

Machine Learning for Signal Processing Lecture 4: Optimization

Instructor: Bhiksha Raj (slides partially by Najim Dehak, JHU)

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Index

1. The problem of optimization

- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

A problem we recently saw

• The projection matrix *P* is the matrix that minimizes the total error between the *projected* matrix *S* and the *original matrix M*

The projection problem

- S = PM
- For individual vectors in the spectrogram

 $-S_i = PM_i$

• Total projection error is

 $-E = \sum_{i} \|M_i - PM_i\|^2$

- The projection matrix projects onto the space of notes in N- P = NC
- The problem of finding P: Minimize $E = \sum_i ||M_i PM_i||^2$ such that P = NC
- This is a problem of *constrained optimization*

Optimization

• Optimization is finding the "best" value of a function f(x) (which can be the best minimum)

Examples of Optimization : Multivariate functions

• Find the optimal point in these functions

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

- The "minimum" of the function is always a "turning point"
 - Points where the function "turns" around
 - In every direction
 - For minima, the function increases on either side
- How to identify these turning points?

• The derivative α_x of a curve is a multiplicative factor explaining how much y changes in response to a very small change in x

$$\Delta y = \alpha_x \Delta x$$

• For scalar functions of scalar variables, often expressed as $\frac{dy}{dx}$ or as f'(x)

$$\Delta y = \frac{dy}{dx} \Delta x$$
 $\Delta y = f'(x) \Delta x$

• We have all learned how to compute derivatives in basic calculus 11-755/18-797

The derivative of a Curve

- In upward-rising regions of the curve, the derivative is positive
 - Small increase in X cause Y to increase
- In downward-falling regions, the derivative is negative
- At turning points, the derivative is 0
 - Assumption: the function is differentiable at the turning point

Geometrical application of Calculus to the derivative of a curve

• Find all values of x for which $f(x) = x^2 - 4x + 4$ is increasing, decreasing and stationary

Increasing	Decreasing	Stationary
$f(x) = x^2 - 4x + 4$	$f(x) = x^2 - 4x + 4$	$\int f(x) = x^2 - 4x + 4$
f'(x) = 2x - 4	f'(x) = 2x - 4	$f'(\mathbf{x}) = 2\mathbf{x} - 4$
2x - 4 > 0	2x - 4 < 0	2x - 4 = 0
2x > 4	2x < 4	$2\mathbf{x} = 4$
x > 2	x < 2	$\mathbf{x} = 2$

Finding the minimum of a function

• Find the value x at which f'(x) = 0

Solve

$$\frac{df(x)}{dx} = 0$$

- The solution is a turning point
- But is it a minimum?

Turning Points

- Both *maxima* and *minima* have zero derivative
 - Both maxima and minima are turning points

Derivatives of a curve

- Both maxima and minima are turning points
- Both *maxima* and *minima* have zero derivative

Derivative of the derivative of the

curve

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative
- The second derivative f''(x) is -ve at maxima and +ve at minima!
 - At maxima the derivative goes from +ve to –ve, so the derivative decreases as x increases
 - At minima the derivative goes from –ve to +ve and increases as x increases

• Find the value x at which
$$f'(x) = 0$$
: Solve

$$\frac{df(x)}{dx} = 0$$

- The solution *x*_{soln} is a turning point
- Check the double derivative at *x*_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

11-755/18-797

What about functions of multiple variables?

- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

The Gradient of a scalar function

- The derivative $\nabla f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X $\Delta f(X) = \nabla f(X) \Delta X$
- The gradient is the transpose of the derivative $\nabla f(X)^T$

Gradients of scalar functions with multi-variate inputs

• Consider $f(X) = f(x_1, x_2, ..., x_n)$

• Check:

$$\Delta f(X) = \nabla f(X) \Delta X$$

= $\frac{\partial f(X)}{\partial x_1} \Delta x_1 + \frac{\partial f(X)}{\partial x_2} \Delta x_2 + \dots + \frac{\partial f(X)}{\partial x_n} \Delta x_n$

A well-known vector property

 $\mathbf{u}.\,\mathbf{v} = |\mathbf{u}||\mathbf{v}|cos\theta$

 The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

Properties of Gradient

- $\Delta f(X) = \nabla f(X) \Delta X$
 - The inner product between $\nabla f(X)$ and ΔX
- Fixing the length of ΔX
 - $\text{E.g. } |\Delta X| = 1$
- $\Delta f(X)$ is max if $\angle \nabla f(X), \Delta X = 0$
 - The function f(X) increases most rapidly if the input increment ΔX is perfectly aligned to $\nabla f(X)$
- The gradient is the direction of fastest increase in f(X)

Properties of Gradient: 2

• The gradient vector $\nabla f(X)$ is perpendicular to the level curve

Derivatives of vector function of vector input

The Gradient ∇f(X) of a vector function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

$$\Delta f(X) = \nabla f(X)^T \Delta X$$

11-755/18-797

"Gradient" of vector function of vector input

$$\nabla f(X)^{T} = \begin{vmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \ddots & \frac{\partial y_{1}}{\partial x_{n}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \ddots & \frac{\partial y_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{n}}{\partial x_{1}} & \frac{\partial y_{n}}{\partial x_{2}} & \ddots & \frac{\partial y_{m}}{\partial x_{n}} \end{vmatrix}$$

Properties and interpretations are similar to the case of scalar functions of vector inputs

Chain rule

- The gradient is based on derivatives
- The derivative of composed function f(g(x)) or $f \circ g$ can be very complicated to compute
- If $f \circ g$ is the composite of y = f(u) and u = g(x)Then $(f \circ g)' = f'_{at \ u = g(x)} \circ g'_{atx}$ or $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
- This is known as Chain rule

