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A problem we recently SawW
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* The projection matrix P is the matrix that minimizes
the total error between the projected matrix S and the
original matrix M
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The projection problem

S =PM

For individual vectors in the spectrogram

—- S, =PM,

Total projection error is

- E = Y;|IM; — PM;]|?

The projection matrix projects onto the space of notesin N
— P=NC

The problem of finding P : Minimize E = Y;||M; — PM;]||* such
that P = NC

This is a problem of constrained optimization



Optimization

e Optimization is finding the “best” value of a function f(x)
(which can be the best minimum)

f(x) A

global maximum

min f(x ) inflection point
X

local minimum

global minimum




Examples of Optimization :
Multivariate functions

* Find the optimal point in these functions

A1
( i

SRR
s
) “i::‘ *,IFI'*" J".

¢: 0
B
OO

11-755/18-797



Index

The problem of optimization

Direct optimization

Descent methods
—  Newton’s method
—  Gradient methods

Online optimization

Constrained optimization
—  Lagrange’s method
—  Projected gradients

Regularization
Convex optimization and Lagrangian duals

11-755/18-797




Simple Approach: Turning Point

£(X)

* The “minimum” of the function is always a “turning point”

— Points where the function “turns” around

* |In every direction

— For minima, the function increases on either side

* How to identify these turning points?



The “derivative” of a curve
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The derivative a, of a curve is a multiplicative factor explaining how much y
changes in response to a very small change in x

Ay = a,Ax
* For scalar functions of scalar variables, often expressed as Z—z oras f'(x)
Ay = dyA Ay = f'(x)A
y = Ax y = f(x)Ax

We have all learned how to compute derivatives in basic calculus

10
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The derivative of a Curve

Positive
derivative

Zero

.. d
derivative &y - 0
dx

* In upward-rising regions of the curve, the derivative is positive
— Small increase in X cause Y to increase

* In downward-falling regions, the derivative is negative

* At turning points, the derivative is O
— Assumption: the function is differentiable at the turning point
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Geometrical application of Calculus
to the derivative of a curve

* Find all values of x for which f(x) = x? —4x + 4 is
increasing, decreasing and stationary

Increasing

f(x)=x>-4x+4
f'x)=2x-4
2x-4>0

2x >4

X > 2

Decreasing
f(x)=x’-4x+4
f'x)=2x-4
2x-4<0
2x <4

X <2
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Stationary

f(x)=x"—4x+4
f'x)=2x-4
2x-4=0

2x =4

X =2
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Finding the minimum of a function

A

dy
E‘O

f(x)

X

 Find the value x at which f'(x) =0
— Solve

are) _

dx
 The solution is a turning point

e PButisita minimum?

11-755/18-797
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Turning Points

e Both maxima and minima have zero derivative

— Both maxima and minima are turning points
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Derivatives of a curve

f @l

v

* Both maxima and minima are turning points

e Both maxima and minima have zero derivative
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Derivative of the derivative of the

curve
S0 o

NN AN I
. X /

\\ //‘
N4

 Both maxima and minima are turning points

e Both maxima and minima have zero derivative

 The second derivative f”’(x) is —ve at maxima and +ve at minimal!

— At maxima the derivative goes from +ve to —ve, so the derivative
decreases as x increases

— At minima the derivative goes from —ve to +ve and increases as x

increases

16
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Soln: Finding the minimum or
. maximum of a function

f(x)

>
X
Find the value x at which f'(x) =0: Solve
fE@
dx

The solution x,;5, is a turning point
Check the double derivative at x;,;,, : compute

df’ soln
f”(xsoln) = 4 (;Cx in)

If f""(x5015) is poOsitive X1, is @ Minimum, otherwise it is a maximum
11-755/18-797 17



What about functions of multiple
variables?

P

AN,
e,

S

The optimum point is still “turning” point
— Shifting in any direction will increase the value
— For smooth functions, miniscule shifts will not result in any change at all

We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function

11-755/18-797

18




The Gradient of a scalar function

[

* The derivative Vf(X) of a scalar function f(X) of a
multi-variate input X is a multiplicative factor that
gives us the change in f(X) for tiny variations in X

Af(X) = Vf(X)AX

 The gradient is the tranﬂs_%ose of the derivative \7f(X)T19
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Gradients of scalar functions with
multi-variate inputs

e Consider f(X) — f(x1;X2; ...,Xn) iy

0x4
of (X
VFX)T = a_xz
of (%)
0x,,
e Check:
Ang)X= Vf(X)i?XX -
— %Axl +%Ax2 + ..,_I_%Axn



A well-known vector property

u.v = |ul|v|cosB

* The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned
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Properties of Gradient

Af(X) =VF(X)AX
— The inner product between VVf(X) and AX

Fixing the length of AX
—E.g. |AX| =1
Af(X)ismaxif £Vf(X),AX =0

— The function f(X) increases most rapidly if the input
increment AX is perfectly aligned to Vf (X)

The gradient is the direction of fastest increase in f(X)
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Gradient

e,

-t
o™ -
- -

Gradient

. vector V£(X)
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Gradient

ot *
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at®

il Vo 7 Gradient
02 | YORSRDNRERAZEE= AN . velctor VfI(X)
y P— --—- _ 2 ' == == Moving in this

direction increases
f(X) fastest
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Gradient

-
=

Gradient

~_ vector Vf(X)
| |

T
)

Moving in this
direction increases

direction decreases

Moving in this f(X) fastest

f(X) fastest <=
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Gradient

16
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Gradient here I+

is O
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| Gradient here

is O
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Properties of Gradient: 2

* The gradient vector Vf(X) is perpendicular to the level curve
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Derivatives of vector function of
vector input

* The Gradient Vf(X) of a vector function f(X) of a
multi-variate input X is a multiplicative factor that
gives us the change in f(X) for tiny variations in X

Af(X) =VFX)TAX
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“Gradient” of vector function of
vector input

VI(X)' =

'S

X

_xn .

