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Book
• Fundamentals of Linear Algebra, Gilbert Strang

• Important to be very comfortable with linear algebra
– Appears repeatedly in the form of Eigen analysis, SVD, Factor 

analysis
– Appears through various properties of matrices that are used in 

machine learning
– Often used in the processing of data of various kinds
– Will use sound and images as examples

• Today’s lecture: Definitions
– Very small subset of all that’s used
– Important subset, intended to help you recollect
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Incentive to use linear algebra

• Simplified notation!

• Easier intuition
– Really convenient geometric interpretations

• Easy code translation!
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for i=1:n
for j=1:m
c(i)=c(i)+y(j)*x(i)*a(i,j)

end
end

C=x*A*y

y j x iaij
i


j
yAx T



And other things you can do

• Manipulate Data
• Extract information from data
• Represent data..
• Etc.
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Overview
• Vectors and matrices
• Basic vector/matrix operations
• Various matrix types
• Matrix properties

– Determinant
– Inverse
– Rank

• Solving simultaneous equations
• Projections
• Eigen decomposition
• SVD
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What is a vector

• A rectangular or horizontal arrangement of numbers

• Which, without additional context, is actually a useless 
and meaningless mathematical object
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Column vector

Row vector

An Nx1 vector
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A meaningful vector

• A rectangular or horizontal arrangement of 
numbers

• Where each number refers to a different quantity
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What is a vector

• A vector represents a net displacement in space
– If the displacement is from origin, it represents a location in space

• Each component of the vector actually represents the number of steps 
along a set of basis directions
– The vector cannot be interpreted without reference to the bases!!!!!
– The bases are often implicit – we all just agree upon them and don’t have to 

mention them
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Standard Bases

• “Standard” bases are “Orthonormal”
– Each of the bases is at 90o to every other basis

• Moving in the direction of one basis results in no motion along the 
directions of other bases

– All bases are unit length
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A vector by another basis..

• For non-standard bases we will generally have to specify the bases 
to be understood
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Length of a vector

• The Euclidean length of the displacement assuming 
standard orthonormal bases
– The Euclidean distance from origin to the location of the vector
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Length of a vector..
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Representing signals as vectors

• Signals are frequently represented as vectors 
for manipulation

• E.g.  A segment of an audio signal

• Represented as a vector of sample values
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Representing signals as vectors

• Signals are frequently represented as vectors for 
manipulation

• E.g.  The spectrum segment of an audio signal

• Represented as a vector of sample values

– Each component of the vector represents a frequency 
component of the spectrum
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Representing an image as a vector
• 3 pacmen
• A 321 x 399 grid of pixel values

– Row and Column = position

• A 1 x 128079 vector
– “Unraveling” the image

– Note: This can be recast as the grid that 
forms the image
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Vector operations

• Addition
• Multiplication
• Inner product
• Outer product
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Vector Operations: Multiplication 
by scalar
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3

(3,4,5)

(7.5, 10, 12.5)

Multiplication by scalar
“stretches” the vector

• Vector multiplication by scalar: each component multiplied by scalar
– 2.5 x[3,4,5] = [7.5, 10, 12.5]

• Note: as a result, vector norm is also multiplied by the scalar
– ||2.5 x [3,4,5]||  = 2.5x|| [3, 4, 5]||



Vector Operations: Addition

• Vector addition:  individual components add
– [3,4,5] + [3,-2,-3] = [6,2,2]
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Vector operation: Inner product
• Multiplication of a row vector by a column vector to 

result in a scalar
– Note order of operation
– The inner product between two column vectors and is 

the product of and 
– Also called the “dot” product
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Vector operation: Inner product

• The inner product of a vector with itself is its 
squared norm 
– This will be the squared length
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Vector dot product
• Example:

– Coordinates are yards, not ave/st

– a = [200 1600], 
b = [770 300] 

• The dot product of the two vectors 
relates to the length of a projection
– How much of the first vector have we 

covered by following the second one?
– Must normalize by the length of the 

“target” vector
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[200yd 1600yd]
norm ≈ 1612

[770yd  300yd]
norm ≈ 826

a bT

a


200 1600  770

300











200 1600   393yd

norm
≈ 393yd



Vector dot product

• Vectors are spectra
– Energy at a discrete set of frequencies
– Actually 1 x 4096
– X axis is the index of the number in the vector

• Represents frequency
– Y axis is the value of the number in the vector

• Represents magnitude
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Vector dot product

• How much of C is also in E
– How much can you fake a C by playing an E
– C.E / |C||E| = 0.1
– Not very much

• How much of C is in C2?
– C.C2 / |C| /|C2| = 0.5
– Not bad, you can fake it
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The notion of a “Vector Space”
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An introduction to spaces

• Conventional notion of “space”:  a geometric 
construct of a certain number of 
“dimensions”
– E.g. the 3-D space that this room and every object 

in it lives in 11-755/18-797 29



A vector space

• A vector space is an infinitely large set of vectors with 
the following properties
– The set includes the zero vector (of all zeros)
– The set is “closed” under addition

• If X and Y are in the set, aX + bY is also in the set for any two 
scalars a and b

– For every X in the set, the set also includes the additive 
inverse Y = -X, such that X + Y = 0
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Additional Properties