Example of chain rule

- Differentiate $h(x) = \left(\frac{8x x^6}{x^3}\right)^{-\frac{4}{5}}$
- Simplification

$$h(x) = \left(\frac{8x - x^6}{x^3}\right)^{-\frac{4}{5}} = \left(\frac{8x}{x^3} - \frac{x^6}{x^3}\right)^{-\frac{4}{5}} = \left(8x^{-2} - x^3\right)^{-\frac{4}{5}}$$

• Applying Chain rule

$$y = f(u) = (u)^{-\frac{4}{5}}$$
 $u = g(x) = 8x^{-2} - x^{3}$

Example of chain rule

• Applying Chain rule

$$h(x) = \left(-\frac{4}{5}\right) \left(8x^{-2} - x^3\right)^{-\frac{4}{5}-1} \left(-8x^{-2} - x^3\right)'$$
$$h(x) = \left(-\frac{4}{5}\right) \left(8x^{-2} - x^3\right)^{-\frac{9}{5}} \left(-16x^{-3} - 3x^2\right)$$

• After simplification 9

$$h(x) = \frac{4x^{5}(16+3x^{5})}{5(8-x^{5})^{\frac{9}{5}}}$$

11-755/18-797

• The derivative of scalar y by a vector $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$ is $\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x} \end{bmatrix}$

• The derivative of vector $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ by a vector $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$

$$\frac{\partial x}{\partial y} = \begin{bmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \dots & \frac{\partial x_1}{\partial y_m} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \dots & \frac{\partial x_2}{\partial y_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \dots & \frac{\partial x_n}{\partial y_m} \end{bmatrix}$$

• The derivative of matrix X=

by a scalar y is given by

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \dots & \dots & \dots & \dots \\ \vdots & \ddots & \ddots & \ddots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$

$$\frac{\partial X}{\partial y} = \begin{bmatrix} \frac{\partial x_{1,1}}{\partial y} & \frac{\partial x_{1,2}}{\partial y} & \ddots & \frac{\partial x_{1,n}}{\partial y} \\ \frac{\partial x_{2,1}}{\partial y} & \frac{\partial x_{2,2}}{\partial y} & \ddots & \frac{\partial x_{2,n}}{\partial y} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_{m,1}}{\partial y} & \frac{\partial x_{m,2}}{\partial y} & \ddots & \frac{\partial x_{m,n}}{\partial y} \end{bmatrix}$$
Vector and Matrix derivatives

• The derivative a scalar y by a matrix

Vector and Matrix derivatives

• The derivative of vector x of *n* elements by a matrix Y of size (*p*,*q*) is given by

 $\frac{\partial x}{\partial y_{i,j}}$ Is the derivative of the vector x by the scalar $y_{i,j}$ which is an element of the matrix Y

Vector and Matrix derivatives

• The derivative of matrix X of size (m,n) by another matrix Y of size (p,q) is given by

$$\frac{\partial X}{\partial Y_{1,1}} \quad \frac{\partial X}{\partial y_{1,2}} \quad \cdot \quad \cdot \quad \frac{\partial X}{\partial y_{1,q}} \\ \frac{\partial X}{\partial y_{2,1}} \quad \frac{\partial X}{\partial y_{2,2}} \quad \cdot \quad \cdot \quad \frac{\partial X}{\partial y_{2,q}} \\ \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \\ \frac{\partial X}{\partial y_{p,1}} \quad \frac{\partial X}{\partial y_{p,2}} \quad \cdot \quad \cdot \quad \frac{\partial X}{\partial y_{p,q}} \\ \end{bmatrix}$$

 $\frac{\partial X}{\partial y_{i,j}}$ Is the derivative of the matrix X by the scalar $y_{i,j}$ which is an element of the matrix Y

Gradient Example

• Compute the Gradient of the function $f(x_1, x_2, x_3) = 15x_1 + 2(x_2)^3 - 3x_1x_3^2$

$$\nabla f(x_1, x_2, x_3) \coloneqq \left[\begin{array}{cc} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_3} \end{array} \right]$$
$$\nabla f(x_1, x_2, x_3) \coloneqq \left[\begin{array}{cc} 15 - 3(x_3)^2 & 6(x_2)^2 & -6x_1x_3 \end{array} \right]$$

The Hessian

The Hessian of a function f (x₁, x₂, ..., x_n) is given by the second derivative

$$\nabla^{2} f(x_{1},...,x_{n}) \coloneqq \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Hessian Example

• Compute the Hessian of the function

$$f(x_1, x_2, x_3) = 15x_1 + 2(x_2)^2 - 3x_1(x_3)$$

$$\nabla f(x_1, x_2, x_3) \coloneqq \begin{bmatrix} 15 - 3(x_3)^2 & 6(x_2)^2 & -6x_1x_3 \end{bmatrix}$$
$$\nabla^2 f(x_1, x_2, x_3) \coloneqq \begin{bmatrix} 0 & 0 & -6x_3 \\ 0 & 12x_2 & 0 \\ -6x_3 & 0 & -6x_1 \end{bmatrix}$$

Returning to direct optimization...