Oy L O
ox, 0Ox,
v, O,
ox, Ox,
v, o,

| Ox,  Ox,

J(X)=

11-755/18-797
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Properties and interpretations
are similar to the case of
scalar functions of vector
inputs
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Chain rule

The gradient is based on derivatives

The derivative of composed function f(g(x)) or
fegcan be very complicated to compute

If f°& is the composite of y=/(®) and #=gx)
, , ’ dy dy du
Then (fog) =fatu=g(x).gatx or dx B dl/l dx

This is known as Chain rule




Example of chain rule

8x—x° |3
* Differentiate h(x)=( > 3x ]
X

* Simplification 4

4

8x—x°1]5 [8x x6j5 S
h(x)= = — =(8x " —x
(x) ( 33 j (x3 P (

* Applying Chain rule

4
5

y=f(u)=(u)



Example of chain rule

* Applying Chain rule

h(x)= (—%}(8)62 —x )_i_l (—8x 7 —x°)'
h(x)= (—%}(8)62 —x )_2 (—16x~ —=3x%)

e After simplification
4x°(16+3x°
h(x) = ( 9 )

5(8—x°)3



Vector and Matrix derivatives

 The derivative of vectorx=| . |byascalar yis

given by  ox
ay
ox,

Oy

Ox

Ox
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Vector and Matrix derivatives

* The derivative of scalar y by a vector x=
given by

Y X,
Ox,
Yy
Oox,

Yy
ox,

11-755/18-797




Vector and Matrix derivatives

e The derivative of vector x=

Is given by

dx

Oy a vector y=

M
Y

Y




Vector and Matrix derivatives

X1 X2 - o X,
X1 Koo - - Xy,
 The derivative of matrix x-=
‘xm,l xm,2 xmn
by a scalar y is given by _ '
ox,,  Ox, Ox,
oy oy oy
ox,, O0x,, Ox,
%) %) o
a_X_ 34 4 34
6)/ ) . .
0x,, OX,, ox,,
ay oy oy

11-755/18-797
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Vector and Matrix derivatives

* The derivative a scalar y by a matrix

xl,n _
x2,n
. . 9,
is given by -
'xm,n

11-755/18-797

dy
ox,,  Ox,
d 0Oy
Xy OXy,
o
ox,, Ox,,
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Vector and Matrix derivatives

e The derivative of vector x of 7 elements
by a matrix Y of size (p,q) is given by

Ox Oox Ox

o, v,  on, . .
u £ 0% |s the derivative of
Ox Oox Ox a
N AT ii the vector x by the
x ° °
oy | scalar ., which is
o  ox an element of the
oy . oy 5,2 oy Iy .
matrix v




Vector and Matrix derivatives

* The derivative of matrix X of size (m,») by
another matrix Y of size (p,q) is given by

oX
oY

oX

oX

Oy 11
oX

ayl,Z o

oX

ayz,l

oX

ayz,z o

oX

ayp,l

5yp,2 .o

oX

ayl,q
oX

6y2,q

9X |s the derivative of

Y:i the matrix x by the
scalar v, which is
an element of the
matrix y



Gradient Example

 Compute the Gradient of the function
f(x1, %2, x3) = 15x; + 2(x2)° — 3%, x5

od o o
ox, Ox, Ox,

Vf(x,,x,, Xy) =

Vf(x19x29x3) = 15_3(X3)2 6(.X2)2 _6x1x3 :|




The Hessian

* The Hessian of a function f (x4, X5, ..., Xy,) is
given by the second derivative

82_f o' f o f
ox;  oOx.0x,  Ox0x,
of  of O f
ox,0x,  Ox:  Ox,0x,
V2 f(xyx,) =
o f o f 52_f
ox ox, oxox,  Ox




Hessian Example

* Compute the Hessian of the function
S (xp, x5, x3) =15x, +2(x, )2 —3x,(x;)

Vf(xpxza)%)::[ 15-3(x;)"  6(x,)" —6x,x; }

0 0 —b6bx,
Vi (x,x,x)= 0 12x, 0
—-6x, 0 —6x




Returning to direct optimization...
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Finding the minimum of a scalar
function of a multi-variate input

AR,
SRR ¢
(SSERONGN)
SESEARENN
O s
o

"

AL ¢
\\\.\“ﬁ‘::i‘:ﬂ’t* e "*

33,

S N

S T
o SR R R

S R T

44

* The optimum point is a turning point — the

gradient will be O
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Unconstrained Minimization of
function (Multivariate)

1. Solve for the X where the gradient equation equals to
Zero

VI(X)=0

2. Compute the Hessian Matrix V2 f(X) at the candidate
solution and verify that

— Hessian is positive definite (eigenvalues positive) -> to
identify local minima

