

MLSP linear algebra refresher

I e^{9} Soppething old to

Book

- Fundamentals of Linear Algebra, Gilbert Strang
- Important to be very comfortable with linear algebra
	- Appears repeatedly in the form of Eigen analysis, SVD, Factor analysis
	- Appears through various properties of matrices that are used in machine learning
		- Often used in the processing of data of various kinds
		- Will use sound and images as examples
- Today's lecture: Definitions
	- Very small subset of all that's used
- Important subset, intended to help you recollect essing of data of various kinds
ges as examples
ions
hat's used
led to help you recollect
11-755/18-797

Incentive to use linear algebra

• Simplified notation!

$$
\mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{y} \longleftrightarrow \sum_j y_j \sum_i x_i a_{ij}
$$

• Easier intuition

– Really convenient geometric interpretations

• Easy code translation!

```
\left[\frac{1}{x(i)*a(i,j)}\right] \longleftrightarrow \frac{1}{x=x*x*y}<br>11-755/18-797 5
for i=1:n
 for i=1:mc(i)=c(i)+y(j)*x(i)*a(i,j) | <
  end
end
```

$$
\leftarrow \qquad \qquad \leftarrow
$$

And other things you can do

Rotation + Projection + Scaling + Perspective

- Manipulate Data
- Extract information from data
- Represent data..
- Etc.

Decomposition (NMF)

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
	- Determinant
	- Inverse
	- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
	- Determinant
	- Inverse
	- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

What is a vector

 $|b|$ An Nx1 vector

 $[a \quad b \quad c]$

Row vector A 1xN vector

• A rectangular or horizontal arrangement of numbers

What is a vector

 $\vert b \vert$ An Nx1 vector

- A rectangular or horizontal arrangement of numbers
- Which, without additional context, is actually a useless and meaningless mathematical object

A meaningful vector

- A rectangular or horizontal arrangement of numbers
- Where each number refers to a different quantity

- A vector represents a net displacem $\mathring{\text{e}}$ nt in space
	- If the displacement is from origin, it represents a location in space
- Each component of the vector actually represents the *number of steps* along a set of basis directions
	- The vector cannot be interpreted without reference to the bases!!!!!
	- The bases are often *implicit* we all just agree upon them and don't have to mention them

- "Standard" bases are "Orthonormal"
	- Each of the bases is at 90° to every other basis
		- Moving in the direction of one basis results in no motion along the directions of other bases
	- All bases are unit length ¹³

A vector by another basis..

• For non-standard bases we will generally *have* to specify the bases to be understood and the understood

• The Euclidean length of the displacement assuming standard orthonormal bases

– The Euclidean distance from origin to the location of the vector

Length of a vector..

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. A segment of an audio signal

• Represented as a vector of sample values S_1 S_2 S_3 S_4 ... S_N

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. The **spectrum** segment of an audio signal

• Represented as a vector of sample values

 $[S_1 \ S_2 \ S_3 \ S_4 \ ... \ S_M]$

– Each component of the vector represents a frequency component of the spectrum

Representing an image as a vector

- 3 pacmen
- A 321 x 399 grid of pixel values
	- Row and Column = position
- A 1 x 128079 vector
	- "Unraveling" the image

$$
\begin{bmatrix} 1 & 1 & . & 1 & 1 & . & 0 & 0 & 0 & . & . & 1 \end{bmatrix}
$$

– Note: This can be recast as the grid that forms the image 1 . 1 1 . 0 0 0 . . 1]

e: This can be recast as the grid that

ms the image
 $11-755/18-797$

Vector operations

- Addition
- Multiplication
- Inner product
- Outer product

Vector Operations: Multiplication by scalar (3,4,5) (7.5, 10, 12.5) Multiplication by scalar "stretches" the vector

• Vector multiplication by scalar: each component multiplied by scalar

3

 $-$ 2.5 $x[3,4,5] = [7.5, 10, 12.5]$

• Note: as a result, vector norm is also multiplied by the scalar

 $-$ ||2.5 x [3,4,5]|| = 2.5x|| [3, 4, 5]||

Vector Operations: Addition

• Vector addition: individual components add $-$ [3,4,5] + [3,-2,-3] = [6,2,2]

Vector operation: Inner product

- Multiplication of a row vector by a column vector to result in a scalar
	- Note order of operation
	- The *inner* product between two column vectors \boldsymbol{u} and \boldsymbol{v} is the product of \mathbf{u}^T and \mathbf{v}

 Γ Γ

– Also called the "dot" product

$$
\mathbf{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} d \\ e \\ f \end{bmatrix}
$$

$$
\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = a \cdot d + b \cdot e + c \cdot f
$$

Vector operation: Inner product

• The inner product of a vector with itself is its squared norm

– This will be the squared length

$$
\bm{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}
$$

$$
u.u = u^T u = a^2 + b^2 + c^2 = ||u||^2
$$

Vector dot product

- Example:
	- Coordinates are yards, not ave/st
	- $a = [200 1600],$ $$
- The dot product of the two vectors relates to the length of a *projection*
	- How much of the first vector have we covered by following the second one?
	- Must normalize by the length of the "target" vector

$$
\frac{\mathbf{a} \cdot \mathbf{b}^T}{\|\mathbf{a}\|} = \frac{\begin{bmatrix} 200 & 1600 \end{bmatrix} \cdot \begin{bmatrix} 770 \\ 300 \end{bmatrix}}{\begin{bmatrix} 200 & 1600 \end{bmatrix}} \approx 393 \text{yd}
$$

Vector dot product

- Vectors are spectra
	- Energy at a discrete set of frequencies
	- Actually 1 x 4096
	- X axis is the index of the number in the vector
		- Represents frequency
- Y axis is the value of the number in the vector of frequencies

number in the vector

number in the vector

11-755/18-797

26
	- Represents magnitude

Vector dot product

- How much of C is also in E
	- How much can you fake a C by playing an E
	- $C.E / |C| |E| = 0.1$
	- Not very much
- How much of C is in C2?
	- $-$ C.C2 / |C| /|C2| = 0.5
	- Not bad, you can fake it

The notion of a "Vector Space"

An introduction to spaces

- Conventional notion of "space": a geometric construct of a certain number of "dimensions" Inventional notion of "space": a geometric
Instruct of a certain number of
imensions"
E.g. the 3-D space that this room and every object
in it lives in the process of the state of the state of the state of the state of the
	- E.g. the 3-D space that this room and every object

