Machine Learning for Signal Processing Predicting and Estimation from Time Series: Part 3

Bhiksha Raj

The Problem

• Given a "state-space" system, where the system travels according to a state-evolution relation

$$s_t = f(s_{t-1}, \varepsilon_t)$$

• And we only receive a sequence of observations that relate stochastically to the state

$$o_t = g(s_t, \gamma_t)$$

- We must determine the sequence of underlying states
- Many applications: Control (e.g. autonomous vehicles, robots) and prediction (e.g. stock market)

Approach

• Given the best guest \hat{s}_{t-1} for the state at time t - 1, predict the state \bar{s}_t at time t

$$\bar{s}_t = f(\hat{s}_{t-1}, \varepsilon_t)$$

- Using the predicted state \bar{s}_t , predict the observation \bar{o}_t $\bar{o}_t = g(\bar{s}_t, \gamma_t)$
- Make an actual observation o_t
- Update your best guess for the state at time t by

$$\hat{s}_t = \bar{s}_t + K(o_t - \bar{o}_t)$$

- The state is estimated from the updated distribution
 - The updated distribution is propagated into time, not the state

- The probability distribution for the observations at the next time is a mixture:
- $P(X_t|X_{0:t-1}) = \sum_{S_t} P(X_t|S_t) P(S_t|X_{0:t-1})$
- The actual observation can be predicted from $P(x_T | x_{0:T-1})_{5}$

Discrete vs. Continuous State Systems

$$s_t = f(s_{t-1}, \varepsilon_t)$$

 $o_t = g(s_t, \gamma_t)$

Prediction at time t: $P(S_t|O_{0:t-1}) = \sum_{S_{t-1}} P(S_{t-1}|O_{0:t-1})P(S_t|S_{t-1})$

Update after observing O_t:

 $P(S_t|O_{0:t}) = C.P(S_t|O_{0:t-1})P(O_t|S_t)$

$$P(S_t|O_{0:t-1}) = \int_{-\infty}^{\infty} P(S_{t-1}|O_{0:t-1})P(S_t|S_{t-1})dS_{t-1}$$

$$P(S_t|O_{0:t}) = C.P(S_t|O_{0:t-1})P(O_t|S_t)$$

Discrete vs. Continuous State Systems

$$\pi = \frac{0.1}{0} \frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{1}{3}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{3}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{3}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1}$$

$$s_t = f(s_{t-1}, \varepsilon_t)$$

 $o_t = g(s_t, \gamma_t)$

 $P(s_t|s_{t-1})$

P(O|s)

Special case: Linear Gaussian model

 $\bigcirc O_t = B_t S_t + \gamma_t$

$$P(\varepsilon) = \frac{1}{\sqrt{(2\pi)^d |\Theta_{\varepsilon}|}} \exp\left(-0.5(\varepsilon - \mu_{\varepsilon})^T \Theta_{\varepsilon}^{-1}(\varepsilon - \mu_{\varepsilon})\right)$$
$$P(\gamma) = \frac{1}{\sqrt{(2\pi)^d |\Theta_{\gamma}|}} \exp\left(-0.5(\gamma - \mu_{\gamma})^T \Theta_{\gamma}^{-1}(\gamma - \mu_{\gamma})\right)$$

- A linear state dynamics equation
 - Probability of state driving term $\boldsymbol{\epsilon}$ is Gaussian
 - Sometimes viewed as a driving term μ_ϵ and additive zero-mean noise
- A *linear* observation equation
 - Probability of observation noise γ is Gaussian
- A_t, B_t and Gaussian parameters assumed known

 May vary with time

Linear model example The wind and the target

• State: Wind speed at time *t* depends on speed at time *t*-1

$$S_t = S_{t-1} + \epsilon_t$$

Observation: Arrow position at time t depends on wind speed at time t

$$\boldsymbol{O}_t = \boldsymbol{B}\boldsymbol{S}_t + \boldsymbol{\gamma}_t$$

The Kalman filter

Prediction (based on state equation)

$$\overline{s}_t = A_t \hat{s}_{t-1} + \mu_{\varepsilon} \qquad \qquad \mathbf{s}_t = A_t \mathbf{s}_{t-1} + \varepsilon_t$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

• Update (using observation and observation equation) $v_t = B_t S_t + \gamma_t$

$$K_{t} = R_{t}B_{t}^{T} \left(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma}\right)^{-1}$$

$$O_{t} = D_{t}S_{t} + \gamma$$

$$\hat{S}_{t} = \bar{S}_{t} + K_{t} \left(O_{t} - B_{t}\bar{S}_{t} - \mu_{\gamma}\right)$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