Finding the minimum of a scalar function of a multi-variate input

• The optimum point is a turning point – the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the *X* where the gradient equation equals to zero

$$\nabla f(X) = 0$$

- 2. Compute the Hessian Matrix $\nabla^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

• Minimize

 $f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) + (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$

Gradient

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}$$

Unconstrained Minimization of function (Example)

• Set the gradient to null

$$\nabla f = 0 \Longrightarrow \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

Unconstrained Minimization of • Compute the Hessian matrix $\nabla^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$

- Evaluate the eigenvalues of the Hessian matrix

$$\lambda_1 = 3.414, \ \lambda_2 = 0.586, \ \lambda_3 = 2$$

 All the eigenvalues are positives => the Hessian matrix is positive definite

The point
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$
 is a minimum

Poll 1

- The gradient of the function at any point is:
 - The direction in which the input must be perturbed for the fastest increase in the function
 - The direction in which the input must be perturbed for the fastest decrease in the function
 - The direction in which the input must be perturbed to see no change in the function

Poll 1

• The gradient of the function at any point is:

The direction in which the input must be perturbed for the fastest increase in the function

- The direction in which the input must be perturbed for the fastest decrease in the function
- The direction in which the input must be perturbed to see no change in the function

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

- Often it is not possible to simply solve $\nabla f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained

- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be

Descent methods

- Iterative solutions that attempt to "descend" the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
 - Newton's method is based on both first and second derivatives
 - Gradient descent is based only on the first derivative

Descent methods

- Iterative solutions that attempt to "descend" the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
 - Newton's method is based on both first and second derivatives
 - Gradient descent is based only on the first derivative

Newton's iterative method to find the zero of a function

- Newton's method to find the "zero" of a function
 - Initialize estimate
 - Approximate function by the tangent at initial value
 - Update estimate to location where tangent becomes 0
 - Iterate

Newton's Method to optimize a function

- Apply Newton's method to the *derivative* of the function!
 - The derivative goes to 0 at the optimum
- Algorithm:
 - Initialize x_0
 - Kth iteration: Approximate f'(x) by the tangent at x_k
 - Find the location $x_{\text{intersect}}$ where the tangent goes to 0. Set $x_{k+1} = x_{\text{intersect}}$
 - Iterate

Newton's method to minimize univariate functions

• Apply Newton's algorithm to find the zero of the derivative f'(x)

$$x^{k+1} = x^{k} - \frac{f'(x^{k})}{f''(x^{k})}$$

- *k* is the current iteration
- The iterations continue until we achieve the stopping criterion $|x^{k+1} x^k| < \epsilon$

Newton's method for multivariate functions

- 1. Select an initial starting point X^0
- 2. Evaluate the gradient $\nabla f(X^k)$ and Hessian $\nabla^2 f(X^k)$ at X^k
- 3. Calculate the new X^{k+1} using the following

$$X^{k+1} = X^k - \left[\nabla^2 f(X^k)\right]^{-1} \cdot \nabla f(X^k)$$

4. Repeat Steps 2 and 3 until convergence

Newton's Method example

- This is the same optimization problem we saw previously
- Minimize

 $f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$

Gradient

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}$$

Newton's Method example

• Initial Value of
$$X^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• The gradient for the vector X^0

$$\nabla f(0,0,0) = \begin{bmatrix} 0-0+1 \\ -0+0-0 \\ -0-0+1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Unconstrained Minimization of function (Example)

• The Hessian matrix is

$$\nabla^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

The inverse of the Hessian is needed as well

$$\begin{bmatrix} \nabla^2 f \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix}$$

Newton's Method example

• The new vector x after iteration 1 is as follow

$$X^{1} = X^{0} - \left[\nabla^{2} f(X^{0})\right]^{-1} \cdot \nabla f(X^{0})$$
$$X^{1} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} - \begin{bmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4}\\ \frac{1}{2} & 1 & \frac{1}{2}\\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
$$X^{1} = \begin{bmatrix} -1\\-1\\-1 \\ -1 \end{bmatrix}$$

Newton's Method example

• The updated value of the gradient for $x^{1} = \begin{vmatrix} -1 \\ -1 \\ -1 \end{vmatrix}$

$$\nabla f(-1,-1,-1) = \begin{bmatrix} 2+1+1\\ -1+2-1\\ -1-2+1 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

 The Gradient is zero => The Newton method has converged

Newton's Method

- Newton's approach is based on the computation of both gradient and Hessian
 - Fast to converge (few iterations)
 - Slow to compute

Newton's method • (arrives at optimum

in a single step)

Can arrive at the optimal solution in a *single* step for a quadratic function

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat

Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat
Newton's method: generic case

- Approximates function by a quadratic Taylor series at the current estimate
- Solves for the optimum of the quadratic approximation
 - Single step
- Repeat
 - Can easily get lost if the initial point is poor

Newton's Method

- Newton's approach is based on the computation of both gradient and Hessian
 - Fast to converge (few iterations) Slow to compute Newton's method (arrives at optimum in a single step)
- Can be very efficient
- This method is very sensitive to the initial point
 - If the initial point is very far from the optimal point, the optimization process may not converge

Poll 2

- Select true statements about Newton's method for minimizing a function
 - It is an iterative algorithm
 - It will always find the minimum
 - It requires computation of the second derivative

Poll 2

- Select true statements about Newton's method for minimizing a function
 - It is an iterative algorithm
 - It will always find the minimum
 - It requires computation of the second derivative

Descent methods

- Iterative solutions that attempt to "descend" the function in steps to arrive at the minimum
- Based on the first order derivatives (gradient) and in some cases the second order derivatives (Hessian).
 - Newton's method is based on both first and second derivatives
 - Gradient descent is based only on the first derivative

- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A positive derivative \rightarrow moving left decreases error
 - A negative derivative \rightarrow moving right decreases error
 - Shift point in this direction

- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$
 - If $sign(f'(x^k))$ is positive: - $x^{k+1} = x^k - step$
 - Else

$$- x^{k+1} = x^k + step$$

- But what must step be to ensure we actually get to the optimum?

- Iterative solution: Trivial algorithm
 - Initialize x^0

- While
$$f'(x^k) \neq 0$$

•
$$x^{k+1} = x^k - sign(f'(x^k))$$
.step

- Identical to previous algorithm

- Iterative solution: Trivial algorithm
 - Initialize x_0

$$- \text{While} f'(x^k) \neq 0$$

•
$$x^{k+1} = x^k - \eta^k f'(x^k)$$

- $-\eta^k$ is the "step size"
 - What must the step size be?

Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function *f* iteratively
 - To find a maximum move in the direction of the gradient

$$x^{k+1} = x^k + \eta^k \nabla f(x^k)$$

- To find a minimum move exactly opposite the direction of the gradient $w^{k+1} = w^k = w^k \nabla f(w^k)$

$$x^{k+1} = x^k - \eta^k \nabla f(x^k)$$

• What is the step size η^k

1. Fixed step size

• Fixed step size – Use fixed value for η^k

Variable step size

• Shrink step size by a constant factor each iteration:

$$\eta^k = \alpha \eta^{k-1}$$

- Where $\alpha < 1$
- Gradient descent algorithm:
 - Initialize x^0 , η^0
 - While $f'(x^k) \neq 0$
 - $x^{k+1} = x^k \eta^k f'(x^k)$
 - $\eta^{k+1} = \alpha \eta^k$
 - k = k + 1

Optimal step size

- Finding the optimal step size is a challenge
- Ideally, step size changes with iteration
- Several algorithms to find optimal step size
 On slides
 - Please read the slides, this will appear in the quiz

- Two parameters α (typically 0.5) and β (typically 0.8)
- At each iteration, estimate step size as follows:
 - Set η^k = 1
 - Update $\eta^k = \beta \eta^k$ until

$$f\left(x^{k} - \eta^{k}\nabla f(x^{k})\right) \leq f(x^{k}) - \alpha\eta^{k} \left\|\nabla f(x^{k})\right\|^{2}$$

– Update
$$x^{k+1} = x^k - \eta^k \nabla f(x^k)$$

- Intuitively: At each iteration
 - Take a unit step size and keep shrinking it until we arrive at a place where the function $f(x^k - \eta^k \nabla f(x^k))$ actually decreases sufficiently w.r.t $f(x^k)$

• Keep shrinking step size till we find a good one

- Keep shrinking step size till we find a good one
- Update estimate to the position at the converged step size 89

- At each iteration, estimate step size as follows:
 - Set $\eta^k = 1$ - Update $\eta^k = \beta \eta^k$ until $f\left(x^{k} - \eta^{k} \nabla f(x^{k})\right) \leq f(x^{k}) - \alpha \eta^{k} \left\|\nabla f(x^{k})\right\|^{2}$ - Update $x^{k+1} = x^k - \eta^k \nabla f(x^k)$ f (x) Large Steps Figure shows actual evolution of x^k

arget

3. Full line search for step size

- At each iteration scan for η_k that minimizes $f(x^k \eta^k \nabla f(x^k))$
- Update $x^k = x^k \eta^k \nabla f(x^k)$

3. Full line search for step size

- At each iteration scan for η_k that minimizes $f(x^k \eta^k \nabla f(x^k))$
- Can be computed by solving

$$\frac{df\left(x^{k}-\eta^{k}\nabla f\left(x^{k}\right)\right)}{d\eta^{k}}=0$$

• Update $x^k = x^k - \eta^k \nabla f(x^k)$

Gradient descent convergence criteria

• The gradient descent algorithm converges when one of the following criteria is satisfied

- This is the same optimization problem as previously
- Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

Gradient

initial vector

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}$$

$$x^{0} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$\nabla f(x^{0}) = \begin{bmatrix} 2 \cdot 0 + 1 - 0 \\ -0 + 2 \cdot 0 - 0 \\ -0 + 2 \cdot 0 + 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
$$x^{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \alpha^{0} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\alpha^{0} \\ 0 \\ -\alpha^{0} \end{bmatrix}$$

• Find the best step value α^0

$$f(x^{1}) = (-\alpha^{0})^{2} - \alpha^{0} + (-\alpha^{0})^{2} - \alpha^{0}$$
$$= 2(\alpha^{0})^{2} - 2(\alpha^{0})$$
$$\frac{\partial f(x^{1})}{\partial \alpha^{0}} = 4(\alpha^{0}) - 2$$

Set the derivative equal to zero

Set the derivative equal to zero

$$\frac{\partial f(x^{1})}{\partial \alpha^{0}} = 4(\alpha^{0}) - 2 = 0 \Rightarrow \alpha^{0} = \frac{1}{2} \qquad x^{1} = \begin{bmatrix} -\alpha^{0} \\ 0 \\ -\alpha^{0} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}_{96}$$

 $\nabla f(-\frac{1}{2}, 0, -\frac{1}{2}) = \begin{bmatrix} -1+1+0\\ \frac{1}{2}+0+\frac{1}{2}\\ 0-1+1 \end{bmatrix} = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$ Iteration 2 $x^{2} = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} - \alpha^{1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\alpha^{1} \\ -\frac{1}{2} \end{bmatrix}$

$$f(x^{2}) = \frac{1}{4} - \frac{1}{2}(1 + \alpha^{1}) + (\alpha^{1})^{2} - \frac{1}{2}\alpha^{1} + \frac{1}{4} - \frac{1}{2}$$
$$= (\alpha^{1})^{2} - \alpha^{1} - \frac{1}{2}$$

$$\frac{\partial f(x^2)}{\partial \alpha^1} = 2(\alpha^1) - 1$$

• Set the derivative equal to zero

$$\frac{\partial f(x^2)}{\partial \alpha^1} = 2(\alpha^1) - 1 = 0 \Rightarrow \alpha^1 = \frac{1}{2} \qquad x^2 = \begin{bmatrix} -\frac{1}{2} \\ -\alpha^1 \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

$$f(x^3) = \frac{1}{2}(\alpha^2 + 1)^2 - \frac{3}{2}(\alpha^2 + 1) + \frac{1}{4}$$

$$\frac{\partial f(x^3)}{\partial \alpha^2} = (\alpha^2 + 1) - \frac{3}{2}$$

Set the derivative equal to zero _____

$$\frac{\partial f(x^3)}{\partial \alpha^2} = (\alpha^2 + 1) - \frac{3}{2} = 0 \Longrightarrow \alpha^2 = \frac{1}{2} \quad x^3 =$$

$$-\frac{1}{2}(\alpha^{2}+1) = \begin{vmatrix} -\frac{3}{4} \\ -\frac{1}{2} \\ -\frac{1}{2}(\alpha^{2}+1) \end{vmatrix} = \begin{vmatrix} -\frac{3}{4} \\ -\frac{1}{2} \\ -\frac{3}{4} \end{vmatrix}$$