— Hessian is negative definite (eigenvalues negative) -> to
identify local maxima



Unconstrained Minimization of
function (Example)

* Minimize
fx1,x2,%3) = ()% + 20 (1 — x5) + (x2)* — x2x3 + (x3)* + x3

* Gradient 2x, +1-x,
V= —x+2x,—x,
—x, +2x,+1
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Unconstrained Minimization of
function (Example)

e Set the gradient to null
2x,+1-x, i 0 )
Vi=0=>| —x+2x,—-x;, |=| 0
—x,+2x,+1 | | O

* Solving the 3 equations system with 3 unknowns

X —1

x= x, |=| -1




Unconstrained Minimization of

function (Example)

2

Compute the Hessian matrix y2¢-| _j

0

—1
2
—1

0
-1
2

Evaluate the eigenvalues of the Hessian matrix
A =3414, 1,=0.586, 1, =2

All the eigenvalues are positives => the Hessian
matrix is positive definite

The point x=

IS a mMinimum




Poll 1

* The gradient of the function at any point is:

— The direction in which the input must be
perturbed for the fastest increase in the function

— The direction in which the input must be
perturbed for the fastest decrease in the function

— The direction in which the input must be
perturbed to see no change in the function



Poll 1

* The gradient of the function at any point is:

— The direction in which the input must be
perturbed for the fastest increase in the function

— The direction in which the input must
perturbed for the fastest decrease in t

— The direction in which the input must

e
ne function

0[S

perturbed to see no change in the function

11-755/18-797
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Closed Form Solutions are not always
A available

> X

» Often it is not possible to simply solve Vf(X) =0

— The function to minimize/maximize may have an
intractable form

* In these situations, iterative solutions are used

— Begin with a “guess” for the optimal X and refine it
iteratively until the correct value is obtained



£(X)

Iterative solutions

16

Xo XqXo xﬂx3
4

* |terative solutions
— Start from an initial guess X for the optimal X
— Update the guess towards a (hopefully) “better” value of f(X)
— Stop when f(X) no longer decreases
* Problems:
— Which direction to step in
— How big must the steps be

11-755/18-797 53



Descent methods

* |terative solutions that attempt to “descend”
the function in steps to arrive at the minimum

* Based on the first order derivatives (gradient)
and in some cases the second order
derivatives (Hessian).

— Newton’s method is based on both first and
second derivatives

— Gradient descent is based only on the first
derivative



Descent methods

* |terative solutions that attempt to “descend”
the function in steps to arrive at the minimum

* Based on the first order derivatives (gradient)
and in some cases the second order
derivatives (Hessian).

— Newton’s method is based on both first and
second derivatives

— Gradient descent is based only on the first
derivative



Newton’s iterative method to find the
zero of a function

T ke _ k_f(xk)

/

Newton’s method to find the “zero” of a function
— Initialize estimate

— Approximate function by the tangent at initial value

— Update estimate to location where tangent becomes O

Funktion
S I - Tangente

— |terate 11-755/18-797 56



Newton’s Method to optimize a

Jx)

B

v

A

/

function

\

Funktion
Tangente

* Apply Newton’s method to the derivative of the function!

— The derivative goes to 0 at the optimum

* Algorithm:

— Initialize x,

— K% iteration: Approximate f”(x) by the tangent at x,

— Find the location x;,,.,..... Where the tangent goes to 0. Set x,,; = x

— lterate

11-755/18-797
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Newton’s method to minimize
univariate functions

* Apply Newton’s algorithm to find the zero of
the derivative f'(x)

Lk f’(xk)
frr(xk)

e kisthe currentiteration

* The iterations continue until we achieve the
stopping criterion |x®*t1 — x*| < €



Newton’s method for multivariate
functions

1. Select an initial starting point X°

2. Evaluate the gradient Vf(Xk) and Hessian
72f(X%) at Xk

3. Calculate the new X**1 using the following
Xk+1 — Xk _[sz(Xk)}l.Vf(Xk)

4. Repeat Steps 2 and 3 until convergence



Newton’s Method example

* This is the same optimization problem we saw
previously

* Minimize
S, %5, x5) = ()" + 2, (1=x)) = (x,)” = 2,00, + ()" + x4

e Gradient - .
2x,+1-x,

V=l —x +2x,—x,
—x, +2x,+1




Newton’s Method example

0
0
0

 The gradient for the vector X°

e |nitial Value of X° =

0-0+1 |
V1(0,0,0)=] -0+0-0 |=| O
—0-0+1 1




Unconstrained Minimization of
function (Example)

e The Hessian matrix is

Vif=

2
—1
0

—1
2
—1

0
—1
2

* The inverse of the Hessian is needed as well

Vil =

2
-1
0

-1
2
-1

0
-1
2

3

1

1




Newton’s Method example

e The new vector x after iteration 1 is as follow

X' =x" [V x| vrx®)
3 1 1
0] |4 2 4[1]
x'=lol-|1 1 Lo
P 2
01 1 3l
4 2 4




Newton’s Method example

-

* The updated value of the gradient for »'=| -1
2+1+1 0
Vi(-L,-L-1)=| -1+2-1 |=| 0
—1-2+1 0

e The Gradient is zero => The Newton method
has converged




Newton’s Method

* Newton’s approach is based on the computation of both
gradient and Hessian : ik, KA i

1 1 2
d

— Fast to converge (few iterations) |
al

— Slow to compute
)|

Newton’s method —'—/>

(arrives at optimum .o
in a single step) Al

e Can arrive at the optimal solution in a single step for a quadratic
function
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat

11-755/18-797
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat
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Newton’s method: generic case

solution!

