
Machine Learning for Signal Processing
Predicting and Estimation from

Time Series: Part 3

Bhiksha Raj

11-755/18797 1

The Problem

• Given a “state-space” system, where the system travels according to
a state-evolution relation

• And we only receive a sequence of observations that relate
stochastically to the state

• We must determine the sequence of underlying states

• Many applications: Control (e.g. autonomous vehicles, robots) and
prediction (e.g. stock market)

11-755/18797 2

),(1 ttt sfs 

),(ttt sgo 

Approach

• Given the best guest for the state at time ,
predict the state at time

• Using the predicted state , predict the observation

• Make an actual observation
• Update your best guess for the state at time by

11-755/18797 3

This is actually an implementation
of the following

• The state is estimated from the updated
distribution
– The updated distribution is propagated into time, not

the state
11-755/18797 4

Estimate(ST)

Predict the
distribution of the

state at T

Update the
distribution of the

state at T
after observing xT

T=T+1

Estimate(ST) = argmax ST
P(ST | x0:T)

P(ST | x0:T-1) = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T) = C. P(ST | x0:T-1) P(xT|ST)

You can also predict the next
observation

• The probability distribution for the observations at the
next time is a mixture:

•

• The actual observation can be predicted from P(xT|x0:T-1)
11-755/18797 5

Predict P(xT|x0:T-1)

Predict the
distribution of the

state at T

Update the
distribution of the

state at T
after observing xT

T=T+1

Predict xT

P(ST | x0:T-1) = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T) = C. P(ST | x0:T-1) P(xT|ST)

Update after observing Ot:

Discrete vs. Continuous State Systems

Prediction at time t:

),(ttt sgo 

),(1 ttt sfs 

0

1 2

3

௧ ଴:௧ିଵ ௧ିଵ ଴:௧ିଵ ௧ ௧ିଵ

ௌ೟షభ

௧ ଴:௧ିଵ ௧ିଵ ଴:௧ିଵ ௧ ௧ିଵ ௧ିଵ

ஶ

ିஶ

௧ ଴:௧ ௧ ଴:௧ିଵ ௧ ௧ ௧ ଴:௧ ௧ ଴:௧ିଵ ௧ ௧

p 
0.2

0.3
0.4

0.1

0 1 2 3

Initial state prob.

Discrete vs. Continuous State Systems

Parameters

),(ttt sgo 

),(1 ttt sfs 

Transition prob

Observation prob

0

1 2

3

p 
0.2

0.3
0.4

0.1

0 1 2 3

Special case: Linear Gaussian model

• A linear state dynamics equation
– Probability of state driving term  is Gaussian
– Sometimes viewed as a driving term m and additive

zero-mean noise
• A linear observation equation

– Probability of observation noise  is Gaussian
• At, Bt and Gaussian parameters assumed known

– May vary with time
11-755/18797 8

tttt sBo 

tttt sAs  1
    



mm
p

 


 15.0exp
||)2(

1
)(T

d
P

    



mm
p

 


 15.0exp
||)2(

1
)(T

d
P

Linear model example
The wind and the target

• State: Wind speed at time t depends on speed at
time t-1

• Observation: Arrow position at time t depends on
wind speed at time t

11755/18797 9

The Kalman filter
• Prediction (based on state equation)

• Update (using observation and observation
equation)

11-755/18797 10

m 1t̂tt sAs

  tttt RBKIR ˆ

T
tttt ARAR 1

ˆ
 

 m tttttt sBoKsŝ

  1
 

T
ttt

T
ttt BRBBRK

tttt sAs  1

tttt sBo 

Problems

• f() and/or g() may not be nice linear functions
– Conventional Kalman update rules are no longer

valid

•  and/or  may not be Gaussian
– Gaussian based update rules no longer valid

11-755/18797 11

),(ttt sgo 

),(1 ttt sfs 

Problems

• f() and/or g() may not be nice linear functions
– Conventional Kalman update rules are no longer

valid

•  and/or  may not be Gaussian
– Gaussian based update rules no longer valid

11-755/18797 12

),(ttt sgo 

),(1 ttt sfs 

The Extended Kalman filter
• Prediction

• Update

11-755/18797 13

)ˆ(1 tt sfs

  tttt RBKIR ˆ

T
tttt ARAR 1

ˆ
 

 )(ˆ ttttt sgoKss 

  1
 

T
ttt

T
ttt BRBBRK

)(

)ˆ(1

tgt

tft

sJB

sJA


 