- A vector space is an infinitely large set of vectors with the following properties
	- The set includes the zero vector (of all zeros)
	- The set is "closed" under addition
		- If X and Y are in the set, $aX + bY$ is also in the set for any two scalars a and b
	- $-$ For every X in the set, the set also includes the additive inverse $Y = -X$, such that $X + Y = 0$ 5

	ro vector (of all zeros)

	der addition

	t, $aX + bY$ is also in the set for any two

	the set also includes the additive

	nat $X + Y = 0$

	11-755/18-797

Additional Properties

- Additional requirements:
	- Scalar multiplicative identity element exists: $1X = X$
	- Addition is associative: $X + Y = Y + X$
	- Addition is commutative: $(X+Y)+Z = X+(Y+Z)$
	- Scalar multiplication is commutative: $a(bX) = (ab) X$
	- Scalar multiplication is distributive: $1X = X$
Addition is associative: $X + Y = Y + X$
Addition is commutative: $(X+Y)+Z = X$
Scalar multiplication is commutative:
 $a(bX) = (ab) X$
Scalar multiplication is distributive:
 $(a+b)X = aX + bX$
 $a(X+Y) = aX + aY$ Addition is associative: $X + Y = Y + X$
Addition is commutative: $(X+Y)+Z = X$
Scalar multiplication is commutative:
 $a(bX) = (ab) X$
Scalar multiplication is distributive:
 $(a+b)X = aX + bX$
 $a(X+Y) = aX + aY$ trative: $(X+Y)+Z = X+(Y+Z)$

	is commutative:

	in is distributive:

	in is distributive:

	in is stributive:

	in is stributive:

Example of vector space

$$
S = \begin{cases} \begin{bmatrix} x \\ y \end{bmatrix} \text{ for all } x, y, z \in \mathcal{R} \end{cases}
$$

- Set of all three-component column vectors
- Note we used the term three-component, rather than threedimensional • Set of *all* three-component column vectors

– Note we used the term three-*component*, rather than three-

dimensional

• The set includes the zero vector

• For every X in the set $\alpha \in \mathcal{R}$, every α X is in the s vector
 $\in \mathcal{R}$, every α **X** is in the set
 $,\alpha$ **X** + β **Y** is in the set
 $^{11-755/18-797}$
- The set includes the zero vector
- For every X in the set $\alpha \in \mathcal{R}$, every αX is in the set
-
- $-X$ is in the set
- Etc.

Example : a function space

$$
\mathbf{S} = \begin{cases} a\cos(x) + b\sin 2x, \text{ for all } a, b \in \mathcal{R} \\ x \in [-\pi, \pi] \end{cases}
$$

- Entries are functions from $[-\pi,\pi]$ to $\mathcal R$ $f: [-\pi,\pi] \to \mathcal{R}$
- Define $(f + g)(x) = f(x) + g(x)$ for any f and g in this set
- Verify that this is a space!

Dimension of a space

- Every element in the space can be composed of linear combinations of some other elements in the space Every element in the space can be composed
of linear combinations of some other
elements in the space
– For any X in S we can write $X = aY_1 + bY_2 + cY_3$.
for some other Y_1 , Y_2 , Y_3 ... in S ons of some other
 $\mathbf{R} = \mathbf{a} \mathbf{Y}_1 + \mathbf{b} \mathbf{Y}_2 + \mathbf{c} \mathbf{Y}_3.$
 $\mathbf{Y}_2, \mathbf{Y}_3$... in S
 \mathbf{S}
 \mathbf{N} ₂, \mathbf{Y}_3 ... in S
	- $-$ For any X in S we can write $X = aY_1 + bY_2 + cY_3$. , Y_2 , Y_3 .. in S
		- Trivial to prove..

Dimension of a space

- What is the smallest subset of elements that can compose the entire set? Set of elements that can compose

uch sets

set are called "bases"

tt

in the subset is the

pace

11-755/18-797

35
	- There may be multiple such sets
- The elements in this subset are called "bases"
	- The subset is a "basis" set
- The number of elements in the subset is the "dimensionality" of the space

Dimensions: Example

$$
S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ for all } x, y, z \in \mathcal{R} \right\}
$$

• What is the dimensionality of this vector space ionality of this vector
i1-755/18-797
11-755/18-797
Dimensions: Example

$$
\mathbf{Z} = \left\{ a \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + b \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, for all a, b \in \mathcal{R} \right\}
$$

- What is the dimensionality of this vector space?
	- First confirm this is a proper vector space
- Note: all elements in Z are also in S (slide 36) $-Z$ is a subspace of S ionality of this vector
a proper vector space
n **Z** are also in **S** (slide 36)
;
 $\frac{11-755/18-797}{37}$

Poll 1

$S = \begin{cases} a\cos(x) + b\sin(3x) & \text{for all } a, b \in \mathcal{R} \}, \\ x \in [-\pi, \pi] \end{cases}$

• What is the dimensionality of this space? ionality of this space?
intraspace?
in-755/18-797
as • Return to reality..

Returning to dimensions..

- Two interpretations of "dimension"
- The *spatial* dimension of a vector:
	- The number of components in the vector
	- An N-component vector "lives" in an Ndimensional space
	- Essentially a "stand-alone" definition of a vector against "standard" bases
- The *embedding* dimension of the vector
	- The dimensionality of the subspace the vector actually lives in
	- Only makes sense in the context where the vector is one element of a restricted set, e.g. a subspace or hyperplane
- Much of machine learning and signal processing is aimed at finding the latter from collections of vectors

Matrices..