X3

\_:./

Approximates function by a quadratic Taylor series at the current
estimate

Solves for the optimum of the quadratic approximation
— Single step
Repeat

11-755/18-797

v

72



Newton’s method: generic case

v

N __—

 Approximates function by a quadratic Taylor series at the current estimate
* Solves for the optimum of the quadratic approximation

— Single step
* Repeat

— Can easily get lost if the initial point is poor
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Newton’s Method

 Newton’s approach is based on the computation of both gradient and

Hessian I 5. " ..
' | — |
— Fast to converge (few iterations) " |
|
— Slow to compute 3|_ 50 |
(arrives at optimum o
in a single step) A
_f_ll
-3 i
|
4 . |
=B 4 3 4 i ] 1 2 a 4 o

 Can be very efficient
* This method is very sensitive to the initial point

— If the initial point is very far from the optimal point, the optimization process may not converge
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Poll 2

e Select true statements about Newton’s
method for minimizing a function

— It is an iterative algorithm
— It will always find the minimum

— It requires computation of the second derivative



Poll 2

e Select true statements about Newton’s
method for minimizing a function

— It is an iterative algorithm
— It will always find the minimum
— It requires computation of the second derivative

11-755/18-797
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Descent methods

* |terative solutions that attempt to “descend”
the function in steps to arrive at the minimum

* Based on the first order derivatives (gradient)
and in some cases the second order
derivatives (Hessian).

— Newton’s method is based on both first and
second derivatives

— Gradient descent is based only on the first
derivative




The Approach of Gradient Descent

E

NEGATIVE SLOPE
: POSITIVE SLOPE

GLOBAL M
BTN IBALIR !
..._.‘. ‘—

* |terative solution:
— Start at some point
— Find direction in which to shift this point to decrease error

* This can be found from the derivative of the function
— A positive derivative = moving left decreases error
— A negative derivative = moving right decreases error

— Shift point in this direction



The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

GLOBAL

BRIMIRIUR : .
] . Dec“;stwf ] ] Increase w
* |terative solution: Trivial algorithm
— Initialize x"

— While f'(x*) = 0

* If sign (f’(xk)) is positive:

k+1 k

— x"T = x" — step

* Else
— xR+l =x* + step

— But what must step be to ensure we actually get to the optimum?



The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

|

: GLOBAL

L RN :
Decrease w Increase w

* |terative solution: Trivial algorithm

— Initialize x°

— While f'(x*) # 0

o xk*t1 = xk —sign (f’(xk)) .step

— Identical to previous algorithm



The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

|

: GLOBAL

L RN :
Decrease w Increase w

* |terative solution: Trivial algorithm

— Initialize x
— Whilef'(x*) # 0

C XL =k k(xR
— ¥ is the “step size”

 What must the step size be?



Gradient descent/ascent
(multivariate)

* The gradient descent/ascent method to find the
minimum or maximum of a function f iteratively

— To find a maximum move in the direction of the
gradient

xR+l — y ke nkvf(xk)
— To find a minimum move exactly opposite the
direction of the gradient

kL = xk — pkpf(xk)

* What is the step size n*



1. Fixed step size

* Fixed step size

— Use fixed value for n*

f(x) A

Small Steps Target

11111111111
rrTrTrTrrrvrrand

x Y

11-755/18-797
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Influence of step size example
(constant step size)

F(x%,) =(x,) + x,x, +4(x,) X" =

5
4
3
2
1
< 0F
1
2
3
4
-5

2
I S - - T
T T T — T T T T T

5 4 g 2 )91 1 2 38 4 f-755/18-797 ©° 4 8 2 A )?1 12 9 4 By



Variable step size

* Shrink step size by a constant factor each iteration:
k _ k-1
n = an
— Wherea <1

* Gradient descent algorithm:
— Initialize x°, n°
— Whilef'(x*) # 0
o yk+1 — yk _ nkfl(xk)
. pk+l = gpk

e k=k+1



Optimal step size

* Finding the optimal step size is a challenge
* |deally, step size changes with iteration
e Several algorithms to find optimal step size

— On slides

* Please read the slides, this will appear in the quiz



2. Backtracking line search for step
size

* Two parameters a (typically 0.5) and [ (typically 0.8)
* At each iteration, estimate step size as follows:

— Setnf =1

— Update n* = n*until

f (k= n*rf () < £() — an®||vf ()|
— Update x**1= xk —nkpf(x¥)

* |ntuitively: At each iteration
— Take a unit step size and keep shrinking it until we arrive at
a place where the function f (xk - nka(xk)) actually

decreases sufficiently w.r.t f(xk)



2. Backtracking line search for step size

* Keep shrinking step size till we find a good one
88



2. Backtracking line search for step size

* Keep shrinking step size till we find a good one
* Update estimate to the position at the converged step size,,



2. Backtracking line search for step size

e At each iteration, estimate step size as follows:
— Setn®=1
— Update n* = Bn*until

f(xk =0k f(x9)) < F(x%) = an|[7f ()|

— Update x**t1= xk — ﬂka(xk) f(x) A

Large Steps

* Figure shows actual evolution of x*
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3. Full line search for step size

