 

P
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Update after observing  Ot: 

Prediction at time t: 

P
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The Kalman filter
• Prediction (based on state equation)

• Update (using observation and observation 
equation)
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Explaining the Kalman Filter
• Prediction

• Update
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The Kalman filter can be explained 
intuitively without working through 
the math



 g tttttt sBoKsŝ

Explaining the Kalman Filter
• Prediction

• Update
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The Kalman filter can be explained 
intuitively without working through 
the math

To do so, we must think of the filter
as estimating (a) the state, and (b) the
uncertainty of the estimate



Prediction

• If our best guess for the state at time is 
, what is our best prediction for ?

• If the guess as uncertainty (variance) 
, what is the uncertainty of the prediction 

of the state at ?
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The Kalman filter
• Prediction

• Update
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at t-1 through the state dynamics equation
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The Kalman filter
• Prediction

• Update
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This is the uncertainty in the prediction. 
The variance of the predictor = 
variance of et + variance  of Ast-1

The two simply add because et is not 
correlated with st
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The Kalman filter
• Prediction

• Update
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We can also predict the observation from
the predicted state using the observation
equation

g ttt sBô



Prediction

• If our best prediction for the state at time is , what is 
our best prediction for ?
– If has uncertainty (variance) , what is the uncertainty of the 

prediction of the observation at ?

• Will the predicted be the same as the actual observation 
of ?
– How should we adjust our guess to account for this 

difference?
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Prediction

• If our best prediction for the state at time is , what is 
our best prediction for ?
– If has uncertainty (variance) , what is the uncertainty of the 

prediction of the observation at ?

• Will the predicted be the same as the actual observation 
of ?
– How should we adjust our guess to account for this 

difference?
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Prediction

• If our best prediction for the state at time is , what is 
our best prediction for ?
– If has uncertainty (variance) , what is the uncertainty of the 

prediction of the observation at ?

• Will the predicted be the same as the actual observation 
of ?
– How should we adjust our guess to account for this 

difference?
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Prediction

• If our best prediction for the state at time is , what is 
our best prediction for ?
– If has uncertainty (variance) , what is the uncertainty of the 

prediction of the observation at ?

• Will the predicted be the same as the actual observation 
of ?
– How should we adjust our guess to account for this 

difference?
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The Kalman filter
• Prediction

• Update
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MAP Recap (for Gaussians)
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MAP Recap: For Gaussians
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• If P(x,y) is Gaussian:
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“Slope” of the line



The Kalman filter
• Prediction

• Update

11-755/18797 60

e 1t̂tt sAs

  tttt RBKIR ˆ

T
tttt ARAR 1

ˆ
 e

 tttttt sBoKss ˆ

  1
 g

T
ttt

T
ttt BRBBRK

tttt sAs e 1

This is the slope of the MAP estimator 
that predicts s from o
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The Kalman filter
• Prediction

• Update
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The correction is the difference between 
the actual observation and the predicted 
observation, scaled by the Kalman Gain

We must correct the predicted 
value of the state after making 
an observation
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The Kalman filter
• Prediction

• Update
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The correction is the difference between 
the actual observation and the predicted 
observation, scaled by the Kalman Gain

We must correct the predicted 
value of the state after making 
an observation
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The Kalman filter
• Prediction

• Update:

• Update
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The Kalman filter
• Prediction

• Update:

• Update
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Kalman filter

• Predict state
• Predict measurement
• Compute measurement error
• Update state
• Note:  Progress of Kalman gain is not actually dependent on observations or estimated state…. 65
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Kalman filter

• Predict state
• Predict measurement
• Compute measurement error
• Update state
• Note:  Progress of Kalman gain is not actually dependent on observations or estimated state… 66

Predicted
state ௧

Predicted
observation ௧

Actual 
observation ௧

Updated
state ௧

௧ ఊ

௧ ఢ
𝑡 = 𝑡 + 1

Uncertainty

௧

Uncertainty

௧

Uncertainty

௧

𝐵𝑅௧𝐵் + Θఊ

𝐴𝑅௧𝐴் + Θఢ𝑡 = 𝑡 + 1



The Kalman Filter

• Very popular for tracking the state of 
processes
– Control systems
– Robotic tracking

• Simultaneous localization and mapping
– Radars
– Even the stock market..

• What are the parameters of the process?

11-755/18797 67



Kalman filter contd.

• Model parameters A and B must be known
– Often the state equation includes an additional 

driving term:   st = Atst-1 + Gtut + et

– The parameters of the driving term must be 
known

• The initial state distribution must be known
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Defining the parameters
• State state must be carefully defined

– E.g. for a robotic vehicle, the state is an extended 
vector that includes the current velocity and 
acceleration

• S = [X, dX, d2X]

• State equation: Must incorporate appropriate 
constraints
– If state includes acceleration and velocity, velocity at 

next time = current velocity + acc. * time step
– St = ASt-1 + e

• A = [1 t 0.5t2;  0 1 t; 0 0 1]
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Parameters

• Observation equation:
– Critical to have accurate observation equation
– Must provide a valid relationship between state 

and observations

• Observations typically high-dimensional
– May have higher or lower dimensionality than 

state
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Problems

• f() and/or g() may not be nice linear functions
– Conventional Kalman update rules are no longer 

valid

• e and/or g may not be Gaussian
– Gaussian based update rules no longer valid
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Linear Gaussian Model