• Additional requirements:
– Scalar multiplicative identity element exists:  

1X = X

– Addition is associative: X + Y = Y + X

– Addition is commutative:   (X+Y)+Z = X+(Y+Z)

– Scalar multiplication is commutative: 
a(bX) = (ab) X

– Scalar multiplication is distributive: 
(a+b)X = aX + bX
a(X+Y) = aX + aY

11-755/18-797 31



Example of vector space

• Set of all three-component column vectors
– Note we used the term three-component, rather than three-

dimensional

• The set includes the zero vector
• For every X in the set , every aX is in the set
• For every X, Y in the set, aX + bY is in the set
• -X is in the set
• Etc.
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Example : a function space

• Entries are functions from to 

• Define for any and 
in this set

• Verify that this is a space!
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Dimension of a space

• Every element in the space can be composed 
of linear combinations of some other 
elements in the space
– For any X in S we can write X = aY1 + bY2 + cY3.. 

for some other Y1, Y2, Y3 .. in S
• Trivial to prove..

11-755/18-797 34



Dimension of a space

• What is the smallest subset of elements that can compose 
the entire set?
– There may be multiple such sets

• The elements in this subset are called “bases”
– The subset is a “basis” set

• The number of elements in the subset is the 
“dimensionality” of the space
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Dimensions: Example

• What is the dimensionality of this vector 
space
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Dimensions: Example

• What is the dimensionality of this vector 
space?
– First confirm this is a proper vector space

• Note: all elements in Z are also in S (slide 36)
– Z is a subspace of S
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Poll 1

• What is the dimensionality of this space?
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• Return to reality..
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Returning to dimensions..
• Two interpretations of “dimension”
• The spatial dimension of a vector:

– The number of components in the vector
– An N-component vector “lives” in an N-

dimensional space
– Essentially a “stand-alone” definition of a vector 

against “standard” bases

• The embedding dimension of the vector
– The dimensionality of the subspace the vector 

actually lives in
– Only makes sense in the context where the 

vector is one element of a restricted set, e.g. a 
subspace or hyperplane

• Much of machine learning and signal 
processing is aimed at finding the latter 
from collections of vectors
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Matrices..
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What is a matrix

• Rectangular (or square) arrangement of 
numbers
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Dimensions of a matrix
• The matrix size is specified by the number of rows and 

columns

– c = 3x1 matrix: 3 rows and 1 column (vectors are matrices too)
– r = 1x3 matrix:  1 row and 3 columns

– S = 2 x 2 matrix
– R = 2 x 3 matrix
– Pacman = 321 x 399 matrix

11-755/18-797 43

 cba

c

b

a

















 rc   ,




















fed

cba

dc

ba
RS   ,



Dimensionality and Transposition
• A transposed matrix gets all its row (or column) vectors 

transposed in order
– An NxM matrix becomes an MxN matrix
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What is a matrix

• A matrix by itself is uninformative, except 
through its relationship to vectors
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Interpreting matrices

• Matrices as transforms
• Matrices as data containers
• Matrices as compositional building blocks for 

vector spaces
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Matrices as transforms

• Multiplying a vector by a matrix transforms the vector

–
ଵଵ ଵଶ ଵଷ ଵସ

ଶଵ ଶଶ ଶଷ ଶସ

ଷଵ ଷଶ ଷଷ ଷସ

ଵ

ଶ

ଷ

ସ

ଵଵ ଵ ଵଶ ଶ ଵଶ ଷ ଵସ ସ

ଶଵ ଵ ଶଶ ଶ ଷଶ ଷ ସସ ସ

ଷଵ ଵ ଷଶ ଶ ଷଶ ଷ ସସ ସ

• A matrix is a transform that transforms a vector
– Above example:  left multiplication.  Matrix transforms a column vector
– Dimensions must match!!

• No. of columns of  matrix = size of vector
• Result inherits the number of rows from the matrix
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Matrices as transforms

• Multiplying a vector by a matrix transforms the vector

– ଵ ଶ ଷ

ଵଵ ଵଶ ଵଷ ଵସ

ଶଵ ଶଶ ଶଷ ଶସ

ଷଵ ଷଶ ଷଷ ଷସ

ଵଵ ଵ ଶଵ ଶ ଷଵ ଷ

ଵଶ ଵ ଶଶ ଶ ଷଶ ଷ

ଵଷ ଵ ଶଷ ଶ ଷଷ ଷ

ଵସ ଵ ଶସ ଶ ଷସ ଷ

்

• A matrix is a transform that transforms a vector
– Example: right multiplication. Matrix transforms a row vector
– Dimensions must match!!

