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A problem we recently saw

• The projection matrix is the matrix that minimizes 
the total error between the projected matrix and the 
original matrix
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M = 

N = S



The projection problem
•

• For individual vectors in the spectrogram
–

• Total projection error is
–

• The projection matrix projects onto the space of notes in  
–

• The problem of finding :  Minimize such 
that 

• This is a problem of constrained optimization
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Optimization 

• Optimization is finding the “best” value of a function     
(which can be the best minimum)

f(x)

x

global minimum

inflection point

local minimum

global maximum

min
x

f (x)

f (x)



Examples of Optimization : 
Multivariate functions

• Find the optimal point in these functions
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Simple Approach: Turning Point

• The “minimum” of the function is always a “turning point”
– Points where the function “turns” around 

• In every direction

– For minima, the function increases on either side

• How to identify these turning points?
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f(X)



The “derivative” of a curve

• The derivative 𝑥 of a curve is  a multiplicative factor explaining how much 
changes in response to a very small change in 

𝑥

• For scalar functions of scalar variables, often expressed as ௗ௬
ௗ௫

or as 

• We have all learned how to compute derivatives in basic calculus
11-755/18-797
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Negative
derivative

< 0

The derivative of a Curve
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Positive
derivative

> 0

Zero
derivative = 0
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• In upward-rising regions of the curve, the derivative is positive
– Small increase in X cause Y to increase

• In downward-falling regions, the derivative is negative
• At turning points, the derivative is 0

– Assumption: the function is differentiable at the turning point



Geometrical application of Calculus
to the derivative of a curve

• Find all values of for which is
increasing, decreasing and stationary
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f (x) = x2 - 4x + 4

¢f (x) = 2x - 4 

2x - 4 > 0

2x > 4

x > 2

f (x) = x2 - 4x + 4

¢f (x) = 2x - 4 

2x - 4 < 0

2x < 4

x < 2

f (x) = x2 - 4x + 4

¢f (x) = 2x - 4 

2x - 4 = 0

2x = 4

x = 2

Increasing Decreasing Stationary



Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a turning point
• But is it a minimum? 
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Turning Points
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• Both maxima and minima have zero derivative
– Both maxima and minima are turning points



Derivatives of a curve
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• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)



Derivative of the derivative of the 
curve
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• Both maxima and minima are turning points
• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and +ve at minima!
– At maxima the derivative goes from +ve to –ve, so the derivative 

decreases as x increases
– At minima the derivative goes from –ve to +ve and increases as x 

increases

xf(x)

f ’(x)
f ’’(x)



Soln: Finding the minimum or 
maximum of a function

• Find the value at which = 0:    Solve

• The solution ௦ is a turning point
• Check the double derivative at ௦ : compute

ᇱᇱ
௦

௦

• If ᇱᇱ
௦ is positive ௦ is a minimum, otherwise it is a maximum
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x

f(x)



What about functions of multiple 
variables?

• The optimum point is still  “turning” point
– Shifting in any direction will increase the value
– For smooth functions, miniscule shifts will not result in any change at all

• We must find a point where shifting in any direction by a microscopic 
amount will not change the value of the function
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The Gradient of a scalar function

• The derivative of a scalar function of a 
multi-variate input is a multiplicative factor that 
gives us the change in for tiny variations in 

• The gradient is the transpose of the derivative 
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Gradients of scalar functions with 
multi-variate inputs

• Consider 

• Check:



A well-known vector property

• The inner product between two vectors of 
fixed lengths is maximum when the two 
vectors are aligned
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Properties of Gradient
•

– The inner product between and 

• Fixing the length of 
– E.g.

• is max if 
– The function f(X) increases most rapidly if the input 

increment is perfectly aligned to 

• The gradient is the direction of fastest increase in f(X)
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Gradient
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Gradient
vector 



Gradient
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Gradient
vector 

Moving in this 
direction increases 

fastest



Gradient
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Gradient
vector 

Moving in this 
direction increases 

fastestMoving in this 
direction decreases 

fastest



Gradient
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Gradient here
is 0

Gradient here
is 0



Properties of Gradient: 2

• The gradient vector is perpendicular to the level curve
27



Derivatives of vector function of 
vector input
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ଵ

ଶ

ଵ

ଶ

• The Gradient of a vector function of a 
multi-variate input is a multiplicative factor that 
gives us the change in for tiny variations in 



“Gradient” of vector function of 
vector input
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Properties and interpretations
are similar to the case of 
scalar functions of vector
inputs



Chain rule

• The gradient is based on derivatives
• The derivative of composed function           or     

can be very complicated to compute
• If         is the composite of             and  