* At each iteration scan for n; that minimizes f (xk — nka(xk))
* Update x* = x* —nkrf(x*)

11-755/18-797
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3. Full line search for step size

* At each iteration scan for 1, that minimizes f (xk — nka(xk))
 Can be computed by solving
df (xk — nka(xk))
dnk
* Update x*= x* — nkVf(x*)

11-755/18-797
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Gradient descent convergence criteria

* The gradient descent algorithm converges
when one of the following criteria is satisfied

SO = fh| <

* Or HVf(xk)H <&,

f(x)

>

Starting

/ Point

Iteration 3

Iteration 4

Convergence

11-75¢

Value 93



Gradient descent example

* This is the same optimization problem as
previously

* Minimize
f(xlaxzaxs):(x1)2+x1(1_x2)_(x2)2_x2x3+(x3)2+x3
* Gradient initial vector
2x,+1-x, 0
V=l —x +2x,—x, x'=| 0
—x, +2x,+1 0




Gradient descent example

2-0+1-0 |
VIi(x))=l -0+2-0-0 |=| 0
—0+2-0+1 |

0 1 —a’

x'= 0 |-’ 0 |=| O
0 | .

* Find the best step value ¢’



Gradient descent example

f(xl):(_ao)z_ao_l_(_ao)z _a°
=2(a") -2(a”)

af(xl) =4(0{0)—2
oa’

* Set the derivative equal to zero -

0
—
1
af(xo):4(0!0)_22():>050=l x'= 0 |=
oa 2 P




Gradient descent example

* |teration 2 “1+1+0 B

2 2
- 0-1+1 | -
1 ) ) _l
2 0 2
= 0 |-d'| 1 |=| -
R o || 1
2 o 2




Gradient descent example

2 1 1 1 12 1 1 1 1
x)=—=l+a)+(ad) ——a +———
J(x7) A 2( )+(a') S T
]
(' V—g ——
(@) ,
of (x°) 1
=2(a' )1
oa' () ] _
* Set the derivative equaltozero | 1
Of (x° | ”
f(x1)=2(051)—1=O:>051:— x*=| -«
oo 2 1
2




Gradient descent example

* |teration 3

N[ — © N =



Gradient descent example

f(x))= %(0[2 +1)° —%(0[2 +1)+%

of (x”) ~
o =(a’ +1)

* Set the derivative equal to zero

3
X =

o) =(a’ +1)———O:>052=l
oa’ 2




Gradient descent example

* |teration 4

ANlwW O — MW

Vi3

1
2’

11-755/18-797
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Gradient descent example

| 3 3
=@+ 1) =2 ()=
f(x7) 4( ) 2( ) ;
4
5f(X3): 1(a3+1)_2
oa 2 8
* Set the derivative equal to zero _3
4
4
4 |
@f(x3): 1(0[3+1)—2=O:>053=§ X" = —5(05 +1)
oo 2 8 4 .
4




Gradient descent example

* |teration 5

AlwW 0|O ~|W




Gradient descent example
5 _7_3 4 2_ﬁ 4 _5_1
J(x )—32(0! ) 32(0! ) 1

8f(x5)_7_3a4_ﬁ
oa* 16 32

* Set the derivative equal to zero 1091
1168
5 ; 66
@f(x4):73&4_£202>&4:ﬁ X = —%
oo 16 32 146
_1091
1168




Gradient descent example

* Verifying the stopping criteria HVf(xs)H

21

584
35

584
21

s8a

VI(x)=

= 2L o 25T (2T -0




Gradient descent example

Vf(?CS)H =0.0786 is very small. The stopping

criteria is satisfied.
1091
1168
e The vector - _% can be taken as the
minimum 1091
1168
5 . .
* The vector x” is very close to the optimal

minimum 1

xoptimal — . 1




Poll 3

* Gradient descent will always be slower to
converge than Newton’s method

— True
— False



Poll 3

* Gradient descent will always be slower to
converge than Newton’s method

— True
— False



Gradient descent vs. Newton’s

* Gradient descent is typically much slower to converge than
N eWtOn’S :‘(12”(1 x2+4 x22

5

— But much faster to compute

4t PR

Newton’s method

Gradient descent

« Newton’s method is exponentially faster for “convex” problems
— Although derivatives and Hessians may be hard to derive

— May not converge for non-convex problems
109
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Online Optimization

Often our objective function is an error

The error is the cumulative error from many
signals

—Eg. E(W) = Xilly — fC, W)|I?

Optimization will find the W that minimizes total
error across all x

What if wanted to update our parameters after
each input x instead of waiting for all of them to
arrive?



MLSP

00000

Sooo

<

Il
Y D
e
e i
|

|

|

l

|
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|

|

|

|

il

=T = -

2000 E - 5 === ———
T e 1 e R e e ks e ¥ o | =

o000 —— — - = — == — —_— — e e e =

e == e — === = ==

* Given the music M and the score S of only four of the
notes, but not the notes themselves, find the notes

M=NS = N=MPinv(s)
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MLSP

The Actual Problem

Given the music M and the score S find a matrix /NV such the error of
reconstruction

- E = XlIM; — NS;||?

is minimized
This is a standard optimization problem
The solution gives us N = MPinv(S)
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- — - F e
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— - = - S = = ==t e == = _— - = =

e ks e === == = W R e —— e =

MLSP

Given the music M and the score S find a matrix /NV such the error of

reconstruction
— E = Y;|IM; — NS;||?