• No. of rows of  matrix = size of vector
• Result inherits the number of columns from the matrix
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Matrices transform a space
• A matrix is a transform that modifies vectors and vector 

spaces

• So how does it transform the entire space?
• E.g. how will it transform the following figure?
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Multiplication of vector space by matrix

• The matrix rotates and scales the space
– Including its own row vectors
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Multiplication of vector space by matrix

• The normals to the row vectors in the matrix become the 
new axes
– X axis = normal to the second row vector

• Scaled by the inverse of the length of the first row vector
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Matrix Multiplication

• The k-th axis corresponds to the normal to the hyperplane represented 
by the 1..k-1,k+1..N-th row vectors in the matrix
– Any set of K-1 vectors represent a hyperplane of dimension K-1 or less

• The distance along the new axis equals the length of the projection on 
the k-th row vector
– Expressed in inverse-lengths of the vector
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Interpreting matrices

• Matrices as transforms
• Matrices as data containers
• Matrices as compositional building blocks for 

vector spaces
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Matrices as data containers
• A matrix can be vertical stacking of row vectors

– The space of all vectors that can be composed from the 
rows of the matrix is the row space of the matrix

• Or a horizontal arrangement of column vectors

– The space of all vectors that can be composed from the 
columns of the matrix is the column space of the matrix
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Representing a signal as a matrix

• Time series data like audio signals are often 
represented as spectrographic matrices

• Each column is the spectrum of a short 
segment of the audio signal
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Representing a signal as a matrix

• Time series data like audio signals are often 
represented as spectrographic matrices

• Each column is the spectrum of a short 
segment of the audio signal
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Representing a signal as a matrix

• Images are often just represented as matrices
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Storing collections of data

• Individual data instances can be packed into 
columns (or rows) of a matrix
– A “data container” matrix
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Interpreting matrices

• Matrices as transforms
• Matrices as data containers
• Matrices as compositional building blocks for 

vector spaces
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Matrices as space constructors
• Right multiplying a matrix by a column vector mixes the columns of the 

matrix according to the numbers in the vector

–
ଵଵ ଵଶ ଵଷ ଵସ

ଶଵ ଶଶ ଶଷ ଶସ

ଷଶ ଷଶ ଷଷ ଷସ

ଵ

ଶ

ଷ

ସ

• “Mixes” the columns
– “Transforms” row space to column space

• “Generates” the space of vectors that can be formed by mixing its own 
columns

61



Multiplying a vector by a matrix
• Left multiplying a matrix by a row vector mixes the rows of the 

matrix according to the numbers in the vector

–

• “Mixes” the rows
– “Transforms” column space to row space

• “Generates” the space of vectors that can be formed by mixing 
its own rows
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Matrix multiplication: Mixing vectors

• A physical example
– The three column vectors of the matrix X are the spectra of 

three notes
– The multiplying column vector Y is just a mixing vector
– The result is a sound that is the mixture of the three notes
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Matrix multiplication: Mixing vectors

• Mixing two images
– The images are arranged as columns 

• position value not included
– The result of the multiplication is rearranged as an image
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Interpretations of a matrix
• As a transform that modifies vectors and vector spaces

• As a container for data (vectors) 

• As a generator of vector spaces..
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Matrix ops..
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Vector multiplication: Outer 
product

• Product of a column vector by a row vector
• Also called vector direct product
• Results in a matrix
• Transform or collection of vectors?
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Vector outer product

• The column vector is the spectrum
• The row vector is an amplitude modulation
• The outer product is a spectrogram

– Shows how the energy in each frequency varies with time
– The pattern in each column is a scaled version of the spectrum
– Each row is a scaled version of the modulation
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Matrix multiplication
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Matrix multiplication
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Matrix multiplication: another view
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Why is that useful?

• Sounds: Three notes modulated 
independently
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Matrix multiplication: Mixing modulated 
spectra

• Sounds: Three notes modulated 
independently
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Matrix multiplication: Mixing modulated 
spectra

• Sounds: Three notes modulated 
independently
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Matrix multiplication: Mixing modulated 
spectra

• Sounds: Three notes modulated 
independently
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Matrix multiplication: Mixing modulated 
spectra

• Sounds: Three notes modulated 
independently
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Matrix multiplication: Mixing modulated 
spectra

• Sounds: Three notes modulated 
independently
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Matrix multiplication: Image 
transition

• Image1 fades out linearly
• Image 2 fades in linearly
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Matrix multiplication: Image 
transition

• Each column is one image
– The columns represent a sequence of images of decreasing 

intensity
• Image1 fades out linearly
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Matrix multiplication: Image 
transition

• Image 2 fades in linearly
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Matrix multiplication: Image 
transition

• Image1 fades out linearly
• Image 2 fades in linearly
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Matrix Operations: Properties

•
– Actual interpretation: for any vector 

• (column vector of the right 
size)

• (row vector of the 
appropriate size)

•
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Multiplication properties
• Properties of vector/matrix products

– Associative

– Distributive

– NOT commutative!!!

