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The Problem

• Given a “state-space” system, where the system travels according to 
a state-evolution relation

• And we only receive a sequence of observations that relate 
stochastically to the state

• We must determine the sequence of underlying states

• Many applications: Control (e.g. autonomous vehicles, robots) and 
prediction (e.g. stock market)
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Approach

• Given the best guest for the state at time ,  
predict the state at time 

• Using the predicted state , predict the observation 

• Make an actual observation 
• Update your best guess for the state at time by
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This is actually an implementation 
of the following

• The state is estimated from the updated 
distribution
– The updated distribution is propagated into time, not 

the state
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Estimate(ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Estimate(ST) = argmax ST
P(ST | x0:T)

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



You can also predict the next
observation

• The probability distribution for the observations at the 
next time is a mixture:

•

• The actual observation can be predicted from P(xT|x0:T-1)
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Predict P(xT|x0:T-1)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T
after observing xT

T=T+1

Predict xT

P(ST | x0:T-1)  = SST-1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)



Update after observing  Ot: 

Discrete vs. Continuous State Systems

Prediction at time t: 
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Initial state prob.

Discrete vs. Continuous State Systems

Parameters
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Observation prob

0

1 2

3

p 
0.2

0.3
0.4

0.1

0 1 2 3



Special case: Linear Gaussian model

• A linear state dynamics equation
– Probability of state driving term  is Gaussian
– Sometimes viewed as a driving term m and additive 

zero-mean noise
• A linear observation equation

– Probability of observation noise  is Gaussian
• At, Bt and Gaussian parameters assumed known

– May vary with time
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Linear model example
The wind and the target

• State: Wind speed at time t depends on speed at 
time t-1

• Observation: Arrow position at time t depends on 
wind speed at time t
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The Kalman filter
• Prediction (based on state equation)

• Update (using observation and observation 
equation)
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Problems

• f() and/or g() may not be nice linear functions
– Conventional Kalman update rules are no longer 

valid

•  and/or  may not be Gaussian
– Gaussian based update rules no longer valid
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The Extended Kalman filter
• Prediction

• Update
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A different problem: Non-Gaussian 
PDFs

• We have assumed so far that:
– P0(s) is Gaussian or can be approximated as Gaussian
– P() is Gaussian
– P() is Gaussian

• This has a happy consequence: All distributions remain 
Gaussian
– Even if and/or are nonlinear.

• But when any of these are not Gaussian, the results are not 
so happy
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Linear Gaussian Model

P(s0| O0)  C P(s0) P(O0| s0)
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All distributions remain Gaussian

P(s)  P(st|st-1)  P(Ot|st) 

P(s0)  P(s)

a priori Transition prob. State output prob
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A different problem: Non-Gaussian 
PDFs

• We have assumed so far that:
– P0(s) is Gaussian or can be approximated as Gaussian
– P() is Gaussian
– P() is Gaussian

• This has a happy consequence: All distributions remain 
Gaussian
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A simple case

• P() is a mixture of only two Gaussians 

• o is a linear function of s
– Non-linear functions would be linearized anyway

• P(o|s) is also a Gaussian mixture!
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When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =

a priori Transition prob. State output prob

P(s0)  P(s)
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When distributions are not Gaussian

We have too many Gaussians for comfort..
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Related Topic: How to sample from a 
Distribution?

• “Sampling from a Distribution P(x; G) with parameters G”
• Generate random numbers such that

– The distribution of a large number of generated numbers is P(x; G) 
– The parameters of the distribution are G

• Many algorithms to generate RVs from a variety of 
distributions
– Generation from a uniform distribution is well studied
– Uniform RVs used to sample from category distributions
– Other distributions: Most commonly, transform a uniform RV to 

the desired distribution
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Sampling from a category PDF

• Given a category PDF over N symbols, with 
probability of ith symbol = P(i)

• Randomly generate symbols from this 
distribution

• Can be done by sampling from a uniform 
distribution
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Sampling a category PDF

• Segment a range (0,1) according to the probabilities P(i)
– The P(i) terms will sum to 1.0

• Randomly generate a number from a uniform distribution
– Matlab:  “rand”.
– Generates a number between 0 and 1 with uniform probability