 $\nabla f(-\frac{3}{4}, -\frac{1}{2}, -\frac{3}{4}) = \begin{vmatrix} 0 \\ 1 \\ 2 \\ 0 \end{vmatrix}$ Iteration 4 $= \begin{vmatrix} -\frac{3}{4} \\ -\frac{1}{2} \\ -\frac{3}{4} \end{vmatrix} - \alpha^{3} \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix} = \begin{vmatrix} -\frac{3}{4} \\ -\frac{1}{2}(\alpha^{3}+1) \\ -\frac{3}{4} \end{vmatrix}$ $x^4 =$

$$f(x^4) = \frac{1}{4}(\alpha^3 + 1)^2 - \frac{3}{2}(\alpha^3) - \frac{3}{2}$$

$$\frac{\partial f(x^4)}{\partial \alpha^3} = \frac{1}{2}(\alpha^3 + 1) - \frac{9}{8}$$

Set the derivative equal to zero

$$\frac{\partial f(x^4)}{\partial \alpha^3} = \frac{1}{2}(\alpha^3 + 1) - \frac{9}{8} = 0 \Longrightarrow \alpha^3 = \frac{5}{4} \qquad x^4 =$$

$$\begin{bmatrix} -\frac{3}{4} \\ -\frac{1}{2}(\alpha^{3}+1) \\ -\frac{3}{4} \end{bmatrix} = \begin{bmatrix} -\frac{3}{4} \\ -\frac{9}{8} \\ -\frac{3}{4} \end{bmatrix}$$

$$f(x^5) = \frac{73}{32} (\alpha^4)^2 - \frac{43}{32} (\alpha^4) - \frac{51}{64}$$

$$\frac{\partial f(x^5)}{\partial \alpha^4} = \frac{73}{16} \alpha^4 - \frac{43}{32}$$

• Set the derivative equal to zero

$$\frac{\partial f(x^5)}{\partial \alpha^4} = \frac{73}{16} \alpha^4 - \frac{43}{32} = 0 \Longrightarrow \alpha^4 = \frac{43}{146} \qquad x^5 = \begin{bmatrix} -\frac{66}{73} \\ -\frac{1091}{73} \end{bmatrix}$$

 $\frac{1091}{1168}$

66

73

1168

• Verifying the stopping criteria $\|\nabla f(x^5)\|$

$$\nabla f(x^5) = \begin{bmatrix} \frac{21}{584} \\ \frac{35}{584} \\ \frac{21}{584} \end{bmatrix}$$
$$\|\nabla f(x^5)\| = \sqrt{\left(\frac{21}{584}\right)^2 + \left(\frac{35}{584}\right)^2 + \left(\frac{21}{584}\right)^2} = 0.0786$$

- $\|\nabla f(x^5)\| = 0.0786$ is very small. The stopping criteria is satisfied.
- The vector $x^{5} = \begin{bmatrix} -\frac{1091}{1168} \\ -\frac{66}{73} \\ -\frac{1091}{1168} \end{bmatrix}$ can be taken as the

• The vector x^5 is very close to the optimal $\begin{array}{c|c} \textbf{minimum} \\ x^{optimal} = \begin{vmatrix} -1 \\ -1 \\ -1 \end{vmatrix}$

Poll 3

- Gradient descent will always be slower to converge than Newton's method
 - True
 - False

Poll 3

- Gradient descent will always be slower to converge than Newton's method
 - True
 - False
Gradient descent vs. Newton's

 Gradient descent is typically much slower to converge than Newton's

- Newton's method is exponentially faster for "convex" problems
 - Although derivatives and Hessians may be hard to derive
 - May not converge for non-convex problems

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods

4. Online optimization

- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Online Optimization

- Often our objective function is an *error*
- The error is the *cumulative* error from many signals

 $- \text{E.g. } E(W) = \sum_{x} ||y - f(x, W)||^2$

- Optimization will find the W that minimizes total error across all x
- What if wanted to update our parameters after each input x instead of waiting for all of them to arrive?

A problem we saw

• Given the *music M* and the *score S* of only four of the notes, but not the notes themselves, find the notes

$$M = NS \implies N = MPinv(S)$$

The Actual Problem

• Given the *music M* and the *score S* find a matrix *N* such the error of reconstruction

$$- E = \sum_{i} \|M_i - \mathbf{N}S_i\|^2$$

is minimized

- This is a standard optimization problem
- The solution gives us N = MPinv(S)

The Actual Problem

• Given the *music M* and the *score S* find a matrix *N* such the error of reconstruction

$$- E = \sum_{i} \|M_i - \mathbf{N}S_i\|^2$$

is minimized

This requires "seeing" all of *M* and *S* to estimate *N*

- This is a standard optimization problem
- The solution gives us N = MPinv(S)

Online Updates

- What if we want to update our estimate of the notes after *every input*
 - After observing each vector of music and its score
 - A situation that arises in many similar problems