• left multiplications ≠ right multiplications
– Transposition
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A  (B C)  (A B) C

A B  B A

A  (B C)  A B A C

  TTT ABBA 



Poll 2
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Poll 2

• What properties are true for matrix multiplication?
– Transposition property
– Distributive property
– Associative property
– Commutative property

• True or false: (A+B)x = (B+A)x  for appropriate dimensions 
of A, B and x
– T
– F
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The Space of Matrices

• The set of all matrices of a given size (e.g. all 
3x4 matrices) is a space!
– Addition is closed
– Scalar multiplication is closed
– Zero matrix exists
– Matrices have additive inverses
– Associativity and commutativity rules apply! 
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Overview
• Vectors and matrices
• Basic vector/matrix operations
• Various matrix types
• Matrix properties

– Determinant
– Inverse
– Rank

• Projections
• Eigen decomposition
• SVD
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The Identity Matrix

• An identity matrix is a square matrix where
– All diagonal elements are 1.0
– All off-diagonal elements are 0.0

• Multiplication by an identity matrix does not change vectors
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Diagonal Matrix

• All off-diagonal elements are zero
• Diagonal elements are non-zero
• Scales the axes

– May flip axes
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Permutation Matrix

• A permutation matrix simply rearranges the axes
– The row entries are axis vectors in a different order
– The result is a combination of rotations and reflections

• The permutation matrix effectively permutes the 
arrangement of the elements in a vector
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Rotation Matrix

• A rotation matrix rotates the vector by some angle q
• Alternately viewed, it rotates the axes

– The new axes are at an angle q to the old one
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More generally

• Matrix operations are combinations of 
rotations,  permutations and stretching
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Overview
• Vectors and matrices
• Basic vector/matrix operations
• Various matrix types
• Matrix properties

– Rank
– Determinant
– Inverse

• Solving simultaneous equations
• Projections
• Eigen decomposition
• SVD
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Matrix Rank and Rank-Deficient Matrices

• Some matrices will eliminate one or more dimensions during 
transformation
– These are rank deficient matrices
– The rank of the matrix is the dimensionality of the transformed 

version of a full-dimensional object
94



Matrix Rank and Rank-Deficient Matrices

• Some matrices will eliminate one or more dimensions during 
transformation
– These are rank deficient matrices
– The rank of the matrix is the dimensionality of the transformed 

version of a full-dimensional object
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Non-square Matrices

• Non-square matrices add or subtract axes
– More rows than columns  add axes

• But does not increase the dimensionality of the data
– Fewer rows than columns  reduce axes

• May reduce dimensionality of the data
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The Rank of  a Matrix

• The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

• The matrix can never increase dimensions
– Cannot convert a circle to a sphere or a line to a circle

• The rank of a matrix can never be greater than the lower of its two 
dimensions
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Rank – an alternate definition

• In terms of bases..
• Will get back to this shortly..

98



Poll 3

99



Poll 3

• True or false: Given a circle in 3, there will always exist 
a matrix, M, such that the image of the circle under the 
transformation of M will be a sphere.
– T
– F

• True or false: A square matrix with N rows and N 
columns will always have rank N.
– T
– F
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Matrix Determinant

• The determinant is the “volume” of a matrix
• Actually, the volume of a parallelepiped formed from its 

row vectors
– Also, the volume of the parallelepiped formed from its column 

vectors

• Standard formula for determinant in textbooks
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Matrix Determinant: Another Perspective

• The (magnitude of the) determinant is the ratio of N-volumes
– If V1 is the volume of an N-dimensional sphere “O” in N-dimensional 

space
• O is the complete set of points or vertices that specify the object

– If V2 is the volume of the N-dimensional ellipsoid specified by A*O,  
where A is a matrix that transforms the space

– |A| = V2 / V1
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Matrix Determinants
• Matrix determinants are only defined for square matrices

– They characterize volumes in linearly transformed space of the same 
dimensionality as the vectors

• Rank deficient matrices have determinant 0
– Since they compress full-volumed N-dimensional objects into zero-

volume N-dimensional objects
• E.g. a 3-D sphere into a 2-D ellipse:  The ellipse has 0 volume (although it 

does have area)

• Conversely, all matrices of determinant 0 are rank deficient
– Since they compress full-volumed N-dimensional objects into 

zero-volume objects
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Determinant properties
• Associative for square matrices

– Scaling volume sequentially by several matrices is equal to scaling 
once by the product of the matrices

• Volume of sum != sum of Volumes

• Commutative
– The order in which you scale the volume of an object is irrelevant
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Matrix Inversion
• A matrix transforms an 

N-dimensional object to a 
different N-dimensional 
object

• What transforms the new 
object back to the original?
– The inverse transformation

• The inverse transformation is 
called the matrix inverse
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Matrix Inversion

• The product of a matrix and its inverse is the 
identity matrix
– Transforming an object, and then inverse 

transforming it gives us back the original object
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Non-square Matrices

• Non-square matrices add or subtract axes
– More rows than columns  add axes

• But does not increase the dimensionality of the dataaxes
• May reduce dimensionality of the data
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Recap: Representing signals as 
vectors

• Signals are frequently represented as vectors 
for manipulation

• E.g.  A segment of an audio signal

• Represented as a vector of sample values
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Representing signals as vectors

• Signals are frequently represented as vectors for 
manipulation

• E.g.  The spectrum segment of an audio signal

• Represented as a vector of sample values

– Each component of the vector represents a frequency 
component of the spectrum

110



Representing a signal as a matrix

• Time series data like audio signals are often 
represented as spectrographic matrices

• Each column is the spectrum of a short 
segment of the audio signal
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Representing a signal as a matrix

• Time series data like audio signals are often 
represented as spectrographic matrices

• Each column is the spectrum of a short 
segment of the audio signal
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Representing an image as a vector
• 3 pacmen
• A 321 x 399 grid of pixel values