 )(1tt sfs

)(tt sgo

Jacobians used in
Linearization

Assuming  and 
are 0 mean for
simplicity

A different problem: Non-Gaussian
PDFs

• We have assumed so far that:
– P0(s) is Gaussian or can be approximated as Gaussian
– P() is Gaussian
– P() is Gaussian

• This has a happy consequence: All distributions remain
Gaussian
– Even if and/or are nonlinear.

• But when any of these are not Gaussian, the results are not
so happy

11-755/18797 14

 )(1tt sfs)(tt sgo

Linear Gaussian Model

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

1121:011:02)|()O|()O|(dsssPsPsP 






P(s2| O0:2)  C P(s2| O0:1) P(O2| s2)

All distributions remain Gaussian

P(s)  P(st|st-1)  P(Ot|st) 

P(s0)  P(s)

a priori Transition prob. State output prob

tttt sBo 
tttt sAs  1

A different problem: Non-Gaussian
PDFs

• We have assumed so far that:
– P0(s) is Gaussian or can be approximated as Gaussian
– P() is Gaussian
– P() is Gaussian

• This has a happy consequence: All distributions remain
Gaussian
– Even if and/or are nonlinear.

• But when any of these are not Gaussian, the results are not
so happy

11-755/18797 16

 )(1tt sfs)(tt sgo

A simple case

• P() is a mixture of only two Gaussians

• o is a linear function of s
– Non-linear functions would be linearized anyway

• P(o|s) is also a Gaussian mixture!

11-755/18797 17

 tt Bso 



1

0

),;()(
i

iiiGaussianwP m





1

0

),;()()|(
i

itiitttt BsoGaussianwBsoPsoP m

)|(tt soP)(P

When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)

When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

1121:011:02)|()O|()O|(dsssPsPsP 






When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

1121:011:02)|()O|()O|(dsssPsPsP 






P(s2| O0:2)  C P(s2| O0:1) P(O2| s2)

When P(Ot|st) has more than one Gaussian, after only a few time steps…

When distributions are not Gaussian

We have too many Gaussians for comfort..

)O|(t:0tsP

Related Topic: How to sample from a
Distribution?

• “Sampling from a Distribution P(x; G) with parameters G”
• Generate random numbers such that

– The distribution of a large number of generated numbers is P(x; G)
– The parameters of the distribution are G

• Many algorithms to generate RVs from a variety of
distributions
– Generation from a uniform distribution is well studied
– Uniform RVs used to sample from category distributions
– Other distributions: Most commonly, transform a uniform RV to

the desired distribution

11-755/18797 25

Sampling from a category PDF

• Given a category PDF over N symbols, with
probability of ith symbol = P(i)

• Randomly generate symbols from this
distribution

• Can be done by sampling from a uniform
distribution

11-755/18797 26

Sampling a category PDF

• Segment a range (0,1) according to the probabilities P(i)
– The P(i) terms will sum to 1.0

• Randomly generate a number from a uniform distribution
– Matlab: “rand”.
– Generates a number between 0 and 1 with uniform probability

• If the number falls in the ith segment, select the ith symbol
11-755/18797 27

1.0

P(1) P(2) P(3) P(N)

Sampling a category PDF

• Segment a range (0,1) according to the probabilities P(i)
– The P(i) terms will sum to 1.0

• Randomly generate a number from a uniform distribution
– Matlab: “rand”.
– Generates a number between 0 and 1 with uniform probability

• If the number falls in the ith segment, select the ith symbol
11-755/18797 28

1.0

P(1) P(2) P(3) P(N)

P(1)+P(2) P(1)+P(2)+P(3)