Problems

$$s_t = f(s_{t-1}, \varepsilon_t)$$
$$o_t = g(s_t, \gamma_t)$$

- f() and/or g() may not be nice linear functions
 Conventional Kalman update rules are no longer valid
- ε and/or γ may not be Gaussian
 Gaussian based update rules no longer valid

Problems

$$s_t = f(s_{t-1}, \varepsilon_t)$$
$$o_t = g(s_t, \gamma_t)$$

- f() and/or g() may not be nice linear functions
 Conventional Kalman update rules are no longer valid
- ε and/or γ may not be Gaussian
 Gaussian based update rules no longer valid

The Extended Kalman filter

Prediction

$$\overline{s}_t = f(\hat{s}_{t-1})$$

$$R_t = \Theta_{\varepsilon} + A_t \hat{R}_{t-1} A_t^T$$

$$s_t = f(s_{t-1}) + \varepsilon$$

 $o_t = g(s_t) + \gamma$

$$A_t = J_f(\hat{s}_{t-1})$$
$$B_t = J_g(\overline{s}_t)$$

Jacobians used in Linearization

Assuming ε and γ are 0 mean for simplicity

$$K_{t} = R_{t}B_{t}^{T} \left(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma}\right)^{-1}$$

$$\hat{s}_t = \bar{s}_t + K_t (o_t - g(\bar{s}_t))$$

$$\hat{R}_t = \left(I - K_t B_t\right) R_t$$

A different problem: Non-Gaussian PDFs $o_t = g(s_t) + \gamma$ $s_t = f(s_{t-1}) + \varepsilon$

- We have assumed so far that:
 - $P_0(s)$ is Gaussian or can be approximated as Gaussian
 - $P(\varepsilon)$ is Gaussian
 - $P(\gamma)$ is Gaussian
- This has a happy consequence: All distributions remain Gaussian
 - Even if g() and/or f() are nonlinear.

All distributions remain Gaussian

A different problem: Non-Gaussian PDFs $o_t = g(s_t) + \gamma$ $s_t = f(s_{t-1}) + \varepsilon$

- We have assumed so far that:
 - $P_0(s)$ is Gaussian or can be approximated as Gaussian
 - $P(\varepsilon)$ is Gaussian
 - $P(\gamma)$ is Gaussian
- This has a happy consequence: All distributions remain Gaussian
 - Even if g() and/or f() are nonlinear.
- But when any of these are not Gaussian, the results are not so happy

- $P(\gamma)$ is a mixture of only two Gaussians
- *o* is a linear function of *s*
 - Non-linear functions would be linearized anyway
- P(o|s) is also a Gaussian mixture!

When $P(O_t|s_t)$ has more than one Gaussian, after only a few time steps...

We have too many Gaussians for comfort..

Related Topic: How to sample from a Distribution?

- "Sampling from a Distribution P(x; Γ) with parameters Γ "
- Generate random numbers such that
 - The distribution of a large number of generated numbers is $P(x; \Gamma)$
 - The parameters of the distribution are Γ
- Many algorithms to generate RVs from a variety of distributions
 - Generation from a uniform distribution is well studied
 - Uniform RVs used to sample from category distributions
 - Other distributions: Most commonly, transform a uniform RV to the desired distribution

Sampling from a category PDF

- Given a category PDF over N symbols, with probability of ith symbol = P(i)
- Randomly generate symbols from this distribution
- Can be done by sampling from a uniform distribution

Sampling a category PDF

Segment a range (0,1) according to the probabilities P(i)
 The P(i) terms will sum to 1.0

Sampling a category PDF

- Segment a range (0,1) according to the probabilities P(i)
 The P(i) terms will sum to 1.0
- Randomly generate a number from a uniform distribution
 - Matlab: "rand".
 - Generates a number between 0 and 1 with uniform probability
- If the number falls in the ith segment, select the ith symbol

Related Topic: Sampling from a Gaussian

- Many algorithms
 - Simplest: add many samples from a uniform RV
 - The sum of 12 uniform RVs (uniform in (0,1)) is approximately Gaussian with mean 6 and variance 1
 - For scalar Gaussian, mean μ , std dev σ :

$$x = \sum_{i=1}^{12} r_i - 6$$

- Matlab : $x = \mu + randn^* \sigma$
 - "randn" draws from a Gaussian of mean=0,
 variance=1