This requires "seeing” all
of M and S to estimate N

is minimized
This is a standard optimization problem
The solution gives us N = MPinv(S)

11-755/18-797
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MLSE

Online Updates

o = =ty e L8 B e — = SR E=as
= o N e a e et S Seeems - e g e W -— - [ - = =
== == = e e T s B e e - —— = ]
- - e - Sa—— - = == = —l = S =
= = = = = i) e -= = = S £
= S e = ———— ks = — = — = =——
M = == Er ke Lk e e e e = =
. e — == = —— = s —— B
) e — g e e e e =
— = = = =2 e — =
e e e e —— == ==
— = e = - S == =
= e = = — = e e
= =—= == —= 1 = = e e e T ]
e ———g e — e e e — =
= = — . — = - = = =— ——
s i.—:-i‘ - — — === = === T—— - = = —

JINN

N° N!' N N3 N*
 What if we want to update our estimate of the notes after every
input
— After observing each vector of music and its score

— A situation that arises in many similar problems
11-755/18-797 115



Incremental Updates

Easy solution: To obtain the kth estimate N*, minimize the error on
the kth input

— The error on the k" input is:
Ex = My — NSg
— The squared error is:
Ly = EI% = |[|Mg — NSKHZ
— Differentiating it gives us
VN = —2(Myg — NSy)Sk = —2E, Sk
Update the parameter to move in the direction of this update
N1 = N* + nEgSk

n must typically be very small to prevent the updates from being
influenced entirely by the latest observation



Online update: Non-quadratic
functions

The earlier problem has a linear predictor as the underlying model
M, = NS,
We often have non-linear predictors
Ve = g(WXp)
Ex =Y — g(WXy)
The derivative of the squared error E,2< w.r.t W is often ugly or
intractable

For such problems we will still use the following generalization of
the online update rule for linear predictors

WA = WX + nEp X
This is the Widrow-Hoff rule

— Based on quadratic Taylor series approximation of g(.)
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A problem we recently SawW

—_ = -
— 1 — —
— 1 - )
4 - — — — —— — - — —
—_ —
- - [ = 1
- — — . . _
S - | _ — R — —_ -
) — . _ _
| J _— - . e e S e

* The projection matrix P is the matrix that minimizes
the total error between the projected matrix S and the
original matrix M
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CONSTRAINED optimization

Recall the projection problem:

Find P such that we minimize
E = Y;|IM; — PM;||*

AND such that the projection is composed of

the notesin N
P = NC

This is a problem of constrained optimization



Optimization problem
with constraints

* Finding the minimum of a function f: RY — R
subject to constraints

min f(x)
s.t. g(x)<0 i={l,..,k}
h(x)=0 j={L,..,1}

e Constraints define a feasible region, which is
nonempty



Optimization without constraints

* No Constraints min f(x,y,z)=x"+)"

Best minimum
point

200

150

100

50

10




Optimization with constraints

e With Constraints

mm_ng&;f+y2
X,V

2x+y<-4
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Optimization with constraints

. . min f(x,y)=x"+)’
e Minima w/ and w/o constraints =

s.t. 2x+y<-4

-10

. . 5
\I\//I\/I?r:mutm raint -10 -20 o 10 Minimum
ithout constraints 11-755/18-797 With constraints 124



Solving for constrained optimization:
the method of Lagrangians

* Consider a function f(x,y) that must be
maximized w.r.t (x,y) subject to

gx,y) =c

— Note, we’re using a maximization example to go
with the figures that have been obtained from
Wikipedia



The Lagrange Method

Jxy) A

y

X

* Purple surfaceis f(x,y)

— Must be maximized

* Red curveis constraint g(x,y) = ¢
— All solutions must line on this curve

* Problem: Find the position of the largest f(x, y) on the red
curve!
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The Lagrange Method

1Y) | maximize flx,y),s.t. glx,y) =c

* Dotted lines are constant-value contours f(x,y)
— f(x,y) has the same value C at all points on a contour

* The constrained optimum will be at the point where the
highest constant-value contour touches the red curve

— It will be tangential to the red curve
127



The Lagrange Method

1Y) | maximize flx,y),s.t. glx,y) =c

 The constrained optimum is where the highest
constant-value contour is tangential to the red curve

* The gradient of f(x,y) = C will be parallel to the
gradientof g(x,y) =

128



The Lagrange Method

J5Y) | maximize f(x,y),s.t. glx,y) =c | A

y

e At the optimum
Vi(x,y) = AVg(x,y)
glx,y) =c

* Find (x, y) that satisfies both above conditions

129



The Lagrange Method

ViCx,y) =AVg(x,y)
glx,y) =c
Find (x, y) that satisfies both above conditions
Combine the above two into one equation
L,y A) = f(x,y) —A(gx,y) —c)
Optimize it for (x,y, 1)

Solving for (x,y),
VeyL(,y,)=0 = Vf(x,y) = AVg(x,y)
Solving for A
dL(x,y,1) ;
oA

= glxy)=c

11-755/18-797
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The Lagrange Method

Vi(x,y) = AVg(x,y)
glx,y) =c

* Find (x, y) that satisfies both above conditions
* Combine the above two into one equation

Lx,y,A) = f(x,y) —A(g(x,y) — )