• If the number falls in the ith segment, select the ith symbol
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Sampling a category PDF

• Segment a range (0,1) according to the probabilities P(i)
– The P(i) terms will sum to 1.0

• Randomly generate a number from a uniform distribution
– Matlab:  “rand”.
– Generates a number between 0 and 1 with uniform probability

• If the number falls in the ith segment, select the ith symbol
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Related Topic: Sampling from a 
Gaussian

• Many algorithms
– Simplest: add many samples from a uniform RV
– The sum of 12 uniform RVs (uniform in (0,1)) is 

approximately Gaussian with mean 6 and variance 1
– For scalar Gaussian, mean m, std dev s:

• Matlab :   x = m + randn* s
– “randn” draws from a Gaussian of mean=0, 

variance=1
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Related Topic: Sampling from a 
Gaussian

• Multivariate (d-dimensional) Gaussian with 
mean m and covariance 
– Compute eigen value matrix L and eigenvector 

matrix E for 
•  = E L ET

– Generate d 0-mean unit-variance numbers x1..xd

– Arrange them in a vector:
X = [x1 .. xd]T

– Multiply X by the square root of L and E, add m

Y = m + E sqrt(L) X
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Sampling from a Gaussian Mixture

• Select a Gaussian by sampling the multinomial 
distribution of weights:

• Sample from the selected Gaussian 
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When distributions are not Gaussian

P(s) = P(st|st-1) = P(Ot|st) =
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The problem of the exploding 
distribution

• The complexity of the distribution increases exponentially 
with time

• This is a consequence of having a continuous state space
– Only Gaussian PDFs propagate without increase of complexity

• Discrete-state systems do not have this problem
– The number of states in an HMM stays fixed
– However, discrete state spaces are too coarse

• Solution: Combine the two concepts
– Discretize the state space dynamically
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Discrete approximation to a 
distribution

• A large-enough collection of randomly-drawn samples 
from a distribution will approximately quantize the 
space of the random variable into equi-probable 
regions
– We have more random samples from high-probability 

regions and fewer samples from low-probability reigons
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Discrete approximation: Random 
sampling

• A PDF can be approximated as  a uniform probability distribution 
over randomly drawn samples
– Since each sample represents approximately the same probability 

mass (1/M if there are M samples)
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Note: Properties of a discrete 
distribution

• The product of a discrete distribution with 
another distribution is simply a weighted 
discrete probability

• The integral of the product is a mixture 
distribution
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Discretizing the state space

• At each time, discretize the predicted state 
space

– si are randomly drawn samples from P(st|o0:t)

• Propagate the discretized distribution
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Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions

a priori Transition prob. State output prob

predict

P(s) = P(st|st-1) = P(Ot|st) =

P(s0)  P(s)
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a priori Transition prob. State output prob
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Particle Filtering

Assuming that we only generate FOUR
samples from the predicted distributions
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Particle Filtering
• Discretize state space at the prediction step

– By sampling the continuous predicted distribution
• If appropriately sampled, all generated samples may be considered to be equally 

probable

– Sampling results in a discrete uniform distribution

• Update step updates the distribution of the quantized state space
– Results in a discrete non-uniform distribution

• Predicted state distribution for the next time instant will again be 
continuous
– Must be discretized again by sampling

• At any step, the current state distribution will not have more components 
than the number of samples generated at the previous sampling step
– The complexity of distributions remains constant
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Particle Filtering

Number of mixture components in predicted distribution governed 
by number of samples in discrete distribution

By deriving a small (100-1000) number of samples at each time 
instant, all distributions are kept manageable
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Standard KF/EKF

• Predict state
• Predict measurement
• Compute measurement error
• Update stateations or estimated state…
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Particle Filter

• Predict state distribution
– Sample to discretize

• Predict measurement distribution
– Compute measurement error

• Update discretized state distribution
50
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Particle Filtering

• At t = 0, sample the initial state distribution

• Update the state distribution with the observation
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Particle Filtering

• Predict the state distribution at the next time

• Sample the predicted state distribution
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Particle Filtering

• Predict the state distribution at t

• Sample the predicted state distribution at t

• Update the state distribution at t
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Estimating a state