What is a matrix

 $\overline{}$ $\overline{}$ \mathcal{L} $\overline{}$ $\overline{}$. \mathbb{R}^2 $\frac{1}{1}$ 3.1 1 5 1 2.2 6 A $\overline{}$ \mathcal{L} \vert , $\overline{}$ \mathbb{R}^2 $\mathsf L$ \vert , $=$ g h i d e f a b c \overline{B} A 2x3 matrix A 3x2 matrix

• Rectangular (or square) arrangement of numbers

Dimensions of a matrix

• The matrix size is specified by the number of rows and columns **ns of a matrix**
ed by the number of rows and
[a b c]

$$
\mathbf{c} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \mathbf{r} = \begin{bmatrix} a & b & c \end{bmatrix}
$$

- c = 3x1 matrix: 3 rows and 1 column (vectors are matrices too)
- $r = 1x3$ matrix: 1 row and 3 columns

- c = 3x1 matrix: 3 rows and 1 column (vectors are matrices too)
\n- r = 1x3 matrix: 1 row and 3 columns
\n
$$
S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, R = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}
$$
\n- S = 2 x 2 matrix
\n- R = 2 x 3 matrix
\n- Paeman = 321 x 399 matrix
\n
$$
11-755/18-797
$$

- $S = 2 \times 2$ matrix
- $R = 2 \times 3$ matrix
-

Dimensionality and Transposition

- A transposed matrix gets all its row (or column) vectors transposed in order **imensionality and Transposition**
A transposed matrix gets all its row (or column) vectors
an NxM matrix becomes an MxN matrix
 $\begin{bmatrix} a \end{bmatrix}$
	-

$$
\mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{x}^T = \begin{bmatrix} a & b & c \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} a & b & c \end{bmatrix}, \quad \mathbf{y}^T = \begin{bmatrix} a \\ b \\ c \end{bmatrix}
$$

What is a matrix

A 2x3 matrix
A =
$$
\begin{bmatrix} 1 & 2.2 & 6 \ 3.1 & 1 & 5 \end{bmatrix}
$$
A 3x2 matrix
B =
$$
\begin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}
$$

• A matrix by itself is uninformative, except through its relationship to vectors

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as transforms

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}
$$

• Multiplying a vector by a matrix *transforms* the vector

$$
- Ab = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + a_{12}b_3 + a_{14}b_4 \\ a_{21}b_1 + a_{22}b_2 + a_{32}b_3 + a_{44}b_4 \\ a_{31}b_1 + a_{32}b_2 + a_{32}b_3 + a_{44}b_4 \end{bmatrix}
$$

- A matrix is a *transform* that *transforms* a vector
	- Above example: *left multiplication*. Matrix transforms a column vector
	- Dimensions must match!!
		- No. of columns of matrix = size of vector
		- Result inherits the number of rows from the matrix

Matrices as transforms

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}
$$

• Multiplying a vector by a matrix *transforms* the vector

$$
\mathbf{A} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{21}b_2 + a_{31}b_3 \\ a_{12}b_1 + a_{22}b_2 + a_{32}b_3 \\ a_{13}b_1 + a_{23}b_2 + a_{33}b_3 \\ a_{14}b_1 + a_{24}b_2 + a_{34}b_3 \end{bmatrix}^T
$$

- A matrix is a *transform* that *transforms* a vector
	- Example: right multiplication. Matrix transforms a row vector
	- Dimensions must match!!
		- No. of rows of matrix = size of vector
		- Result inherits the number of columns from the matrix

Matrices transform a space

• A matrix is a *transform* that modifies vectors and vector spaces

$$
\begin{array}{c}\n\begin{pmatrix}\n a & b \\
c & d\n\end{pmatrix} & \longrightarrow & \begin{array}{c}\n\end{array}
$$

- So how does it transform the entire space?
- E.g. how will it transform the following figure?

Multiplication of vector space by matrix

• The matrix rotates and scales the space – Including its own row vectors

Multiplication of vector space by matrix

- The *normals* to the row vectors in the matrix become the new axes
	- X axis = normal to the second row vector
		- Scaled by the inverse of the length of the first row vector

Matrix Multiplication

- The k-th axis corresponds to the normal to the hyperplane represented by the 1..k-1,k+1..N-th row vectors in the matrix
	- Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
- The distance along the new axis equals the length of the projection on the k-th row vector
	- Expressed in inverse-lengths of the vector

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as data containers

• A matrix can be vertical stacking of row vectors

$$
\mathbf{R} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}
$$

- The space of all vectors that can be composed from the rows of the matrix is the row space of the matrix
- Or a horizontal arrangement of column vectors

$$
\mathbf{R} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} c \\ f \end{bmatrix}
$$

– The space of all vectors that can be composed from the columns of the matrix is the column space of the matrix

Representing a signal as a matrix

• Time series data like audio signals are often represented as spectrographic matrices

• Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

• Time series data like audio signals are often represented as spectrographic matrices

• Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

• Images are often just represented as matrices

Storing collections of data

• Individual data instances can be packed into columns (or rows) of a matrix

– A "data container" matrix

Interpreting matrices

- Matrices as transforms
- Matrices as data containers
- Matrices as compositional building blocks for vector spaces

Matrices as space constructors

• Right multiplying a matrix by a column vector mixes the columns of the matrix according to the numbers in the vector

 L_{α} α

$$
- A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{32} & a_{32} & a_{33} & a_{34} \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}
$$

$$
Ab = b_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + b_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} + b_3 \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} + b_4 \begin{bmatrix} a_{14} \\ a_{24} \\ a_{34} \end{bmatrix}
$$

- "Mixes" the columns
	- "Transforms" row space to column space
- "Generates" the space of vectors that can be formed by mixing its own columns

Multiplying a vector by a matrix

• Left multiplying a matrix by a row vector mixes the rows of the matrix according to the numbers in the vector

$$
- A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{32} & a_{32} & a_{33} & a_{34} \end{bmatrix} \qquad b = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}
$$

bA = b_1 [a_{11} a_{12} a_{13} a_{14}] + b_2 [a_{21} a_{22} a_{23} a_{24}] $+ b_3 \begin{bmatrix} a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$

- "Mixes" the rows
	- "Transforms" column space to row space
- "Generates" the space of vectors that can be formed by mixing its own rows

Matrix multiplication: Mixing vectors

- A physical example
	- The three column vectors of the matrix X are the spectra of three notes
	- The multiplying column vector Y is just a mixing vector
	- The result is a sound that is the mixture of the three notes

Matrix multiplication: Mixing vectors

- Mixing two images
	- The images are arranged as columns
		- position value not included
	- The result of the multiplication is rearranged as an image

Interpretations of a matrix

• As a *transform* that modifies vectors and vector spaces

• As a *container* for data (vectors)

• As a *generator* of vector spaces..

Matrix ops..