* Optimize it for (x,y, A)

* So

Formally:
. solto maximize f(x,y): max (min L(x,y, /1))
X,y A

to minimize £ (x,y): min (maxL(x,y, 1))
X,y

A

11-755/18-797
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Poll

* Select all true statements about the Lagrange multiplier
method for constrained minimization
— The constraint must have the form constraint(x)=0
— The modified loss adds lambda*constraint(x) to the function
— We maximize the modified loss w.r.t lambda

— This means that the loss value at any proposed solution where
the constraint is not satisfied can be sent to infinity by
maximizing lambda

— Only solutions where the constraint is satisfied result in
meaningful minima



Poll

* Select all true statements about the Lagrange multiplier
method for constrained minimization

— The constraint must have the form constraint(x)=0
— The modified loss adds lambda*constraint(x) to the function
— We maximize the modified loss w.r.t lambda

— This means that the loss value at any proposed solution where
the constraint is not satisfied can be sent to infinity by
maximizing lambda

— Only solutions where the constraint is satisfied result in
meaningful minima
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Generalizes to inequality constraints

* Optimization problem with constraints
min f(x)

* Lagrange multipliers 4 >0,v e R

L(x, A, v)=f(x)+ Zklﬂigi(x) +Zl: v.h(x)

* The necessary condition
VL(x, A, V):O<:>8—L:O, 5—L=0,8—L=0
ox oA ov



Generalizes to inequality constraints

Maximize w.r.t A

° Optimization prOblem with cc If constraint is not satisfied

min f(x) this term can be made to
* go to inf with high choice of A
st.g(x)<0i= {1,.
e Minimizing the loss while maximizing
h(x)=07= e A forces constraint to be satisfied
and A to go to O

* Lagrange multipliers Z@W

L(x, A, v)=f(x)+ Zklﬂigi (x) +Zl: v.h(x)

* The necessary condition

VLA =0e Lo, % % _g
ox 04 ov



Lagrange multiplier example

min £ (x, y)=x"+’
'x7y

* Lagrange multiplier -

L=x"+y"+12x+y+4) ¢

e Evaluate

VI =0e Lo, %% g
ox 0L ov
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Lagrange multiplier example

* Critical point

§£
OX

=2x+2A4=0

§£:2x+y+4=0

oA

x=—-A
A

=73

2x+y+4=0
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Optimization with constraints

T min f(x,y)=x"+)’
* Lagrange Multiplier results vy
st. 2x+y<-4

200 —
180 —|
160 —|
140 —|
120 |

100 —

20
-10

-20

10-30

Minimum With constraints
(-8/5,-4/5,16/5) 11-755/18-797 138



An Alternate Approach: Projected
Gradients

Feasible
Set

* The constraints specify a “feasible set”
— The region of the space where the solution can lie

11-755/18-797 139



An Alternate Approach: Projected
Gradients

Feasible
Set

* From the current estimate, take a step using the conventional
gradient descent approach

— |If the update is inside the feasible set, no further action is required
11-755/18-797 140



An Alternate Approach: Projected
Gradients

Feasible
Set

* |f the update falls outside the feasible set,

11-755/18-797 141



An Alternate Approach: Projected
Gradients

Feasible
Set

* |f the update falls outside the feasible set,

— find the closest point to the update on the boundary of the

feasible set
11-755/18-797 142



An Alternate Approach: Projected
Gradients

Feasible
Set

* If the update falls outside the feasible set,
— find the closest point to the update on the boundary of the feasible set
— And move the updated estimate to this new point
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The method of projected gradients

min f(x)
st.g.(x)<0i=1l,....k}

* The constraints specify a “feasible set”

— The region of the space where the solution can lie

* Update current estimate using the conventional gradient descent
approach
— |If the update is inside the feasible set, no further action is required

— |If the update falls outside the feasible set,
* find the closest point to the update on the boundary of the feasible set
* And move the updated estimate to this new point

* The closest point “projects” the update onto the feasible set

* For many problems, however, finding this “projection” can be

difficult or intractable
11-755/18-797
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Regularization

I((

 Sometimes we have additional “regularization” on the

parameters

— Note these are not hard constraints

* E.g.
— Minimize f(X) while requiring that the length || X]|? is also
minimum
— Minimize f(X) while requiring that | X|; is also minimal
— Minimize f(X) such that g(X) is maximum

 We will encounter problems where such requirements are
logical
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Contour Plot of a Quadratic Objective

f(x)

i7
o , /@
. - -

e Left: Actual 3D plot
— X =[x, X,]
* Right: constant-value contours

— Innermost contour has lowest value

* Unconstrained/unregularized solution: The center of the innermost

contour
11-755/18-797 147



Examples of regularization

e d -~ ; _ - _-
Pl | e h
e e Far J £
L /4 .-___ - '/
P s P > A
Farl o /f |:l g
| |_ e _-"'.. e L

Image Credit: Tibshirani

Ij| Ij!

* Left: “L,” regularization, find x that minimizes {(x)
o Also minimize |x|,
o |x|; = constis a diamond
o Find x that also minimizes “diameter” of diamond

* Right: “L,” or Tikhonov regularization
o Also minimize ||x|?
o |[x||* = const is a circle (sphere)

o Find x that also minimizes “diameter” of circle
11755/18797 148



Regularization

 The problem: multiple simultaneous objectives
— Minimize f(X)
— Also minimize g, (X), g, (X), ...