• The algorithm gives us a discrete updated 
distribution over states:

• The actual state can be estimated as the mean 
of this distribution

• Alternately, it can be the most likely sample
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Simulations with a Linear Model

• t has a Gaussian distribution with 0 mean, known variance

• xt has a mixture Gaussian distribution with known parameters
• Simulation: 

– Generate state sequence st from model

– Generate sequence of xt from model with one xt term for every st term

– Generate observation sequence ot from st and xt

– Attempt to estimate st from ot

ttt xso 
ttt ss  1



Simulation: Synthesizing data
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Generate state sequence according to:                       
t is Gaussian with mean 0 and variance 10

ttt ss  1
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Generate state sequence according to:                       
t is Gaussian with mean 0 and variance 10

ttt ss  1

Generate observation sequence from state sequence according to:                       
xt is mixture Gaussian with parameters:
Means = [-4, 0, 4, 8, 12, 16, 18, 20]
Variances = [10, 10, 10, 10, 10, 10, 10, 10]
Mixture weights = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]

ttt xso 

Simulation: Synthesizing data



Combined figure for more compact
representation
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Simulation: Synthesizing data



SIMULATION: TIME = 1
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PREDICTED STATE DISTRIBUTION
AT TIME = 1

predict
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SAMPLED VERSION OF
PREDICTED STATE DISTRIBUTION
AT TIME = 1

predict sample

SIMULATION: TIME = 1
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SAMPLED VERSION OF
PREDICTED STATE DISTRIBUTION
AT TIME = 1

sample

SIMULATION: TIME = 1



SIMULATION: TIME = 1
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UPDATED VERSION OF
SAMPLED VERSION OF
PREDICTED STATE DISTRIBUTION
AT TIME = 1
AFTER SEEING FIRST OBSERVATION

updatesample



SIMULATION: TIME = 1
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update

update, t <= 1



SIMULATION: TIME = 2
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update predict

update, t <= 1



SIMULATION: TIME = 2
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predict

update, t <= 1



SIMULATION: TIME = 2
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predict sample

update, t <= 1



SIMULATION: TIME = 2
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sample

update, t <= 1



SIMULATION: TIME = 2
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updatesample

update, t <= 1



SIMULATION: TIME = 2
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update

update, t <= 2



SIMULATION: TIME = 3
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update predict

update, t <= 2



SIMULATION: TIME = 3
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predict

update, t <= 2



SIMULATION: TIME = 3
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predict sample

update, t <= 2



SIMULATION: TIME = 3
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sample

update, t <= 2



SIMULATION: TIME = 3
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updatesample

update, t <= 2



SIMULATION: TIME = 3
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The figure below shows the contour of
the updated state probabilities for all

time instants until the current instant

update

update, t <= 3



Simulation: Updated Probs Until 
T=3
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update, t <= 3
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update, t <= 100

Simulation: Updated Probs Until 
T=100
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update, t <= 200

Simulation: Updated Probs Until 
T=200



update, t <= 300

Simulation: Updated Probs Until 
T=300
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update, t <= 500

Simulation: Updated Probs Until 
T=500
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update, t <= 1000

Simulation: Updated Probs Until 
T=1000
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update, t <= 1000

Updated Probs Until T = 1000



update, t <= 1000

Updated Probs Until T = 1000
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update, t <= 1000
Updated Probs: Top View



11-755/18797 85

ESTIMATED STATE
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Observation, True States, Estimate



Particle Filtering

• Generally quite effective in scenarios where EKF/UKF may 
not be applicable
– Potential applications include tracking and edge detection in 

images!
– Not very commonly used however

• Highly dependent on sampling
– A large number of samples required for accurate representation
– Samples may not represent mode of distribution
– Some distributions are not amenable to sampling

• Use importance sampling instead: Sample a Gaussian and assign non-
uniform weights to samples
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Prediction filters

• HMMs
• Continuous state systems

– Linear Gaussian:   Kalman
– Nonlinear Gaussian:  Extended Kalman
– Non-Gaussian:  Particle filtering

• EKFs are the most commonly used kalman filters

• Accurate predictions with non-Gaussian models need 
particle-filters or other sampling based methods
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The Abrupt Stop