Vector multiplication: Outer product

- Product of a column vector by a row vector
- Also called vector *direct* product
- Results in a *matrix*
- Transform or collection of vectors?

$$
\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} d & e & f \end{bmatrix} = \begin{bmatrix} a \cdot d & a \cdot e & a \cdot f \\ b \cdot d & b \cdot e & b \cdot f \\ c \cdot d & c \cdot e & c \cdot f \end{bmatrix}
$$

- The column vector is the spectrum
- The row vector is an amplitude modulation
- The outer product is a spectrogram
	- Shows how the energy in each frequency varies with time
	- The pattern in each column is a scaled version of the spectrum
	- Each row is a scaled version of the modulation

Matrix multiplication

Standard formula for matrix multiplication

Matrix multiplication

- Matrix $A: A$ column of row vectors
- Matrix \mathbf{B} : A row of column vectors
- \blacksquare AB : A matrix of inner products **Mimics the vector outer product rule**

Matrix multiplication: another view

- The outer product of the first column of A and the first row of B + outer product of the second column of A and the second row of $B + ...$
- Sum of outer products

Why is that useful?

• Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

• Sounds: Three notes modulated independently $\boldsymbol{\mathsf{X}}$ and the set of $\boldsymbol{\mathsf{X}}$ and $\$

- $\boldsymbol{\mathsf{X}}$
- Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated spectra

• Sounds: Three notes modulated independently X

Matrix multiplication: Mixing modulated spectra

• Sounds: Three notes modulated independently

Matrix multiplication: Mixing modulated

• Sounds: Three notes modulated independently

Matrix multiplication: Image transition

- Image1 fades out linearly
- Image 2 fades in linearly

Matrix multiplication: Image transition

• Each column is one image

 \vert

 $\overline{}$.

 \vert .

 \vert .

 $\vert \frac{l}{2}$

 \vert ,

 $\big| \, l$

- The columns represent a sequence of images of decreasing intensity
- Image1 fades out linearly

Matrix multiplication: Image transition

• Image 2 fades in linearly

- Image1 fades out linearly
- Image 2 fades in linearly

Matrix Operations: Properties

• $A + B = B + A$

 $-$ Actual interpretation: for any vector \bf{x}

- $(A + B)x = (B + A)x$ (column vector x of the right size)
- $x(A + B) = x(B + A)$ (row vector x of the appropriate size) $(A + B) + C$
(A + B) + C
- $A + (B + C) = (A + B) + C$

Multiplication properties

- Properties of vector/matrix products
	- Associative

$$
\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}
$$

– Distributive

$$
\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}
$$

– NOT commutative!!!

$$
A \cdot B \neq B \cdot A
$$

- left multiplications ≠ right multiplications $\mathbf{B} \cdot \mathbf{A}$
ht multiplications
 $\mathbf{B}^T \cdot \mathbf{A}^T$
 $\mathbf{B} \cdot \mathbf{A}$ as
- Transposition

$$
(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T
$$

Poll 2

- What properties are true for matrix multiplication?
	- Transposition property
	- Distributive property
	- Associative property
	- Commutative property
- True or false: $(A+B)x = (B+A)x$ for appropriate dimensions of A, B and x
	- $-$ T
	- F

The Space of Matrices

- The set of all matrices of a given size (e.g. all 3x4 matrices) is a space!
	- Addition is closed
	- Scalar multiplication is closed
	- Zero matrix exists
	- Matrices have additive inverses
	- Associativity and commutativity rules apply! tive inverses
nmmutativity rules apply!
11-755/18-797

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
	- Determinant
	- Inverse
	- Rank
- Projections
- Eigen decomposition
- SVD

The Identity Matrix

- An identity matrix is a square matrix where
	- All diagonal elements are 1.0
	- All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors

Diagonal Matrix

$$
Y = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}
$$

- All off-diagonal elements are zero
- Diagonal elements are non-zero
- Scales the axes
	- May flip axes

Permutation Matrix

- A permutation matrix simply rearranges the axes
	- The row entries are axis vectors in a different order
	- The result is a combination of rotations and reflections
- The permutation matrix effectively *permutes* the arrangement of the elements in a vector

Rotation Matrix

- A rotation matrix *rotates* the vector by some angle θ
- Alternately viewed, it rotates the axes
	- The new axes are at an angle θ to the old one

More generally

• Matrix operations are combinations of rotations, permutations and stretching

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
	- Rank
	- Determinant
	- Inverse
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
	- These are rank deficient matrices
	- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
	- These are rank deficient matrices
	- The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Non-square Matrices

- Non-square matrices add or subtract axes
	- More rows than columns \rightarrow add axes
		- But does not increase the dimensionality of the data
	- Fewer rows than columns \rightarrow reduce axes
		- May reduce dimensionality of the data

The Rank of a Matrix

- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never *increase* dimensions
	- Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

Rank – an alternate definition

- In terms of bases..
- Will get back to this shortly..

Poll 3

• True or false: Given a circle in R^3 , there will always exist a matrix, M, such that the image of the circle under the transformation of M will be a sphere.

 $-$ T

- F
- True or false: A square matrix with N rows and N columns will always have rank N.

 $-$ T

– F

Matrix Determinant

- The determinant is the "volume" of a matrix
- Actually, the volume of a parallelepiped formed from its row vectors
	- Also, the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant in textbooks

Matrix Determinant: Another Perspective

- The (magnitude of the) determinant is the ratio of N-volumes
	- $-$ If V₁ is the volume of an N-dimensional sphere "O" in N-dimensional space
		- O is the complete set of points or vertices that specify the object
	- $-$ If V₂ is the volume of the N-dimensional ellipsoid specified by A*O, where A is a matrix that transforms the space

$$
- |A| = V_2 / V_1
$$

Matrix Determinants

- Matrix determinants are only defined for square matrices
	- They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
	- Since they compress full-volumed N-dimensional objects into zerovolume N-dimensional objects
		- E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area) ccts
D ellipse: The ellipse has 0 volume (although it
terminant 0 are rank deficient
lumed N-dimensional objects into
11-755/18-797 11-755/18-797 103
- Conversely, all matrices of determinant 0 are rank deficient
	- Since they compress full-volumed N-dimensional objects into zero-volume objects

Determinant properties

• Associative for square matrices

$$
|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}| \cdot |\mathbf{C}|
$$

- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes

```
|(\mathbf{B}+\mathbf{C})| \neq |\mathbf{B}| + |\mathbf{C}|
```
- Commutative
- The order in which you scale the volume of an object is irrelevant e the volume of an object is irrelevant
 $\left| = \left| \mathbf{A} \right| \cdot \left| \mathbf{B} \right|$

11-755/18-797 104

$$
|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|
$$

Matrix Inversion

- A matrix transforms an N-dimensional object to a different N-dimensional object
- What transforms the new object back to the original?
	- The inverse transformation
- The inverse transformation is called the matrix inverse

Matrix Inversion

- The product of a matrix and its inverse is the identity matrix
	- Transforming an object, and then inverse transforming it gives us back the original object $TT^{-1}D = D \Rightarrow TT^{-1} = I$

Non-square Matrices

- Non-square matrices add or subtract axes
	- More rows than columns \rightarrow add axes
		- \cdot But does not increase the dimensionality of the data

Recap: Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. A segment of an audio signal

• Represented as a vector of sample values S_1 S_2 S_3 S_4 ... S_N

Representing signals as vectors

- Signals are frequently represented as vectors for manipulation
- E.g. The **spectrum** segment of an audio signal

• Represented as a vector of sample values

 $[S_1 \ S_2 \ S_3 \ S_4 \ ... \ S_M]$

– Each component of the vector represents a frequency component of the spectrum

Representing a signal as a matrix

• Time series data like audio signals are often represented as spectrographic matrices

• Each column is the spectrum of a short segment of the audio signal

Representing a signal as a matrix

• Time series data like audio signals are often represented as spectrographic matrices

• Each column is the spectrum of a short segment of the audio signal

Representing an image as a vector

- 3 pacmen
- A 321 x 399 grid of pixel values
	- Row and Column = position
- A 1 x 128079 vector
	- "Unraveling" the matrix

$$
\begin{bmatrix} 1 & 1 & . & 1 & 1 & . & 0 & 0 & 0 & . & . & 1 \end{bmatrix}
$$

– Note: This can be recast as the grid that forms the image 1 . 1 1 . 0 0 0 . . 1]

e: This can be recast as the grid that

ms the image
 $11-755/18-797$

Representing a signal as a matrix

• Images are often just represented as matrices

Interpretations of a matrix

• As a *transform* that modifies vectors and vector spaces

• As a **container** for data (vectors)

• As a generator of vector spaces..

Revise.. Vector dot product

- How much of C is also in E
	- How much can you fake a C by playing an E
	- $C.E / |C| |E| = 0.1$
	- Not very much
- How much of C is in C2?
	- $-$ C.C2 / |C| /|C2| = 0.5
	- Not bad, you can fake it

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
	- Determinant
	- Inverse
	- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

The Inverse Transform and Simultaneous Equations

• Given the Transform T and transformed vector Y, how do we determine X ?

- The inverse of matrix multiplication
	- Not element-wise division!!
	- $E.g.$

$$
\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{bmatrix}
$$

- Provides a way to "undo" a linear transform
- Undoing a transform must happen as soon as it is performed
- Effect on matrix inversion: Note order of multiplication

$$
\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}
$$

Matrix Inversion

$T^{-1}TD = D \implies T^{-1}T = I$

- The product of a matrix and its inverse is the identity matrix
- Transforming an object, and then inverse transforming it gives us back the original object atrix and its inverse is the
ject, and then inverse
s us back the original object
 $\mathbf{D} \Rightarrow \mathbf{T}\mathbf{T}^{-1} = \mathbf{I}$ $TT^{-1}D = D \Rightarrow TT^{-1} = I$

• Inverse of the unit matrix is itself

- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal

- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter) rotation (its transpose!)
	- In 2D a forward rotation θ by is cancelled by a backward rotation of $-\theta$

$$
\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}, \mathbf{R}^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}
$$

More generally, in any number of dimensions: $R^{-1} = R^{T}$ 124

- Rank deficient matrices "flatten" objects
	- In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
	- Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

- Inverse of the unit matrix is itself
- Inverse of a diagonal is diagonal
- Inverse of a rotation is a (counter) rotation (its transpose!)
- Inverse of a rank deficient matrix does not exist!

Poll 4

• True or false: Using the standard definition of matrix inversion, the inverse of an arbitrary matrix is always the matrix's transpose.

 $-$ T

– F

- True or false: Using the standard definition of matrix inversion, the inverse of a rank deficient matrix does NOT exist.
	- $-$ T
	- F

• Inverting the transform is identical to solving simultaneous equations

• Rank deficient matrices have no inverse

– In this example, there is no *unique* inverse

Inverse Transform and Simultaneous Equation Given $\begin{bmatrix} a \\ b \end{bmatrix}$ and T find $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $\mathbf{T} = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \end{bmatrix}$ $\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $\begin{bmatrix} a = T_{11}x + T_{12}y + T_{13}z \\ b = T_{21}x + T_{22}y + T_{23}z \end{bmatrix}$

- Inverting the transform is identical to solving simultaneous equations
- Rank-deficient transforms result in too-few independent equations
	- Cannot be inverted to obtain a unique solution

Non-square Matrices

• When the transform *increases* the number of components most points in the new space will not have a corresponding preimage

- Inverting the transform is identical to solving simultaneous equations
- Rank-deficient transforms result in too few independent equations
	- Cannot be inverted to obtain a unique solution
- Or too *many* equations
	- Cannot be inverted to obtain an exact solution

The Pseudo Inverse (PINV)

$$
V \approx T \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \qquad \bigg| \qquad \qquad \bigg| \qquad \qquad \bigg| \begin{bmatrix} x \\ y \\ z \end{bmatrix} \approx Pinv(T)V
$$

When you can't really invert T, you perform the *pseudo* \bullet inverse

Generalization to matrices

- Unique exact solution exists
- **T** must be square

$$
X = TY \Rightarrow Y = T^{-1}X
$$

$$
X = YT \Rightarrow Y = XT^{-1}
$$

Left multiplication **Example 20 and Septimary 19 and 1**

- No unique exact solution exists
	- At least one (if not both) of the forward and backward equations may be inexact
- T may or may not be square