– Row and Column = position

• A 1 x 128079 vector
– “Unraveling” the matrix

– Note: This can be recast as the grid that 
forms the image
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Representing a signal as a matrix

• Images are often just represented as matrices

114



Interpretations of a matrix
• As a transform that modifies vectors and vector spaces

• As a container for data (vectors) 

• As a generator of vector spaces..
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Revise.. Vector dot product

• How much of C is also in E
– How much can you fake a C by playing an E
– C.E / |C||E| = 0.1
– Not very much

• How much of C is in C2?
– C.C2 / |C| /|C2| = 0.5
– Not bad, you can fake it
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Overview
• Vectors and matrices
• Basic vector/matrix operations
• Various matrix types
• Matrix properties

– Determinant
– Inverse
– Rank

• Solving simultaneous equations
• Projections
• Eigen decomposition
• SVD
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• Given the Transform T and transformed vector 
Y,  how do we determine X?

118

The Inverse Transform and 
Simultaneous Equations
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Matrix inversion (division)

• The inverse of matrix multiplication
– Not element-wise division!!

– E.g.
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Matrix inversion (division)

• Provides a way to “undo” a linear transform

• Undoing a transform must happen as soon as it is 
performed

• Effect on matrix inversion: Note order of multiplication
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A B  C,   A  C B1,   B  A 1 C
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T-1



Matrix Inversion

• The product of a matrix and its inverse is the 
identity matrix
– Transforming an object, and then inverse 

transforming it gives us back the original object
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T T-1

ITTDTDT   11
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Matrix inversion (division)

• Inverse of the unit matrix is itself
– Inverse of a diagonal is diagonal

– Inverse of a rotation is a (counter)rotation (its transpose!)

– Inverse of a rank deficient matrix does not exist!
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Matrix inversion (division)

• Inverse of the unit matrix is itself

• Inverse of a diagonal is diagonal
– Inverse of a rotation is a (counter)rotation (its transpose!)

– Inverse of a rank deficient matrix does not exist!
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Matrix inversion (division)

• Inverse of the unit matrix is itself

• Inverse of a diagonal is diagonal

• Inverse of a rotation is a (counter)rotation (its transpose!)

– In 2D a forward rotation by is cancelled by a backward 
rotation of 

ିଵ

– More generally, in any number of dimensions:  ିଵ ୘
124

ିଵ



Inverting rank-deficient matrices

• Rank deficient matrices “flatten” objects
– In the process, multiple points in the original object get mapped to the same 

point in the transformed  object

• It is not possible to go “back” from the flattened object to the original 
object
– Because of the many-to-one forward mapping

• Rank deficient matrices have no inverse
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Matrix inversion (division)

• Inverse of the unit matrix is itself

• Inverse of a diagonal is diagonal

• Inverse of a rotation is a (counter)rotation (its transpose!)

• Inverse of a rank deficient matrix does not exist!
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Poll 4
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Poll 4

• True or false: Using the standard definition of matrix 
inversion, the inverse of an arbitrary matrix is always the 
matrix’s transpose.
– T
– F

• True or false: Using the standard definition of matrix 
inversion, the inverse of a rank deficient matrix does NOT 
exist.
– T
– F

128



Inverse Transform and 
Simultaneous Equation

• Inverting the transform is identical to solving 
simultaneous equations

129

Given and find

=



Inverting rank-deficient matrices

• Rank deficient matrices have no inverse
– In this example, there is no unique inverse
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Inverse Transform and 
Simultaneous Equation

• Inverting the transform is identical to solving 
simultaneous equations

• Rank-deficient transforms result in too-few 
independent equations
– Cannot be inverted to obtain a unique solution
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Given and find
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Non-square Matrices

• When the transform increases the number of 
components most points in the new space will not have a 
corresponding preimage

• May reduce dimensionality of the data
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Inverse Transform and 
Simultaneous Equation

• Inverting the transform is identical to solving simultaneous 
equations

• Rank-deficient transforms result in too few independent equations
– Cannot be inverted to obtain a unique solution

• Or too many equations
– Cannot be inverted to obtain an exact solution
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The Pseudo Inverse (PINV)

• When you can’t really invert T,  you perform the pseudo 
inverse
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Generalization to matrices

135

Left multiplication Right multiplication

Left multiplication Right multiplication

• Unique exact solution exists
• T must be square

• No unique exact solution exists
– At least one (if not both) of the forward and backward equations may 

be inexact

• T may or may not be square



Underdetermined Pseudo Inverse

• Case 1: Too many solutions
• Pinv(T)A picks the shortest solution
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Z
Plane of solutions
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The Pseudo Inverse for the 
underdetermined case
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The Pseudo Inverse

• Case 2: No exact solution
• Pinv(T)A picks the solution that results in the 

lowest error 138

Figure only meant for illustration
for the above equations, Pinv(T) will
actually have 6 components. The
error is a quadratic in 6 dimensions
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The Pseudo Inverse for the 
overdetermined case
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Differentiating and equating to 0 we get:



Shortcut: overdetermined case
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Overdetermined vs 
Underdetermined

• Underdetermined case: Exact solution exists. 
We find one of the exact solutions. Hence..