Related Topic: Sampling from a
Gaussian

• Many algorithms
– Simplest: add many samples from a uniform RV
– The sum of 12 uniform RVs (uniform in (0,1)) is

approximately Gaussian with mean 6 and variance 1
– For scalar Gaussian, mean m, std dev s:

• Matlab : x = m + randn* s
– “randn” draws from a Gaussian of mean=0,

variance=1

11-755/18797 29





12

1

6
i

irx

Related Topic: Sampling from a
Gaussian

• Multivariate (d-dimensional) Gaussian with
mean m and covariance 
– Compute eigen value matrix L and eigenvector

matrix E for 
•  = E L ET

– Generate d 0-mean unit-variance numbers x1..xd

– Arrange them in a vector:
X = [x1 .. xd]T

– Multiply X by the square root of L and E, add m

Y = m + E sqrt(L) X
11-755/18797 30

Sampling from a Gaussian Mixture

• Select a Gaussian by sampling the multinomial
distribution of weights:

• Sample from the selected Gaussian

11-755/18797 31

 
i

iii XGaussianw),;(m

),;(jjXGaussian m

When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

1121:011:02)|()O|()O|(dsssPsPsP 






P(s2| O0:2)  C P(s2| O0:1) P(O2| s2)

When P(Ot|st) has more than one Gaussian, after only a few time steps…

The problem of the exploding
distribution

• The complexity of the distribution increases exponentially
with time

• This is a consequence of having a continuous state space
– Only Gaussian PDFs propagate without increase of complexity

• Discrete-state systems do not have this problem
– The number of states in an HMM stays fixed
– However, discrete state spaces are too coarse

• Solution: Combine the two concepts
– Discretize the state space dynamically

11-755/18797 33

Discrete approximation to a
distribution

• A large-enough collection of randomly-drawn samples
from a distribution will approximately quantize the
space of the random variable into equi-probable
regions
– We have more random samples from high-probability

regions and fewer samples from low-probability reigons

11-755/18797 34

Discrete approximation: Random
sampling

• A PDF can be approximated as a uniform probability distribution
over randomly drawn samples
– Since each sample represents approximately the same probability

mass (1/M if there are M samples)

11-755/18797 35







1

0

)(
1

)(
M

i
ixx

M
xP 

Note: Properties of a discrete
distribution

• The product of a discrete distribution with
another distribution is simply a weighted
discrete probability

• The integral of the product is a mixture
distribution

11-755/18797 36







1

0

)(
1

)(
M

i
ixx

M
xP  






1

0

)()|()|()(
M

i
ii xxxyPxyPxP 











1

0

)|()|()(
M

i
ii xyPwdxxyPxP






1

0

)()(
M

i
ii xxwxP 

Discretizing the state space

• At each time, discretize the predicted state
space

– si are randomly drawn samples from P(st|o0:t)

• Propagate the discretized distribution

11-755/18797 37







1

0
:0)(

1
)|(

M

i
ittt ss

M
osP 

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

a priori Transition prob. State output prob

predict

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

a priori Transition prob. State output prob

sample

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

a priori Transition prob. State output prob

sample

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

update

P(s0| O0)  C P(s0) P(O0| s0)

a priori Transition prob. State output prob

sample

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

predict

0010001)|()O|()O|(dsssPsPsP 






a priori Transition prob. State output prob

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

predict

0010001)|()O|()O|(dsssPsPsP 






a priori Transition prob. State output prob

sample

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






update

P(s1| O0:1)  C P(s1| O0) P(O1| s0)

a priori Transition prob. State output prob

sample

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

predict

1121:011:02)|()O|()O|(dsssPsPsP 






a priori Transition prob. State output prob

sample

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

predict

1121:011:02)|()O|()O|(dsssPsPsP 






a priori Transition prob. State output prob

sample

Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)

P(s0| O0)  C P(s0) P(O0| s0)

0010001)|()O|()O|(dsssPsPsP 






P(s1| O0:1)  C P(s1| O0) P(O1| s0)

1121:011:02)|()O|()O|(dsssPsPsP 






update
P(s2| O0:2)  C P(s2| O0:1) P(O2| s2)