 $X = TY \Rightarrow Y = Pinv(T)X$

$$
X = \mathbf{YT} \Rightarrow \mathbf{Y} = \mathbf{X}\text{Pin}(T)
$$

Left multiplication **Example 2018** Right multiplication

Underdetermined Pseudo Inverse

$$
a = T_{11}x + T_{12}y + T_{13}z
$$

$$
b = T_{21}x + T_{22}y + T_{23}z
$$

 $y = Pinv(T)\begin{bmatrix} a \\ b \end{bmatrix}$

for the above equations, actual set of solutions is a line, not a plane. Pinv(T)A will be the point on the line closest to origin

- Case 1: Too many solutions
- Pinv(T)A picks the *shortest* solution

The Pseudo Inverse for the underdetermined case

$$
\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{cases} a = T_{11}x + T_{12}y + T_{13}z \\ b = T_{21}x + T_{22}y + T_{23}z \end{cases}
$$

$$
V \approx T \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = Pinv(T)V
$$

$$
Pinv(T) = T^T(TT^T)^{-1}
$$

$$
T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = TPinv(T)V = TT^{T}(TT^{T})^{-1}V = V
$$

The Pseudo Inverse

 $||A - TX||^2$

Figure only meant for illustration for the above equations, Pinv(T) will error is a quadratic in 6 dimensions

- Case 2: No exact solution
- $Pinv(T)$ picks the solution that results in the lowest error and the state of the state $\frac{138}{138}$

The Pseudo Inverse for the overdetermined case

$$
E = ||TX - A||^2 = (TX - A)^T (TX - A)
$$

 $E = X^T T^T T X - 2X^T T^T A + A^T A$

Differentiating and equating to 0 we get:

$$
X = (T^T T)^{-1} T^T A = Pinv(T)A
$$

$$
Pinv(T)=(T^TT)^{-1}T^T
$$

Shortcut: overdetermined case

$$
\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

$$
\begin{aligned} a &= T_{11}x + T_{12}y \\ b &= T_{21}x + T_{22}y \\ c &= T_{31}x + T_{32}y \end{aligned}
$$

$$
V \approx T\begin{bmatrix} x \\ y \end{bmatrix} \quad \implies \quad T^T V \approx T^T T\begin{bmatrix} x \\ y \end{bmatrix} \quad \implies \quad \begin{bmatrix} x \\ y \end{bmatrix} = (T^T T)^{-1} T^T V
$$

$$
Pinv(T)=(T^TT)^{-1}T^T
$$

Note that in this case:

$$
T\begin{bmatrix} x \\ y \end{bmatrix} = TPinv(T)V = T(T^TT)^{-1}T^TV \neq V
$$

Overdetermined vs Underdetermined

• Underdetermined case: Exact solution exists. We find one of the exact solutions. Hence..

$$
T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = TPinv(T)V = TT^{T}(TT^{T})^{-1}V = V
$$

• Overdetermined case: Solution generally does not exist. Solution is only an approximation..

$$
T\begin{bmatrix} x \\ y \end{bmatrix} = TPinv(T)V = T(T^TT)^{-1}T^TV \neq V
$$

Properties of the Pseudoinverse

• For the underdetermined case:

 $\boldsymbol{TPinv(T)} = \mathbf{I}$

• For the overdetermined case

 $\mathbf{TPinv(T)}=?$

– We return to this question shortly

- The inverse of matrix multiplication
	- Not element-wise division!!
- Provides a way to "undo" a linear transformation
- For square matrices: Pay attention to multiplication side!

$$
\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}
$$

s not square use a matrix pseudoinverse:

$$
\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{+}, \ \mathbf{B} = \mathbf{A}^{+} \cdot \mathbf{C}
$$

• If matrix is not square use a matrix pseudoinverse:

$$
\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{+}, \ \mathbf{B} = \mathbf{A}^{+} \cdot \mathbf{C}
$$

Finding the Transform

• Given examples

$$
-T.X_1 = Y_1
$$

$$
-T.X_2 = Y_2
$$

$$
= \ldots
$$

$$
-T.X_N = Y_N
$$

 \bullet Find T
Finding the Transform

Finding the Transform: Inexact

- Even works for inexact solutions
- We *desire* to find a linear transform T that maps X to Y
	- But such a linear transform doesn't really exist
- Pinv will give us the "best guess" for T that minimizes the total squared error between Y and TX 146

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
	- Determinant
	- Inverse
	- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

• What the column (or row) of numbers really means $-$ The "basis matrix" is implicit 148

• Given representation $[a, b, c]$ and bases \vec{x} \vec{y} \vec{z} , how do we derive the representation $\lceil d \, e \, f \rceil$ in terms of a different set of bases \vec{s} \vec{t} \vec{u} ?

Matrix as a Basis transform

 $X = av_1 + bv_2 + cv_3$, $\leftarrow X = xu_1 + yu_2 + zu_3$

$$
\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$

- A matrix transforms a representation in terms of a standard basis ${\sf u}_1 \, {\sf u}_2 \, {\sf u}_3$ to a representation in terms of a different bases v_1 v_2 v_3 V_3
- Finding best bases: Find matrix that transforms standard representation to these bases

- A "good" basis captures data structure
- Here u_1 , u_2 and u_3 all take large values for data in the set
- But in the $(v_1v_2v_3)$ set, coordinate values along \mathbf{v}_3 are always small for data on the blue sheet
	- $v₃$ likely represents a "noise subspace" for these data

• The most important challenge in ML: Find the best set of bases for a given data set

- Modified problem: Given the new bases v_1 , v_2 , v_3
	- $-$ Find best representation of every data point on v_1 - v_2 plane
		- Put it on the main sheet and disregard the v3 component $\frac{153}{153}$

- Modified problem:
	- $-$ For any vector \bf{x}
	- Find the closest approximation $\tilde{\mathbf{x}} = a\mathbf{v}_1 + b\mathbf{v}_2$
		- Which lies entirely in the v_1 - v_2 plane

• $P = VV^+$ is the "projection" matrix that "projects" any vector x down to its "shadow" \tilde{x} on the V_1 - V_2 plane

- Expanding: $P = V(V^TV)^{-1}V^T$

Projections onto a plane

- What would we see if the cone to the left were transparent if we looked at it from above the plane shown by the grid?
	- Normal to the plane
	- Answer: the figure to the right
- How do we get this? Projection

- What is the corresponding vector on the plane that is "closest approximation" to it?
- What is the *transform* that converts the vector to its approximation on the plane?