• Overdetermined case: Solution generally does 
not exist. Solution is only an approximation..
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Properties of the Pseudoinverse

• For the underdetermined case:

• For the overdetermined case

– We return to this question shortly
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Matrix inversion (division)
• The inverse of matrix multiplication

– Not element-wise division!!
• Provides a way to “undo” a linear transformation

• For square matrices: Pay attention to multiplication side!

• If matrix is not square use a matrix pseudoinverse:
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A B  C,   A  C B1,   B  A 1 C
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Finding the Transform

• Given examples
– T.X1 = Y1

– T.X2 = Y2

– ..
– T.XN = YN

• Find T
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Finding the Transform

• Pinv works here too
145



Finding the Transform: Inexact

• Even works for inexact solutions
• We desire to find a linear transform T that maps X to Y

– But such a linear transform doesn’t really exist

• Pinv will give us the “best guess” for T that minimizes the total 
squared error between Y and TX 146



Overview
• Vectors and matrices
• Basic vector/matrix operations
• Various matrix types
• Matrix properties

– Determinant
– Inverse
– Rank

• Solving simultaneous equations
• Projections
• Eigen decomposition
• SVD

147



Flashback: The true 
representation of a vector

• What the column (or row) of numbers really means
– The “basis matrix” is implicit 148
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Flashforward: Changing bases

• Given representation and bases , how 
do we derive the representation in terms of a 
different set of bases ?
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Matrix as a Basis transform

• A matrix transforms a representation in terms of a 
standard basis u1 u2 u3 to a representation in terms of a 
different bases v1 v2 v3

• Finding best bases:  Find matrix that transforms 
standard representation to these bases
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u1

u2

u3

v1

v2

v3

Basis based representation

• A “good” basis captures data structure
• Here u1, u2 and u3 all take large values for data in 

the set
• But in the (v1 v2 v3) set,  coordinate values along 

v3 are always small for data on the blue sheet
– v3 likely represents a “noise subspace” for these data
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Basis based representation

• The most important challenge in ML:  Find the 
best set of bases for a given data set
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Basis based representation

• Modified problem:  Given the new bases v1, v2, v3

– Find best representation of every data point on v1-v2
plane

• Put it on the main sheet and disregard the v3 component
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Basis based representation

• Modified problem:  
– For any vector 
– Find the closest approximation 

• Which lies entirely in the - plane
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Basis based representation

• is the “projection” matrix that 
“projects” any vector down to its “shadow” 
on the - plane
– Expanding: 
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Projections onto a plane

• What would we see if the cone to the left were transparent if 
we looked at it from above the plane shown by the grid?
– Normal to the plane
– Answer: the figure to the right

• How do we get this?  Projection
156



Projections

• Actual problem:   for each vector
– What is the corresponding vector on the plane that is 
“closest approximation” to it?

– What is the transform that converts the vector to its 
approximation on the plane?  
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Projections

• Arithmetically: Find the matrix such that
– For every vector , lies on the plane

• The plane is the column space of P

– ||X – PX||2 is the smallest possible
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Projection Matrix

• Consider any set of independent vectors (bases) on 
the plane
– Arranged as a matrix [ ଵ ଶ ]

– The plane  is the column space of the matrix

• Find the projection matrix P that projects on to the plane 
formed from [ ]
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Projection Matrix

• Given a set of vectors ଵ ଶ which form a matrix = [ ଵ ଶ ]

• The projection matrix to transform a vector X to its projection on the plane is
– ் ିଵ ்
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Projections

• HOW?
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Projections

• Draw any two vectors W1 and W1 W2 that lie on the plane
– ANY two so long as they have different angles

• Compose a matrix W = [W1 W2.. ]

• Compose the projection matrix P = W (WTW)-1 WT 

• Multiply every point on the cone by P to get its projection
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Projection matrix properties

• The projection of any vector that is already on the plane is the vector itself
– PX = X if X is on the plane
– If the object is already on the plane, there is no further projection to be 

performed

• The projection of a projection is the projection
– P(PX) = PX

• Projection matrices are idempotent
– P2 = P
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Projections: A more physical meaning
• Let W1, W2 .. Wk be “bases”
• We want to explain our data in terms of these “bases”

– We often cannot do so
– But we can explain a significant portion of it

• The portion of the data that can be expressed in terms of 
our vectors W1, W2, ... Wk,  is the projection of the data 
on the W1 … Wk (hyper) plane
– In our previous example, the “data” were all the points on a 

cone, and the bases were vectors on the plane
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Projection : an example with sounds

• The spectrogram (matrix) of a piece of music

165

 How much of the above music was composed of the 
above notes
 I.e. how much can it be explained by the notes



Projection: one note

• The spectrogram (matrix) of a piece of music

166

 = spectrogram;   = note


 Projected Spectrogram = 

M = 

W = 



Projection: one note – cleaned up

• The spectrogram (matrix) of a piece of music
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 Floored all matrix values below a threshold to zero

M = 

W = 



Projection: multiple notes

• The spectrogram (matrix) of a piece of music

168

 P = W (WTW)-1 WT

 Projected Spectrogram = P * M

M = 

W = 



Projection: multiple notes, cleaned up

• The spectrogram (matrix) of a piece of music
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

 Projected Spectrogram = 

M = 

W = 



Projection: one note

• The spectrogram (matrix) of a piece of music

170

 The “transcription” of the note is

 Projected Spectrogram = 

M = 

W = 

ା



Explanation with multiple notes
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M = 

W = 

 The “transcription” of the set of notes is

 Projected Spectrogram = 

ା



How about the other way?
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 W = M Pinv(T) U = WT

M = 

W = ??