Particle Filtering
• Discretize state space at the prediction step

– By sampling the continuous predicted distribution
• If appropriately sampled, all generated samples may be considered to be equally

probable

– Sampling results in a discrete uniform distribution

• Update step updates the distribution of the quantized state space
– Results in a discrete non-uniform distribution

• Predicted state distribution for the next time instant will again be
continuous
– Must be discretized again by sampling

• At any step, the current state distribution will not have more components
than the number of samples generated at the previous sampling step
– The complexity of distributions remains constant

11-755/18797 47

Particle Filtering

Number of mixture components in predicted distribution governed
by number of samples in discrete distribution

By deriving a small (100-1000) number of samples at each time
instant, all distributions are kept manageable

111-t:011-t:0)|()O|()O|(




 ttttt dsssPsPsP

Prediction at time t:

)|O()O|()O|(1-t:0t:0 tttt sPsCPsP 
Update at time t:

a priori Transition prob. State output prob

predictsample

update

P(s) = P(st|st-1) = P(Ot|st) =

Standard KF/EKF

• Predict state
• Predict measurement
• Compute measurement error
• Update stateations or estimated state…

49

Predicted
state ௧

Predicted
observation ௧

Actual
observation ௧

Updated
state ௧

𝑡 = 𝑡 + 1
𝑠௧ = 𝑓(𝑠௧ିଵ)

𝑜௧ = 𝑔(�̅�௧)

Particle Filter

• Predict state distribution
– Sample to discretize

• Predict measurement distribution
– Compute measurement error

• Update discretized state distribution
50

Predicted
state ௧

Predicted
observation ௧

Actual
observation ௧

Updated
state ௧

𝑡 = 𝑡 + 1
𝑠௧ = 𝑓(𝑠௧ିଵ)

Discretize
by sampling

Particle Filtering

• At t = 0, sample the initial state distribution

• Update the state distribution with the observation

11-755/18797 51

 )(1tt sfs)(tt sgo

)(P)(P

)(where)(
1

)()|(0
0

1

0

0
0010 sPsss

M
sPosP i

M

i
i  




 







1

0
:0)())(()|(

M

i

t
it

t
ittt sssgoPCosP  






 1

0

))((

1
M

i

t
it sgoP

C



Particle Filtering

• Predict the state distribution at the next time

• Sample the predicted state distribution

11-755/18797 52

 )(1tt sfs)(tt sgo

)(P)(P







 

1

0

11
11:0))(())(()|(

M

i

t
it

t
ittt sfsPsgoPCosP 

)|(where)(
1

)|(1:0

1

0
1:0 




   tt

t
i

M

i

t
ittt osPsss

M
osP 

Particle Filtering

• Predict the state distribution at t

• Sample the predicted state distribution at t

• Update the state distribution at t

11-755/18797 53

 )(1tt sfs)(tt sgo)(P)(P







 

1

0

11
11:0))(())(()|(

M

i

t
it

t
ittt sfsPsgoPCosP 

)|(where)(
1

)|(1:0

1

0
1:0 




   tt

t
i

M

i

t
ittt osPsss

M
osP 







1

0
:0)())(()|(

M

i

t
it

t
ittt sssgoPCosP  






 1

0

))((

1
M

i

t
it sgoP

C



Estimating a state

• The algorithm gives us a discrete updated
distribution over states:

• The actual state can be estimated as the mean
of this distribution

• Alternately, it can be the most likely sample

11-755/18797 54







1

0
:0)())(()|(

M

i

t
it

t
ittt sssgoPCosP 







1

0

))((ˆ
M

i

t
it

t
it sgoPsCs 

))((maxarg : ˆ t
iti

t
jt sgoPjss  

Simulations with a Linear Model

• t has a Gaussian distribution with 0 mean, known variance

• xt has a mixture Gaussian distribution with known parameters
• Simulation:

– Generate state sequence st from model

– Generate sequence of xt from model with one xt term for every st term

– Generate observation sequence ot from st and xt

– Attempt to estimate st from ot

ttt xso 
ttt ss  1

Simulation: Synthesizing data

11-755/18797 56

Generate state sequence according to:
t is Gaussian with mean 0 and variance 10

ttt ss  1

11-755/18797 57

Generate state sequence according to:
t is Gaussian with mean 0 and variance 10

ttt ss  1

Generate observation sequence from state sequence according to:
xt is mixture Gaussian with parameters:
Means = [-4, 0, 4, 8, 12, 16, 18, 20]
Variances = [10, 10, 10, 10, 10, 10, 10, 10]
Mixture weights = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]

ttt xso 

Simulation: Synthesizing data

Combined figure for more compact
representation

11-755/18797 58

Simulation: Synthesizing data

SIMULATION: TIME = 1

11-755/18797 59

PREDICTED STATE DISTRIBUTION
AT TIME = 1

predict

11-755/18797 60

SAMPLED VERSION OF
PREDICTED STATE DISTRIBUTION
AT TIME = 1

predict sample

SIMULATION: TIME = 1

11-755/18797 61

SAMPLED VERSION OF
PREDICTED STATE DISTRIBUTION
AT TIME = 1

sample

SIMULATION: TIME = 1

SIMULATION: TIME = 1

11-755/18797 62

UPDATED VERSION OF
SAMPLED VERSION OF
PREDICTED STATE DISTRIBUTION
AT TIME = 1
AFTER SEEING FIRST OBSERVATION

updatesample

SIMULATION: TIME = 1

11-755/18797 63

update

update, t <= 1

SIMULATION: TIME = 2

11-755/18797 64

update predict

update, t <= 1

SIMULATION: TIME = 2

11-755/18797 65

predict

update, t <= 1

SIMULATION: TIME = 2

11-755/18797 66

predict sample

update, t <= 1

SIMULATION: TIME = 2

11-755/18797 67

sample

update, t <= 1

SIMULATION: TIME = 2

11-755/18797 68

updatesample

update, t <= 1

SIMULATION: TIME = 2

11-755/18797 69

update

update, t <= 2

SIMULATION: TIME = 3

11-755/18797 70

update predict

update, t <= 2

SIMULATION: TIME = 3

11-755/18797 71

predict

update, t <= 2

SIMULATION: TIME = 3

11-755/18797 72

predict sample

update, t <= 2

SIMULATION: TIME = 3

11-755/18797 73

sample

update, t <= 2

SIMULATION: TIME = 3

11-755/18797 74

updatesample

update, t <= 2

SIMULATION: TIME = 3

11-755/18797 75

The figure below shows the contour of
the updated state probabilities for all

time instants until the current instant

update

update, t <= 3

Simulation: Updated Probs Until
T=3

11-755/18797 76

update, t <= 3

11-755/18797 77

update, t <= 100

Simulation: Updated Probs Until
T=100

11-755/18797 78

update, t <= 200

Simulation: Updated Probs Until
T=200

update, t <= 300

Simulation: Updated Probs Until
T=300

11-755/18797 79

update, t <= 500

Simulation: Updated Probs Until
T=500

11-755/18797 80

update, t <= 1000

Simulation: Updated Probs Until
T=1000

11-755/18797 81

11-755/18797 82

update, t <= 1000

Updated Probs Until T = 1000

update, t <= 1000

Updated Probs Until T = 1000

11-755/18797 83

11-755/18797 84

update, t <= 1000
Updated Probs: Top View

11-755/18797 85

ESTIMATED STATE

11-755/18797 86

Observation, True States, Estimate

Particle Filtering

• Generally quite effective in scenarios where EKF/UKF may
not be applicable
– Potential applications include tracking and edge detection in

images!
– Not very commonly used however

• Highly dependent on sampling
– A large number of samples required for accurate representation
– Samples may not represent mode of distribution
– Some distributions are not amenable to sampling

• Use importance sampling instead: Sample a Gaussian and assign non-
uniform weights to samples

11-755/18797 87

Prediction filters

• HMMs
• Continuous state systems

– Linear Gaussian: Kalman
– Nonlinear Gaussian: Extended Kalman
– Non-Gaussian: Particle filtering

• EKFs are the most commonly used kalman filters

• Accurate predictions with non-Gaussian models need
particle-filters or other sampling based methods

11-755/18797 88

89

The Abrupt Stop