- Arithmetically: Find the matrix P such that
	- For every vector X, PX lies on the plane
		- The plane is the column space of $$
	- $\vert \vert |X PX||^2$ is the smallest possible

- Consider any set of *independent* vectors (bases) $W_1, W_2, ...$ on the plane
	- $-$ Arranged as a matrix $[W_1, W_2, ...]$
	- The plane is the *column space* of the matrix
- Find the projection matrix P that projects on to the plane formed from $[\bm{W}_1, \bm{W}_2, \ldots]$

- Given a set of vectors $W_1, W_2, ...$ which form a matrix $W = [W_1, W_2, ...]$
- The projection matrix to transform a vector X to its projection on the plane is $- P = W(W^TW)^{-1}W^T$

Projections

• HOW?

• Draw any two vectors W_1 and W_1 W_2 that lie on the plane

– ANY two so long as they have different angles

- Compose a matrix $\mathbf{W} = [\boldsymbol{W}_1 \ \boldsymbol{W}_2 ...]$
- Compose the projection matrix $P = W (W^TW)⁻¹ W^T$
- Multiply every point on the cone by P to get its projection

Projection matrix properties

- The projection of any vector that is already on the plane is the vector itself
	- $-$ PX = X if X is on the plane
	- If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection
	- $-$ P(PX) = PX
- Projection matrices are *idempotent*
	- $P^2 = P$ $=$ P

Projections: A more physical meaning

- Let $W_1, W_2... W_k$ be "bases"
- We want to explain our data in terms of these "bases"
	- We often cannot do so
	- But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors $W_1, W_2, ... W_k$, is the projection of the data on the W_1 ... W_k (hyper) plane
	- In our previous example, the "data" were all the points on a cone, and the bases were vectors on the plane

Projection : an example with sounds

The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
	-

Projection: one note

The spectrogram (matrix) of a piece of music

- $M =$ spectrogram; $W =$ note
- \blacksquare $P = W(W^TW)^{-1}W^T$
- Projected Spectrogram = PM

The spectrogram (matrix) of a piece of music

Floored all matrix values below a threshold to zero

Projected Spectrogram = P * M

 \blacksquare P = W (W^TW)⁻¹ W^T

The spectrogram (matrix) of a piece of music

Projection: multiple notes

Projection: multiple notes, cleaned up

The spectrogram (matrix) of a piece of music

 $\boldsymbol{P} = \boldsymbol{W}(\boldsymbol{W}^T\boldsymbol{W})^{-1}\boldsymbol{W}^T$

Projected Spectrogram = PM

Projection: one note

The "transcription" of the note is
 $T = W^+M = (W^TW)^{-1}W^TM$

Projected Spectrogram = $WT = PM$

Explanation with multiple notes

How about the other way?

Projections are often examples of rank-deficient transforms

- $P = W(W^TW)^{-1}W^T$; Projected Spectrogram : $M_{proj} = PM$
- The original spectrogram can never be recovered \Box P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W $P = W(W^TW)^{-1}W^T$; Projected Spectrogram : $M_{proj} = PM$
The original spectrogram can never be recovered

a P is rank deficient

P explains all vectors in the new spectrogram as a mixture of

only the 4 vectors in W

a There are
	-
	- \Box Rank of P is 4

The Rank of Matrix

- Projected Spectrogram = P M
	- Every vector in it is a combination of only 4 bases
- The rank of the matrix is the *smallest* no. of bases required to describe the output
	- and 3, it provides no additional information
	- **Eliminating note no. 4 would give us the same projection**
	- \Box The rank of P would be 3!

Pseudo-inverse (PINV)

- $Pinv()$ applies to non-square matrices and noninvertible square matrices
- $Pinv(Pinv(A))) = A$
- $APinv(A)$ = projection matrix!
	- $-$ Projection onto the columns of A
- If A is a $K \times N$ matrix and $K > N$, A projects Ndimensional vectors into a higher-dimensional K dimensional space $d K > N$, **A** projects N -
a higher-dimensional K -
rix
se
 \blacksquare
	- $Pinv(A)$ is a $N \times K$ matrix
	- $Pinv(A)A = I$ in this case
- Otherwise $APinv(A) = I$

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Matrix properties
	- Determinant
	- Inverse
	- Rank
- Solving simultaneous equations
- Projections
- Eigen decomposition
- SVD

Eigenanalysis

- If something can go through a process mostly **Eigenanalysis**
If something can go through a process mostly
unscathed in character it is an *eigen*-something
- Sound example:
A vector that can undergo a matrix multiplication and
	-
-
- A vector that can undergo a matrix multiplication and keep pointing the same way is an *eigenvector*
	- Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
	- Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

- Vectors that do not change angle upon transformation
	- They may change length

$$
MV = \lambda V
$$

- $-$ V = eigen vector
- $-\lambda$ = eigen value 178

Eigen vector example

Matrix multiplication revisited

- Matrix transformation "transforms" the space
	- Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2 Draw two lines

The factors could be negative – implies flipping the paper

The factors could be negative – implies flipping the paper

The result is a transformation of the space
	-
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2 Draw two lines
Stretch / shrink the paper along these lines by factors λ_1
and λ_2
The factors could be negative – implies flipping the paper
The result is a transformation of the space
	-
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2 Draw two lines
Stretch / shrink the paper along these lines by factors λ_1
and λ_2
The factors could be negative – implies flipping the paper
The result is a transformation of the space
	-
- The result is a transformation of the space

Physical interpretation of eigen vector

- matrix
- The axes of stretching/shrinking are the eigenvectors
	- The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

- matrix
- The axes of stretching/shrinking are the eigenvectors
	- The degree of stretching/shrinking are the corresponding eigenvalues
- matrix
- The determinant of the matrix is the product of the eigenvalues

$$
|M| = |V||\Lambda||V^{-1}| = C \cdot \prod_i \lambda_i \cdot C^{-1} = \prod_i \lambda_i
$$

Eigen Analysis

- **Eigen Analysis
• Not all square matrices have nice eigen values and
• E.g. consider a rotation matrix** vectors
	-

- This rotates every vector in the plane
	- No vector that remains unchanged
- -

- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
	- Can you identify it?

 -0.5

 15

 0.5

 -0.5

 -1.5

 $-2\frac{1}{2}$

 -1.5

- The major and minor axes of the transformed ellipse define the ellipse
	- They are at right angles
- These are transformations of right-angled vectors on the original circle!