T = 

U = 



Projections are often examples of rank-deficient transforms

173

 ;   Projected Spectrogram : 
 The original spectrogram can never be recovered

 is rank deficient

 explains all vectors in the new spectrogram as a mixture of 
only the 4 vectors in 
 There are only a maximum of 4 linearly independent bases
 Rank of is 4

M = 

W = 



The Rank of Matrix

174

 Projected Spectrogram = 
 Every vector in it is a combination of only 4 bases

 The rank of the matrix is the smallest no. of bases required to 
describe the output
 E.g. if note no. 4 in could be expressed as a combination of notes 1,2 

and 3, it provides no additional information
 Eliminating note no. 4 would give us the same projection
 The rank of P would be 3!

M = 



Pseudo-inverse (PINV)
• applies to non-square matrices and non-

invertible square matrices

•

• = projection matrix!
– Projection onto the columns of 

• If is a matrix and , projects -
dimensional vectors into a higher-dimensional -
dimensional space
– is a matrix
– in this case

• Otherwise  
11-755/18-797 175



Overview
• Vectors and matrices
• Basic vector/matrix operations
• Various matrix types
• Matrix properties

– Determinant
– Inverse
– Rank

• Solving simultaneous equations
• Projections
• Eigen decomposition
• SVD
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Eigenanalysis
• If something can go through a process mostly 

unscathed in character it is an eigen-something
– Sound example:

• A vector that can undergo a matrix multiplication and 
keep pointing the same way is an eigenvector
– Its length can change though

• How much its length changes is expressed by its 
corresponding eigenvalue
– Each eigenvector of a matrix has its eigenvalue

• Finding these “eigenthings” is called eigenanalysis
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EigenVectors and EigenValues

• Vectors that do not change angle upon 
transformation
– They may change length

– V = eigen vector

– l = eigen value
178
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Eigen vector example
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Matrix multiplication revisited

• Matrix transformation “transforms” the space
– Warps the paper so that the normals to the two 

vectors now lie along the axes
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A stretching operation

• Draw two lines
• Stretch / shrink the paper along these lines by factors l1

and l2
– The factors could be negative – implies flipping the paper

• The result is a transformation of the space
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A stretching operation

182

 Draw two lines
 Stretch / shrink the paper along these lines by factors l1

and l2
 The factors could be negative – implies flipping the paper

 The result is a transformation of the space



A stretching operation
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 Draw two lines
 Stretch / shrink the paper along these lines by factors l1

and l2
 The factors could be negative – implies flipping the paper

 The result is a transformation of the space



Physical interpretation of eigen vector

• The result of the stretching is exactly the same as transformation by a 
matrix

• The axes of stretching/shrinking are the eigenvectors
– The degree of stretching/shrinking are the corresponding eigenvalues

• The EigenVectors and EigenValues convey all the information about the 
matrix
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Physical interpretation of eigen vector

• The result of the stretching is exactly the same as transformation by a 
matrix

• The axes of stretching/shrinking are the eigenvectors
– The degree of stretching/shrinking are the corresponding eigenvalues

• The EigenVectors and EigenValues convey all the information about the 
matrix

• The determinant of the matrix is the product of the eigenvalues
ିଵ

௜

௜

ିଵ
௜

௜
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Eigen Analysis
• Not all square matrices have nice eigen values and 

vectors
– E.g. consider a rotation matrix

– This rotates every vector in the plane
• No vector that remains unchanged

• In these cases the Eigen vectors and values are complex
– Actually complex conjugate pairs
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Singular Value Decomposition

• Matrix transformations convert circles to ellipses
• Eigen vectors are vectors that do not change direction in the 

process
• There is another key feature of the ellipse to the left that carries 

information about the transform
– Can you identify it?
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Singular Value Decomposition

• The major and minor axes of the transformed ellipse 
define the ellipse
– They are at right angles

• These are transformations of right-angled vectors on 
the original circle!
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Singular Value Decomposition

• U and V are orthonormal matrices
– Columns are orthonormal vectors

• S is a diagonal matrix

• The right singular vectors in V are transformed to the left singular vectors 
in U
– And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition

• A matrix  converts right singular vectors 
to left singular vectors 

• converts to 
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Singular Value Decomposition
• The left and right singular vectors are not the same

– If A is not a square matrix, the left and right singular vectors will 
be of different dimensions

• The singular values are always real

• The largest singular value is the largest amount by which a 
vector is scaled by A
– Max (|Ax| / |x|) = smax

• The smallest singular value is the smallest amount by which 
a vector is scaled by A
– Min (|Ax| / |x|) = smin

– This can be 0 (for low-rank or non-square matrices)
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The Singular Values