Incremental Updates

- Easy solution: To obtain the kth estimate N^k, minimize the error on the kth input
 - The error on the kth input is:

$$E_k = M_K - \mathbf{N}S_K$$

– The squared error is:

$$L_k = E_K^2 = \|M_K - \mathbf{N}S_K\|^2$$

Differentiating it gives us

$$\nabla \mathbf{N} = -2(M_K - \mathbf{N}S_K)S_K^T = -2E_K S_K^T$$

- Update the parameter to move in the direction of this update $\mathbf{N}^{k+1} = \mathbf{N}^k + \eta E_K S_K^T$
- η must typically be very small to prevent the updates from being influenced entirely by the latest observation

Online update: Non-quadratic functions

• The earlier problem has a *linear* predictor as the underlying model

$$\widehat{M}_k = \mathbf{N}S_k$$

• We often have *non-linear* predictors

$$\widehat{Y}_k = g(\mathbf{W}X_k)$$
$$E_k = Y_k - g(\mathbf{W}X_k)$$

- The derivative of the squared error E_K^2 w.r.t **W** is often ugly or intractable
- For such problems we will still use the following generalization of the online update rule for linear predictors

 $\mathbf{W}^{k+1} = \mathbf{W}^k + \eta E_k X_k^T$

- This is the *Widrow-Hoff* rule
 - Based on quadratic Taylor series approximation of g(.)

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

A problem we recently saw

• The projection matrix *P* is the matrix that minimizes the total error between the *projected* matrix *S* and the *original matrix M*

CONSTRAINED optimization

- Recall the projection problem:
- Find *P* such that we minimize

 $E = \sum_{i} \|M_i - PM_i\|^2$

 AND such that the projection is composed of the notes in *N*

P = NC

• This is a problem of *constrained optimization*

Optimization problem with constraints

• Finding the minimum of a function $f: \mathfrak{R}^N \longrightarrow \mathfrak{R}$ subject to constraints

$$\min_{x} f(x) s.t. g_{i}(x) \le 0 \quad i = \{1, ..., k\} h_{j}(x) = 0 \quad j = \{1, ..., l\}$$

Constraints define a feasible region, which is nonempty

Optimization without constraints

• No Constraints $\min_{x} f(x, y, z) = x^{2} + y^{2}$

Optimization with constraints

11-755/18-797

Optimization with constraints

- Minima w/ and w/o constraints
- $\min_{x,y} f(x,y) = x^2 + y^2$ s.t. $2x + y \le -4$

Solving for constrained optimization: the method of Lagrangians

• Consider a function f(x, y) that must be maximized w.r.t (x, y) subject to g(x, y) = c

 Note, we're using a *maximization* example to go with the figures that have been obtained from Wikipedia

- Purple surface is f(x, y)
 - Must be maximized
- Red curve is constraint g(x, y) = c
 - All solutions *must* line on this curve
- Problem: Find the position of the largest f (x, y) on the red curve!

- Dotted lines are constant-value contours f(x, y) = C
 f(x, y) has the same value C at all points on a contour
- The constrained optimum will be at the point where the highest constant-value contour touches the red curve

- It will be *tangential* to the red curve

- The constrained optimum is where the highest constant-value contour is tangential to the red curve
- The gradient of f(x, y) = C will be parallel to the gradient of g(x, y) = c

• At the optimum

$$\nabla f(x, y) = \lambda \nabla g(x, y)$$
$$g(x, y) = c$$

• Find (x, y) that satisfies both above conditions

$$\nabla f(x, y) = \lambda \nabla g(x, y)$$
$$g(x, y) = c$$

- Find (x, y) that satisfies both above conditions
- Combine the above two into one equation

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$$

- Optimize it for (x, y, λ)
- Solving for (x, y),

$$\nabla_{x,y} L(x, y, \lambda) = 0 \implies \nabla f(x, y) = \lambda \nabla g(x, y)$$

• Solving for λ

$$\frac{\partial L(x, y, \lambda)}{\partial \lambda} = 0 \qquad \Rightarrow \qquad g(x, y) = d$$

$$\nabla f(x, y) = \lambda \nabla g(x, y)$$
$$g(x, y) = c$$

- Find (x, y) that satisfies both above conditions
- Combine the above two into one equation

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$$

• Optimize it for (x, y, λ)

Poll

- Select all true statements about the Lagrange multiplier method for constrained minimization
 - The constraint must have the form constraint(x)=0
 - The modified loss adds lambda*constraint(x) to the function
 - We maximize the modified loss w.r.t lambda
 - This means that the loss value at any proposed solution where the constraint is not satisfied can be sent to infinity by maximizing lambda
 - Only solutions where the constraint is satisfied result in meaningful minima

Poll

- Select all true statements about the Lagrange multiplier method for constrained minimization
 - The constraint must have the form constraint(x)=0
 - The modified loss adds lambda*constraint(x) to the function
 - We maximize the modified loss w.r.t lambda
 - This means that the loss value at any proposed solution where the constraint is not satisfied can be sent to infinity by maximizing lambda
 - Only solutions where the constraint is satisfied result in meaningful minima

Generalizes to inequality constraints

• Optimization problem with constraints

$$\min_{x} f(x)$$

s.t.g_i(x) \le 0 i = {1,...,k}
 $h_{j}(x) = 0 j = {1,...,l}$

- Lagrange multipliers $\lambda_i \ge 0, \nu \in \Re$ $L(x, \lambda, \nu) = f(x) + \sum_{i=1}^k \lambda_i g_i(x) + \sum_{j=1}^l \nu_j h_j(x)$
- The necessary condition

$$\nabla L(x,\lambda,\nu) = 0 \Leftrightarrow \frac{\partial L}{\partial x} = 0, \ \frac{\partial L}{\partial \lambda} = 0, \ \frac{\partial L}{\partial \nu} = 0$$