Related Topic: Sampling from a Gaussian

- Multivariate (d-dimensional) Gaussian with mean μ and covariance Θ
 - Compute eigen value matrix Λ and eigenvector matrix E for Θ
 - $\Theta = E \Lambda E^T$
 - Generate d 0-mean unit-variance numbers x₁..x_d
 - Arrange them in a vector:

 $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_d]^\mathsf{T}$

– Multiply X by the square root of Λ and E , add μ

 $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{E} \operatorname{sqrt}(\boldsymbol{\Lambda}) \mathbf{X}$

Sampling from a Gaussian Mixture

$$\sum_{i} w_{i} Gaussian(X; \mu_{i}, \Theta_{i})$$

 Select a Gaussian by sampling the multinomial distribution of weights:

$$j \sim Category(w_1, w_2, ...)$$

• Sample from the selected Gaussian $Gaussian(X; \mu_j, \Theta_j)$

When $P(O_t|s_t)$ has more than one Gaussian, after only a few time steps...

The problem of the exploding distribution

- The complexity of the distribution increases exponentially with time
- This is a consequence of having a *continuous* state space
 - Only Gaussian PDFs propagate without increase of complexity
- *Discrete-state* systems do not have this problem
 - The number of states in an HMM stays fixed
 - However, discrete state spaces are too coarse
- Solution: Combine the two concepts
 - *Discretize* the state space dynamically

- A large-enough collection of randomly-drawn samples from a distribution will approximately quantize the space of the random variable into equi-probable regions
 - We have more random samples from high-probability regions and fewer samples from low-probability reigons

- A PDF can be approximated as a uniform probability distribution over randomly drawn samples
 - Since each sample represents approximately the same probability mass (1/M if there are M samples)

$$P(x) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(x - x_i)$$

Note: Properties of a discrete distribution

$$P(x) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(x - x_i)$$

$$P(x)P(y|x) \propto \sum_{i=0}^{M-1} P(y|x_i)\delta(x-x_i)$$

 The product of a discrete distribution with another distribution is simply a weighted discrete probability

$$P(x) \approx \sum_{i=0}^{M-1} w_i \delta(x - x_i)$$

$$\int_{-\infty}^{\infty} P(x)P(y \mid x) dx = \sum_{i=0}^{M-1} w_i P(y \mid x_i)$$

• The integral of the product is a mixture distribution

Discretizing the state space

• At each time, discretize the predicted state space $P(s_t \mid o_{0:t}) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_t - s_i)$

 $-s_i$ are randomly drawn samples from P(s_t|o_{0:t})

• Propagate the discretized distribution

- Discretize state space at the prediction step
 - By sampling the continuous predicted distribution
 - If appropriately sampled, all generated samples may be considered to be equally probable
 - Sampling results in a discrete uniform distribution
- Update step updates the distribution of the quantized state space
 - Results in a discrete non-uniform distribution
- Predicted state distribution for the next time instant will again be continuous
 - Must be **discretized** again by sampling
- At any step, the current state distribution will not have more components than the number of samples generated at the previous sampling step
 - The complexity of distributions remains constant

Number of mixture components in predicted distribution governed by number of samples in discrete distribution

By deriving a small (100-1000) number of samples at each time instant, all distributions are kept manageable

Standard KF/EKF

- Predict state
- Predict measurement
- Compute measurement error
- Update state

- Predict state distribution
 - Sample to discretize
- Predict measurement distribution
 - Compute measurement error
- Update discretized state distribution

$$o_{t} = g(s_{t}) + \gamma$$

$$S_{t} = f(s_{t-1}) + \varepsilon$$

$$P_{\gamma}(\gamma)$$

$$P_{\varepsilon}(\varepsilon)$$

• At t = 0, sample the initial state distribution

$$P(s_0 | o_{-1}) = P(s_0) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_0 - \bar{s}_i^0) \text{ where } \bar{s}_i^0 \leftarrow P_0(s)$$

Update the state distribution with the observation

$$P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t)$$

1-755/18797

 $C = \frac{1}{\sum_{\gamma}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t))}$

i=0

• Predict the state distribution at the next time

$$P(s_t \mid o_{0:t-1}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_{t-1} - g(\bar{s}_i^{t-1})) P_{\varepsilon}(s_t - f(\bar{s}_i^{t-1}))$$

• Sample the predicted state distribution

$$P(s_t \mid o_{0:t-1}) \approx \frac{1}{M} \sum_{i=0}^{M-1} \delta(s_t - \overline{s}_i^t) \text{ where } \overline{s}_i^t \leftarrow P(s_t \mid o_{0:t-1})$$