• Square matrices: product of singular values = determinant of  the matrix
– This is also the product of the eigen values
– I.e. there are two different sets of axes whose products give you the area of 

an ellipse

• For any “broad” rectangular matrix A, the largest singular value of any 
square submatrix B cannot be larger than the largest singular value of A
– An analogous rule applies to the smallest singular value
– This property is utilized in various problems
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SVD vs. Eigen Analysis

• Eigen analysis of a matrix A:
– Find vectors such that their absolute directions are not changed by the 

transform

• SVD of a matrix A:
– Find orthogonal set of vectors such that the angle between them is not 

changed by the transform

• For one class of matrices, these two operations are the same
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A matrix vs. its transpose

• Multiplication by matrix A:
– Transforms right singular vectors in V to left singular 

vectors U

• Multiplication by its transpose AT:
– Transforms left singular vectors U to right singular vector V

• A AT :  Converts V to U, then brings it back to V
– Result: Only scaling
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Symmetric Matrices

• Matrices that do not change on transposition
– Row and column vectors are identical

• The left and right singular vectors are identical
– U = V
– A = U S UT

• They are identical to the Eigen vectors of the matrix
• Symmetric matrices do not rotate the space

– Only scaling and, if Eigen values are negative, reflection
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Symmetric Matrices

• Matrices that do not change on transposition
– Row and column vectors are identical

• Symmetric matrix: Eigen vectors and Eigen values are 
always real

• Eigen vectors are always orthogonal
– At 90 degrees to one another
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Symmetric Matrices

• Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid resulting 
from the transformation of a spheroid
– The eigen values are the lengths of the axes
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Symmetric matrices
• Eigen vectors Vi are orthonormal

– Vi
TVi = 1

– Vi
TVj = 0, i != j

• Listing all eigen vectors in matrix form V
– VT = V-1

– VT V = I

– V VT= I

• M Vi = lVi

• In matrix form  :  M V  = V 
–  is a diagonal matrix with all eigen values

• M = V  VT
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Definiteness..
• SVD: Singular values are always positive!
• Eigen Analysis:  Eigen values can be real or imaginary

– Real, positive Eigen values represent stretching of the space along 
the Eigen vector

– Real, negative Eigen values represent stretching and reflection 
(across origin) of Eigen vector

– Complex Eigen values occur in conjugate pairs

• A square (symmetric) matrix is positive definite if all Eigen 
values are real and positive, and are greater than 0
– Transformation can be explained as stretching along orthogonal 

axes
• Transformation has no permutation or rotation

– If any Eigen value is zero, the matrix is positive semi-definite
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Positive Definiteness..

• Property of a positive definite matrix:  Defines 
inner product norms
– xTAx is always positive for any vector x if A is positive 

definite

• Positive definiteness is a test for validity of Gram 
matrices
– Such as correlation and covariance matrices

– We will encounter these and other gram matrices 
later
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SVD on data-container matrices

• We can also perform SVD on matrices that are data containers

• S is a  d x N rectangular matrix
– N vectors of dimension d

• U is an orthogonal matrix of d vectors of size d
– All vectors are length 1

• V is an orthogonal matrix of N vectors of size N
• S is a d x N diagonal matrix with non-zero entries only on diagonal 
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SVD on data-container matrices
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00

|Ui| = 1.0   for every vector in U

|Vi| = 1.0   for every vector in V



SVD on data-container matrices
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Expanding the SVD

• Each left singular vector and the corresponding right singular vector 
contribute on “basic” component to the data

• The “magnitude” of its contribution is the corresponding singular 
value

204

[ [

...444333222111  TTTT VUsVUsVUsVUsX



Expanding the SVD

• Each left singular vector and the corresponding right singular vector 
contribute on “basic” component to the data

• The “magnitude” of its contribution is the corresponding singular 
value

205

[ [

...444333222111  TTTT VUsVUsVUsVUsX

basis modulationmagnitude



Expanding the SVD

• Each left singular vector and the corresponding right singular vector 
contribute on “basic” component to the data

• The “magnitude” of its contribution is the corresponding singular 
value

• Low singular-value components contribute little, if anything
– Carry little information
– Are often just “noise” in the data

206

...444333222111  TTTT VUsVUsVUsVUsX



Expanding the SVD

• Low singular-value components contribute little, if anything
– Carry little information
– Are often just “noise” in the data

• Data can be recomposed using only the “major” components with 
minimal change of value
– Minimum squared error between original data and recomposed data
– Sometimes eliminating the low-singular-value components will, in fact 

“clean” the data
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An audio example

• The spectrogram has 974 vectors of dimension 1025
– A 1024x974 matrix!

• Decompose:  M = USVT =  Si siUi Vi
T

• U is 1024 x 1024
• V is 974 x 974
• There are 974 non-zero singular values Si
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Singular Values

• Singular values for spectrogram M
– Most Singluar values are close to zero
– The corresponding components are “unimportant”

209



An audio example

• The same spectrogram constructed from only the 25 
highest singular-value components
– Looks similar

• With 100 components, it would be indistinguishable from the 
original

– Sounds pretty close
– Background “cleaned up”
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With only 5 components

• The same spectrogram constructed from only the 
5 highest-valued components
– Corresponding to the 5 largest singular values
– Highly recognizable
– Suggests that there are actually only 5 significant 

unique note combinations in the music
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• Next up:  A brief trip through optimization..
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