- -
- S is a diagonal matrix
- The right singular vectors in V are transformed to the left singular vectors in U
	- And scaled by the singular values that are the diagonal entries of S

- A matrix \boldsymbol{A} converts right singular vectors \boldsymbol{V} to *left* singular vectors U
- A^T converts U to V

- The left and right singular vectors are not the same
	- If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
	- Max ($|Ax| / |x|$) = s_{max}
- The smallest singular value is the smallest amount by which a vector is scaled by A
	- Min $(|Ax| / |x|) = s_{\min}$
	- This can be 0 (for low-rank or non-square matrices)

The Singular Values

- Square matrices: product of singular values = determinant of the matrix
	- This is also the product of the eigen values
	- an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any Square matrices: product of singular values = determinant of the matrix

- This is also the product of the *eigen* values

- I.e. there are two different sets of axes whose products give you the area of

an ellipse

For a
	- An analogous rule applies to the smallest singular value
	- This property is utilized in various problems 192

SVD vs. Eigen Analysis

- Eigen analysis of a matrix A:
	- Find vectors such that their absolute directions are not changed by the transform
- SVD of a matrix A:
	- Find orthogonal set of vectors such that the *angle* between them is not changed by the transform
- For one class of matrices, these two operations are the same

A matrix vs. its transpose

- Multiplication by matrix A:
	- Transforms right singular vectors in V to left singular vectors U
- Multiplication by its transpose A^T : :
	- Transforms *left* singular vectors U to right singular vector V
- A A^T : Converts V to U, then brings it back to V
	- Result: Only scaling

Symmetric Matrices

- Matrices that do not change on transposition
	- Row and column vectors are identical
- The left and right singular vectors are identical
	- $U = V$
	- $A = U S U^T$
- They are identical to the *Eigen vectors* of the matrix
- Symmetric matrices do not rotate the space
	- Only scaling and, if Eigen values are negative, reflection

Symmetric Matrices

- Matrices that do not change on transposition
	- Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
	- At 90 degrees to one another

• Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid

– The eigen values are the lengths of the axes

Symmetric matrices

• Eigen vectors V_i are orthonormal $-V_i^{\rm T}V_i = 1$

$$
- V_i^{\mathrm{T}} V_j = 0, \, i \, ! = j
$$

• Listing all eigen vectors in matrix form V $-V^{T} = V^{-1}$

$$
- VT V = I
$$

$$
- V V^{T=I}
$$

- M $V_i = \lambda V_i$
- In matrix form : $M V = V \Lambda$

 Λ is a diagonal matrix with all eigen values

• $M = V \Lambda V^T$

Definiteness..

- SVD: Singular values are always positive!
- Eigen Analysis: Eigen values can be real or imaginary
	- Real, positive Eigen values represent stretching of the space along the Eigen vector
	- Real, negative Eigen values represent stretching and reflection (across origin) of Eigen vector
	- Complex Eigen values occur in conjugate pairs
- A square (symmetric) matrix is positive definite if all Eigen values are real and positive, and are greater than 0
	- Transformation can be explained as **stretching** along orthogonal axes
		- Transformation has no permutation or rotation
	- $-$ If any Eigen value is zero, the matrix is positive semi-definite

Positive Definiteness..

- Property of a positive definite matrix: Defines inner product norms
	- $-\overline{x}^T Ax$ is always positive for any vector x if A is positive definite
- Positive definiteness is a test for validity of Gram matrices
	- Such as correlation and covariance matrices
	- We will encounter these and other gram matrices later

- We can also perform SVD on matrices that are *data containers*
- S is a $d \times N$ rectangular matrix
	- $-$ N vectors of dimension d
- **U** is an orthogonal matrix of d vectors of size d
	- All vectors are length 1
- V is an orthogonal matrix of N vectors of size N
- S is a $d \times N$ diagonal matrix with non-zero entries only on diagonal

SVD on data-container matrices

0000@@@@@@@@@@

$$
\mathbf{X} = [X_1 \ X_2 \ \cdots X_N]
$$

$$
\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathrm{T}}
$$

 $|U_{\rm i}|=1.0~$ for every vector in U $|V_\mathrm{i}|=1.0~$ for every vector in $\mathbf V$

$$
\begin{array}{|c|c|c|}\hline \multicolumn{1}{|c|}{\multicolumn{1}{|c|}{\multicolumn{1}{c|}{\multic
$$

SVD on data-container matrices

Expanding the SVD
\n**69900000000**
\n
$$
X = [X_1 \ X_2 \ \cdots X_N]
$$
\n
$$
X = s_1 U_1 V_1^T + s_2 U_2 V_2^T + s_3 U_3 V_3^T + s_4 U_4 V_4^T + ...
$$

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value
- Low singular-value components contribute little, if anything
	- Carry little information
	- Are often just "noise" in the data

Expanding the SVD
\n
$$
X = s_1 U_1 V_1^T + s_2 U_2 V_2^T + s_3 U_3 V_3^T + s_4 U_4 V_4^T + ...
$$
\n
$$
X \approx s_1 U_1 V_1^T + s_2 U_2 V_2^T
$$

- Low singular-value components contribute little, if anything
	- Carry little information
	- Are often just "noise" in the data
- Data can be recomposed using only the "major" components with minimal change of value
	- Minimum squared error between original data and recomposed data
	- Sometimes eliminating the low-singular-value components will, in fact "clean" the data

An audio example

- The spectrogram has 974 vectors of dimension 1025
	- A 1024x974 matrix!
- Decompose: $\mathbf{M} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}} = \sum_i s_i U_i V_i^{\mathsf{T}}$ T₁
- U is 1024 x 1024
- V is 974 x 974
- There are 974 non-zero singular values S_i

Singular Values

- Singular values for spectrogram M
	-
	-

- The same spectrogram constructed from only the 25 highest singular-value components
	- Looks similar
		- With 100 components, it would be indistinguishable from the original
	- Sounds pretty close
	- Background "cleaned up"

With only 5 components

- The same spectrogram constructed from only the 5 highest-valued components The same spectrogram constructed from only the

i highest-valued components

— Corresponding to the 5 largest singular values

— Highly recognizable

— Suggests that there are actually only 5 significant

unique note combi
	- Corresponding to the 5 largest singular values
	- Highly recognizable
	- unique note combinations in the music

• Next up: A brief trip through optimization..