 $o_t = g(s_t) + \gamma \quad P_{\gamma}(\gamma) \quad s_t = f(s_{t-1}) + \varepsilon \quad P_{\varepsilon}(\varepsilon)$

• Predict the state distribution at t

$$P(s_t \mid o_{0:t-1}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_{t-1} - g(\bar{s}_i^{t-1})) P_{\varepsilon}(s_t - f(\bar{s}_i^{t-1}))$$

• Sample the predicted state distribution at t $1 \frac{M-1}{2}$

$$P(s_t \mid o_{0:t-1}) \approx \frac{1}{M} \sum_{i=0}^{T} \delta(s_t - \overline{s}_i^t) \text{ where } \overline{s}_i^t \leftarrow P(s_t \mid o_{0:t-1})$$

• Update the state distribution at t $P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t) \qquad C = \frac{1}{\sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t))}$

Estimating a state

• The algorithm gives us a discrete updated distribution over states:

$$P(s_t \mid o_{0:t}) = C \sum_{i=0}^{M-1} P_{\gamma}(o_t - g(\bar{s}_i^t)) \delta(s_t - \bar{s}_i^t)$$

• The actual state can be estimated as the mean of this distribution

$$\hat{s}_t = C \sum_{i=0}^{M-1} \overline{s}_i^t P_{\gamma}(o_t - g(\overline{s}_i^t))$$

• Alternately, it can be the most likely sample

$$\hat{s}_t = \bar{s}_j^t$$
: $j = \arg\max_i P_{\gamma}(o_t - g(\bar{s}_i^t))$

Simulations with a Linear Model

$$S_t = S_{t-1} + \mathcal{E}_t$$
 $O_t = S_t + X_t$

- $\mathbf{\mathcal{E}}_{t}$ has a Gaussian distribution with 0 mean, known variance
- x_{t} has a mixture Gaussian distribution with known parameters
- Simulation:
 - Generate state sequence S_{t} from model
 - Generate sequence of \mathcal{X}_{t} from model with one \mathcal{X}_{t} term for every S_{t} term
 - Generate observation sequence O_t from S_t and X_t
 - Attempt to estimate S_t from O_t

Simulation: Synthesizing data

Generate state sequence according to: ε_t is Gaussian with mean 0 and variance 10

$$S_t = S_{t-1} + \mathcal{E}_t$$

Simulation: Synthesizing data

Generate state sequence according to: ε_t is Gaussian with mean 0 and variance 10

$$S_t = S_{t-1} + \mathcal{E}_t$$

Generate observation sequence from state sequence according to: $o_t = s_t + x_t$ x_t is mixture Gaussian with parameters: Means = [-4, 0, 4, 8, 12, 16, 18, 20] Variances = [10, 10, 10, 10, 10, 10, 10, 10] Mixture weights = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]

Simulation: Synthesizing data

Combined figure for more compact representation

PREDICTED STATE DISTRIBUTION AT TIME = 1

SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1

SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1

UPDATED VERSION OF SAMPLED VERSION OF PREDICTED STATE DISTRIBUTION AT TIME = 1 AFTER SEEING FIRST OBSERVATION

SIMULATION: TIME = 3

SIMULATION: TIME = 3

SIMULATION: TIME = 3

The figure below shows the contour of the updated state probabilities for all time instants until the current instant

Simulation: Updated Probs Until

Simulation: Updated Probs Until T=100

Simulation: Updated Probs Until T=500

Updated Probs Until T = 1000

Updated Probs Until T = 1000

update, t <= 1000

Updated Probs: Top View

update, t <= 1000

ESTIMATED STATE

Observation, True States, Estimate

Particle Filtering

- Generally quite effective in scenarios where EKF/UKF may not be applicable
 - Potential applications include tracking and edge detection in images!
 - Not very commonly used however
- Highly dependent on sampling
 - A large number of samples required for accurate representation
 - Samples may not represent mode of distribution
 - Some distributions are not amenable to sampling
 - Use importance sampling instead: Sample a Gaussian and assign nonuniform weights to samples

Prediction filters

- HMMs
- Continuous state systems
 - Linear Gaussian: Kalman
 - Nonlinear Gaussian: Extended Kalman
 - Non-Gaussian: Particle filtering
- EKFs are the most commonly used kalman filters
- Accurate predictions with non-Gaussian models need particle-filters or other sampling based methods

The Abrupt Stop