Generalizes to inequality constraints

Maximize w.r.t λ

• Optimization problem with constraint is not satisfied

 $\min_{x} f(x)$ $s.t.g_{i}(x) \leq 0 i = \{1, ..., h_{j}(x) = 0 j = \{1, ..., h_{j}(x) = 0 j = \{1, ..., \lambda \}$ $this term can be made to go to inf with high choice of <math>\lambda$ distance for the loss while maximizing the loss while ma

• Lagrange multipliers $\lambda_i \ge 0, \nu \in \Re$

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x) + \sum_{j=1}^{l} \nu_j h_j(x)$$

• The necessary condition

$$\nabla L(x,\lambda,\nu) = 0 \Leftrightarrow \frac{\partial L}{\partial x} = 0, \ \frac{\partial L}{\partial \lambda} = 0, \ \frac{\partial L}{\partial \nu} = 0$$

Lagrange multiplier example

$$\min_{x,y} f(x, y) = x^2 + y^2$$

s.t. $2x + y \le -4$

• Lagrange multiplier $L = x^{2} + y^{2} + \lambda(2x + y + 4)$

• Evaluate

$$\nabla L(x,\lambda,\nu) = 0 \Leftrightarrow \frac{\partial L}{\partial x} = 0, \ \frac{\partial L}{\partial \lambda} = 0, \ \frac{\partial L}{\partial \nu} = 0$$

Lagrange multiplier example

• Critical point

$$\frac{\partial L}{\partial x} = 2x + 2\lambda = 0$$
$$\frac{\partial L}{\partial y} = 2y + \lambda = 0$$
$$\frac{\partial L}{\partial \lambda} = 2x + y + 4 = 0$$

$$x = -\lambda$$
$$y = -\frac{\lambda}{2}$$
$$2x + y + 4 = 0$$

$$-2\lambda + \left(-\frac{\lambda}{2}\right) + 4 = 0$$
$$-\frac{5}{2}\lambda = -4$$
$$\lambda = \frac{8}{5}$$
$$x = -\frac{8}{5}$$
$$y = -\frac{4}{2}$$

Optimization with constraints

• Lagrange Multiplier results

 $\min_{x,y} f(x,y) = x^2 + y^2$ s.t. $2x + y \le -4$

The constraints specify a "feasible set"

- The region of the space where the solution can lie

- From the current estimate, take a step using the conventional gradient descent approach
 - If the update is inside the feasible set, no further action is required

• If the update falls outside the feasible set,

- If the update falls *outside* the feasible set,
 - find the closest point to the update on the boundary of the feasible set

- If the update falls *outside* the feasible set,
 - find the closest point to the update on the boundary of the feasible set
 - And move the updated estimate to this new point

The method of projected gradients

 $\min_{x} f(x)$ s.t.g_i(x) ≤ 0 i = {1,...,k}

- The constraints specify a "feasible set"
 - The region of the space where the solution can lie
- Update current estimate using the conventional gradient descent approach
 - If the update is inside the feasible set, no further action is required
 - If the update falls *outside* the feasible set,
 - find the closest point to the update on the boundary of the feasible set
 - And *move* the updated estimate to this new point
- The closest point "projects" the update onto the feasible set
- For many problems, however, finding this "projection" can be difficult or intractable
Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Regularization

- Sometimes we have additional "regularization" on the parameters
 - Note these are not hard constraints
- E.g.
 - Minimize f(X) while requiring that the length $||X||^2$ is also minimum
 - Minimize f(X) while requiring that $|X|_1$ is also minimal
 - Minimize f(X) such that g(X) is maximum
- We will encounter problems where such requirements are logical

Contour Plot of a Quadratic Objective

• Left: Actual 3D plot

 $- \mathbf{x} = [x_1, x_2]$

- Right: constant-value contours
 - Innermost contour has lowest value
- Unconstrained/unregularized solution: The center of the innermost contour

Examples of regularization

- Left: " L_1 " regularization, find x that minimizes f(x)
 - \circ Also minimize $|\mathbf{x}|_1$
 - \circ $|\mathbf{x}|_1$ = const is a diamond
 - $\circ~\mbox{Find}~x~\mbox{that}~\mbox{also}~\mbox{minimizes}~\mbox{"diameter"}~\mbox{of}~\mbox{diamond}$
- Right: "L₂" or Tikhonov regularization
 - \circ Also minimize $||\mathbf{x}||^2$
 - $\circ ||\mathbf{x}||^2 = \text{const is a circle (sphere)}$
 - Find x that also minimizes "diameter" of circle

Regularization

- The problem: multiple simultaneous objectives
 - Minimize f(X)
 - Also minimize $g_1(X), g_2(X), \dots$
 - These are "regularizers"
- Solution: Define
 - $-L(X) = f(X) + \lambda_1 g_1(X) + \lambda_2 g_2(X) + \cdots$
 - $\lambda_1, \lambda_2~$ etc are regularization parameters. These are set and not estimated
 - Unlike Lagrange multipliers
 - Minimize L(X)

Contour Plot of a Quadratic Objective

- Left: Actual 3D plot $-\mathbf{x} = [x_1, x_2]$
- Right: equal-value contours of $f(\mathbf{x})$
 - Innermost contour has lowest value

- L_1 regularized objective $f(\mathbf{x}) + \lambda |\mathbf{x}|_1$, for different values of regularization parameter λ
 - Note: Minimum value occurs on x_1 axis for $\lambda = 1$
 - "Sparse" solution

11-755/18-797

- L_2 regularized objective $f(\mathbf{x}) + \lambda ||\mathbf{x}||^2$ results in "shorter" optimum
- L_1-L_2 regularized objective results in sparse, short optimum - $\lambda = 1$ for both regularizers in example