* These are “regularizers”

e Solution: Define

- LX) = f(X) +2419:(X) + 1,9,(X) + -
— A4, A, etc are regularization parameters. These are set and
not estimated

* Unlike Lagrange multipliers

— Minimize L(X)



Contour Plot of a Quadratic Objective

f(x)

fx) -

e Left: Actual 3D plot
— X = [xp xz]

* Right: equal-value contours of f(x)
— Innermost contour has lowest value
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With L, regularization S

J(x) +0.5[x], Jx) + x|,

* L, regularized objective f(x) + A|x]|;, for
different values of regularization parameter A

— Note: Minimum value occurs on x, axis for A = 1

e “Sparse” solution
11-755/18-797 151






Regularization

Original Signal
T T T

Sparse signal reconstruction
— Minimum Square Error

Signal X of length 100

10 non-zero components

Reconstructing the original signal from noisy 50
measurements

b=AXx + ¢
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Signal reconstruction
Minimum Square Error

» Signal reconstruction

* Least square problem minHAx—ij

Original Signal Ct?ss;cal Lleast Square
T T

+
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L2-Regularization

» Signal reconstruction

* Least squares problem minHAx—bH;JrVHXHz

Original Signal
T T

L2 Regularization
T T

1 l | 1 | |
0 30 40 50 60 70 80

i

155




L1-Regularization

» Signal reconstruction
* Least square problem minHAx—bHiﬂ/Hle

Original Signal
T T

9 100 10 20 30 40 60 70 80 90 100
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Convex optimization Problems

* An convex optimization problem is defined by
— convex objective function
— Convex inequality constraints f
— Affine equality constraints #,

J

min f,(x) (convex function)

s.t. f.(x)<0 (convex sets)

h.(x)=0 (Affine)



Convex Sets

e aset cew isconvey, if for each x,y e Cand

a €[0,1] then ax+(1-a)y e C

Convex

Non Convex




Convex functions

e Afunction f: RY — R is convex if for each
x,y € domain(f) and a €[0,1]

flax+(1-a)y)<af(x)+(1-a)f(y)

Convex
f(x) Non Convex f(J/)
af(x)+1-a)f(y)

/() +1-a) o\ P )




Concave functions

e Afunction f: RY — R is convex if for each
x,y € domain(f) and a €[0,1]

flax+(1=-a)y)zaf(x)+(1-a)f(y)

J)

Concave

af(x)+(1-a)f(y)



First order convexity conditions

* A differentiable function f: RY — R is convex
if and only if for x, y € domain(f) the
following condition is satisfied

fO) = f(x)+Vf(x) (y—x)

Lower Bound

e
)+ Vf(x) (y—x)
(x, f(x))



Second order convexity conditions

A twice-differentiable function f: RY — R is convex
if and only if for all x,y € domain(f) the Hessian is
superior or equal to zero

200

150

VF(x)=0 -

50




Properties of Convex Optimization

* For convex objectives over convex feasible
sets, the optimum value is unique

— There are no local minima/maxima that are not
also the global minima/maxima

* Any gradient-based solution will find this
optimum eventually

— Primary problem: speed of convergence to this
optimum



Lagrange multiplier duality

* Optimization problem with constraints
min f(x)
st g(x)<0 i={l..,k}

* Lagrange multipliers 4. >20,v e R

k [
L(x, A, v)=f(x)+ D Ag(x)+ D vh (x)
i=1 =1
 The Dual function ]

k [
inf L(x, 4, v)=infy f(x)+ D Ag(x)+ D v, (x)

i=1 j=1




Lagrange multiplier duality

* The Original optimization problem

min{ sup L(x, A, v)}

X A>0,v

* The Dual optimization

max { inf L(x, A, V)}

A>0,v X

* Property of the Dual for convex function

sup {inf L(x, A, v)} = £(x")

A>0,v ~ 4



Lagrange multiplier duality

* Previous Example min  f(x,y)= E +y2
— f(x, y)is convex X,y

s.t. 2x+y<-4

— Constraint function is convex
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Lagrange multiplier duality

* Primal system . Dualsystesm
min  f(x,y)=x"+y° mleW(ﬂ)=le+4/1
sit. 2x+y<-4 st A1>0
* Lagrange Multiplier
L=x"4+y"+12x+y—4) * Property
Z—L=2x+2/1=0:>x=—/1 W(A®) = f(x*,y*)
X
a—LZZ')/—I—X,ZO:>)/:_&
oy 2



Lagrange multiplier duality

w()\|)
|
|
* Dual system I
BEL==""~""7"3 g i
5 ., / O\
maxw(l)==A*+41 =, VAR
) 4 = / : \
__/ | "\
s.t. 120 v/ i
* Concave function e 2
A
— Convex function become concave function in dual problem
ow 5 8
—=——A+4=0=> A*=—
Ox 2 5

11-755/18-797 169



Lagrange multiplier duality

* Primal system * Dual system
min  f(x,y)=x"+)’ m?xw(ﬂ)=2/12+4/1
XY
s.t. 2x+y<-4 st. 1>0

* Evaluating w(/l*):f(x*,y*)

F=— § p¥=— ;L*:§
57 7S : 2
5(8) 32
3 wo_2[ 8] 32
RS ) ) B e R
16
fet, ) =2 WA=

170
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