P(s0| O0)  C P(s0) P(O0| s0)
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P(s1| O0:1)  C P(s1| O0) P(O1| s0)
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P(s2| O0:2)  C P(s2| O0:1) P(O2| s2)

All distributions remain Gaussian

P(s)  P(st|st-1)  P(Ot|st) 

P(s0)  P(s)

a priori Transition prob. State output prob
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Problems

• Nonlinear f() and/or g() : The Gaussian 
assumption breaks down
– Conventional Kalman update rules are no longer 

valid
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The problem with non-linear 
functions

• Estimation requires knowledge of P(o|s)
– Difficult to estimate for nonlinear g()

– Even if it can be estimated, may not be tractable with update loop

• Estimation also requires knowledge of P(st|st-1)
– Difficult for nonlinear f()
– May not be amenable to closed form integration
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The problem with nonlinearity

• The PDF may not have a closed form

• Even if a closed form exists initially, it will typically 
become intractable very quickly
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Example: a simple nonlinearity

• P(o|s) = ?
– Assume g is Gaussian
– P(g) = Gaussian(g; g, g)
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Example: a simple nonlinearity

• P(o|s) = ?
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Example: At T=0.

• Update
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UPDATE: At T=0.

• = Not Gaussian
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Prediction for T = 1
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Update at T=1 and later

• Update at T=1

– Intractable

• Prediction for T=2

– Intractable
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The State prediction Equation

• Similar problems arise for the state prediction 
equation

• P(st|st-1) may not have a closed form
• Even if it does, it may become intractable within 

the prediction and update equations
– Particularly the prediction equation, which includes an 

integration operation
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Simplifying the problem: Linearize

• The tangent at any point  is a good local approximation 
if the function is sufficiently smooth 
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Simplifying the problem: Linearize
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Simplifying the problem: Linearize
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Simplifying the problem: Linearize

11-755/18797 86

s

• The tangent at any point  is a good local approximation 
if the function is sufficiently smooth 



Linearizing the observation function

• Simple first-order Taylor series expansion
– J() is the Jacobian matrix

• Simply a determinant for scalar state

• Expansion around current predicted a priori 
(or predicted) mean of the state
– Linear approximation changes with time
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Most probability is in the low-error 
region

• P(st) is small where approximation error is large
– Most of the probability mass of s is in low-error 

regions
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Linearizing the observation function

• With the linearized approximation the system 
becomes “linear”

• The observation PDF becomes Gaussian
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The state equation?
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 Solution: Linearize

e  )( 1tt sfs ),0;()( eee  GaussianP

 Again, direct use of f() can be disastrous

 Linearize around the mean of the updated 
distribution of at 
 Converts the system to a linear one
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Linearized System

• Now we have a simple time-varying linear 
system

• Kalman filter equations directly apply
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The Extended Kalman filter
• Prediction

• Update
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The Extended Kalman filter
• Prediction

• Update
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)( tgt sJB 

The Extended Kalman filter
• Prediction

• Update
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The Extended Kalman filter
• Prediction

• Update
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The Kalman gain is the slope of the MAP 
estimator that predicts s from o
RBT =  Cso,   (BRBT+) = Coo
B is obtained by linearizing g()
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The Extended Kalman filter
• Prediction

• Update
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equation
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The Extended Kalman filter
• Prediction

• Update
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The correction is the difference between 
the actual observation and the predicted 
observation, scaled by the Kalman Gain

We must correct the predicted value of 
the state after making an observation



The Extended Kalman filter
• Prediction

• Update
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The uncertainty in state decreases if we 
observe the data and make a correction

The reduction is a multiplicative “shrinkage” 
based on Kalman gain and B
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The Extended Kalman filter
• Prediction

• Update

11-755/18797 99

)ˆ( 1 tt sfs

  tttt RBKIR ˆ

T
tttt ARAR 1

ˆ
 e

 )(ˆ ttttt sgoKss 

  1
 g

T
ttt

T
ttt BRBBRK

)(

)ˆ( 1

tgt

tft

sJB

sJA


 

e  )( 1tt sfs

e )( tt sgo



Extended Kalman filter

• Predict state
• Predict measurement
• Compute measurement error
• Update state
• Note:  Progress of Kalman gain is not actually dependent on observations or estimated state… 100
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Kalman filter

• Predict state
• Predict measurement
• Compute measurement error
• Update state
• Note:  Progress of Kalman gain is dependent on estimated state through the Jacobian… 101
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EKFs
• EKFs are probably the most commonly used algorithm 

for tracking and prediction
– Most systems are non-linear
– Specifically, the relationship between state and 

observation is usually nonlinear
– The approach can be extended to include non-linear 

functions of noise as well

• The term “Kalman filter” often simply refers to an 
extended Kalman filter in most contexts.

• But..
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EKFs have limitations

• If the non-linearity changes too quickly with s, the linear 
approximation is invalid
– Unstable

• The estimate is often biased
– The true function lies entirely on one side of the approximation

• Various extensions have been proposed:
– Invariant extended Kalman filters (IEKF)
– Unscented Kalman filters (UKF)
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Conclusions

• HMMs are predictive models
• Continuous-state models are simple 

extensions of HMMs
– Same math applies

• Prediction of linear, Gaussian systems can be 
performed by Kalman filtering

• Prediction of non-linear, Gaussian systems can 
be performed by Extended Kalman filtering
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