Regularization

- Sparse signal reconstruction
 Minimum Square Error
- Signal \hat{x} of length 100
- 10 non-zero components

Reconstructing the original signal from noisy 50 measurements

$$b = A\hat{x} + \varepsilon$$

Signal reconstruction Minimum Square Error

- Signal reconstruction
- Least square problem

 $\min \left\| Ax - b \right\|_2^2$

L2-Regularization

- Signal reconstruction
- Least squares problem $\min \|Ax b\|_{2}^{2} + \gamma \|x\|_{2}^{2}$

L1-Regularization

- Signal reconstruction
- Least square problem $\min \|Ax b\|_2^2 + \gamma \|x\|_1$

Index

- 1. The problem of optimization
- 2. Direct optimization
- 3. Descent methods
 - Newton's method
 - Gradient methods
- 4. Online optimization
- 5. Constrained optimization
 - Lagrange's method
 - Projected gradients
- 6. Regularization
- 7. Convex optimization and Lagrangian duals

Convex optimization Problems

- An convex optimization problem is defined by
 - convex objective function
 - Convex inequality constraints f_i
 - Affine equality constraints h_j

$$\min_{x} f_0(x) \quad (convex function)$$

s.t. $f_i(x) \le 0 \ (convex sets)$
 $h_j(x) = 0 \ (Affine)$

Convex Sets

• a set $C \in \Re^n$ is convex, if for each $x, y \in C$ and $\alpha \in [0,1]$ then $\alpha x + (1-\alpha)y \in C$

Convex functions

• A function $f: \mathcal{R}^N \longrightarrow \mathcal{R}$ is convex if for each $x, y \in domain(f)$ and $\alpha \in [0,1]$

 $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$

Convex

Concave functions

• A function $f: \mathcal{R}^N \longrightarrow \mathcal{R}$ is convex if for each $x, y \in domain(f)$ and $\alpha \in [0,1]$

 $f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$

First order convexity conditions

A differentiable function f: R^N → R is convex if and only if for x, y ∈ domain(f) the following condition is satisfied

Second order convexity conditions

• A twice-differentiable function $f: \mathcal{R}^N \longrightarrow \mathcal{R}$ is convex if and only if for all $x, y \in domain(f)$ the Hessian is superior or equal to zero

 $\nabla^2 f(x) \ge 0$

Properties of Convex Optimization

- For convex objectives over convex feasible sets, the optimum value is unique
 - There are no local minima/maxima that are not also the global minima/maxima
- Any gradient-based solution will find this optimum eventually
 - Primary problem: speed of convergence to this optimum

• Optimization problem with constraints

$$\min_{x} f(x)
s.t. g_{i}(x) \le 0 \quad i = \{1, ..., k\}
h_{j}(x) = 0 \quad j = \{1, ..., l\}$$

• Lagrange multipliers $\lambda_i \ge 0, \nu \in \Re$

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{k} \lambda_{i} g_{i}(x) + \sum_{i=1}^{l} \nu_{j} h_{j}(x)$$

• The Dual function $\inf_{x} L(x, \lambda, \nu) = \inf_{x} \left\{ f(x) + \sum_{i=1}^{k} \lambda_{i} g_{i}(x) + \sum_{j=1}^{l} \nu_{j} h_{j}(x) \right\}$ 11-755/18-797

• The Original optimization problem

$$\min_{x} \left\{ \sup_{\lambda \ge 0, \nu} L(x, \lambda, \nu) \right\}$$

• The Dual optimization

$$\max_{\lambda\geq 0,\nu}\left\{\inf_{x}L(x,\lambda,\nu)\right\}$$

• Property of the Dual for convex function $\sup_{\lambda \ge 0, \nu} \left\{ \inf_{x} L(x, \lambda, \nu) \right\} = f(x^{*})$

Primal system

 $\min_{x,y} f(x,y) = x^2 + y^2$

 $s.t. \quad 2x + y \le -4$

Lagrange Multiplier

 $L = x^2 + y^2 + \lambda(2x + y - 4)$

 $\frac{\partial L}{\partial x} = 2x + 2\lambda = 0 \Longrightarrow x = -\lambda$

$$\frac{\partial L}{\partial y} = 2y + \lambda = 0 \Longrightarrow y = -\frac{\lambda}{2}$$

• Dual system $\max_{\lambda} w(\lambda) = \frac{5}{4} \lambda^{2} + 4\lambda$ *s.t.* $\lambda \ge 0$

• Property

$$w(\lambda^*) = f(x^*, y^*)$$

• Dual system

$$\max_{\lambda} w(\lambda) = \frac{5}{4} \lambda^2 + 4\lambda$$

s.t. $\lambda \ge 0$

- Concave function
 - Convex function become concave function in dual problem

$$\frac{\partial w}{\partial x} = -\frac{5}{2}\lambda + 4 = 0 \Longrightarrow \lambda^* = \frac{8}{5}$$

• Primal system $\min_{x,y} f(x,y) = x^2 + y^2$ s.t. $2x + y \le -4$

- Dual system $\max_{\lambda} w(\lambda) = \frac{5}{4}\lambda^{2} + 4\lambda$ *s.t.* $\lambda \ge 0$
- Evaluating $w(\lambda^*) = f(x^*, y^*)$

$$x^{*} = -\frac{8}{5}, y^{*} = -\frac{4}{5}$$

$$f(x^{*}, y^{*}) = \left(-\frac{8}{5}\right)^{2} + \left(-\frac{4}{5}\right)^{2}$$

$$w(\lambda^{*}) = -\frac{5}{4}\left(\frac{8}{5}\right)^{2} + \frac{32}{5}$$

$$w(\lambda^{*}) = \frac{16}{5}$$

$$w(\lambda^{*}) = \frac{16}{5}$$