Then                                     or 

• This is known as Chain rule
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f (g(x))

y = f (u) u = g(x)
dy

dx
= dy

du
× du

dx



Example of chain rule

• Differentiate
• Simplification 

• Applying Chain rule 
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h(x) = 8x - x6

x3

æ

è
ç

ö

ø
÷

-4

5

h(x) = 8x - x6

x3

æ

è
ç

ö

ø
÷

-4

5

= 8x

x3
- x6

x3

æ

è
ç

ö

ø
÷

-4

5

= 8x-2 - x3( )-4

5

y = f (u) = (u)
-4

5 u = g(x) = 8x-2 - x3



Example of chain rule

• Applying Chain rule 

• After simplification
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h(x) = - 4

5

æ
è
ç

ö
ø
÷ 8x-2 - x3( )-4

5
-1

(-8x-2 - x3)'

h(x) = - 4

5

æ
è
ç

ö
ø
÷ 8x-2 - x3( )-9

5 (-16x-3 - 3x2 )

h(x) = 4x
9

5 (16 + 3x5 )

5(8- x5 )
9

5



Vector and Matrix derivatives

• The derivative of vector             by a scalar     is 
given by
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Vector and Matrix derivatives

• The derivative of scalar     by a vector             is 
given by
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Vector and Matrix derivatives

• The derivative of vector             by a vector      
is given by
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Vector and Matrix derivatives

• The derivative of matrix             

by a scalar      is given by
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Vector and Matrix derivatives

• The derivative a scalar      by a  matrix             
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Vector and Matrix derivatives

• The derivative of vector        of      elements        
by a matrix      of size          is given by
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Vector and Matrix derivatives

• The derivative of matrix        of size          by 
another matrix      of size          is given by
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Gradient Example

• Compute the Gradient of the function
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f (x1, x2, x3) := f

x1

f

x2

f

x3













f (x1, x2, x3) := 15- 3(x3)2 6(x2 )2 -6x1x3








The Hessian
• The Hessian of a function is 

given by the second derivative 
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Hessian Example

• Compute the Hessian of the function 
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f (x1, x2, x3) := 15- 3(x3)2 6(x2 )2 -6x1x3






2 f (x1, x2, x3) :=

0 0 -6x3

0 12x2 0

-6x3 0 -6x1



















f (x1, x2, x3) = 15x1 + 2(x2 )2 - 3x1(x3)



Returning to direct optimization…
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Finding the minimum of a scalar 
function of a multi-variate input

• The optimum point is a turning point – the 
gradient will be 0
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Unconstrained Minimization of 
function (Multivariate)

1. Solve for the where the gradient equation equals to 
zero

2. Compute the Hessian Matrix at the candidate 
solution and verify that

– Hessian is positive definite (eigenvalues positive)  -> to 
identify local minima 

– Hessian is negative definite (eigenvalues negative) -> to 
identify local maxima
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0)( = Xf



Unconstrained Minimization of 
function (Example)

• Minimize

• Gradient 
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f =

2x1 +1- x2

-x1 + 2x2 - x3

-x2 + 2x3 +1





















Unconstrained Minimization of 
function (Example)

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns
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f = 0Þ

2x1 +1- x2

-x1 + 2x2 - x3

-x2 + 2x3 +1
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Unconstrained Minimization of 
function (Example)

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positives => the Hessian 
matrix is positive definite

• The point                                is a minimum
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2 -1 0
-1 2 -1
0 -1 2
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Poll 1

• The gradient of the function at any point is:
– The direction in which the input must be 

perturbed for the fastest increase in the function
– The direction in which the input must be 

perturbed for the fastest decrease in the function
– The direction in which the input must be 

perturbed to see no change in the function
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Poll 1

• The gradient of the function at any point is:
– The direction in which the input must be 

perturbed for the fastest increase in the function
– The direction in which the input must be 

perturbed for the fastest decrease in the function
– The direction in which the input must be 

perturbed to see no change in the function
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Closed Form Solutions are not always 
available

• Often it is not possible to simply solve 
– The function to minimize/maximize may have an 

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it 

iteratively until the correct value is obtained
11-755/18-797 52

X

f(X)



Iterative solutions

• Iterative solutions
– Start from an initial guess  for the optimal 
– Update the guess towards a (hopefully) “better” value of 
– Stop when no longer decreases

• Problems: 
– Which direction to step in
– How big must the steps be
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f(X)

X
x0 x1x2 x3

x4

x5


ଵ

ଶ



Descent methods

• Iterative solutions that attempt to “descend” 
the function in steps to arrive at the minimum

• Based on the first order derivatives (gradient) 
and in some cases the second order 
derivatives (Hessian).
– Newton’s method is based on both first and 

second derivatives 
– Gradient descent is based only on the first 

derivative
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Descent methods

• Iterative solutions that attempt to “descend” 
the function in steps to arrive at the minimum

• Based on the first order derivatives (gradient) 
and in some cases the second order 
derivatives (Hessian).
– Newton’s method is based on both first and 

second derivatives 
– Gradient descent is based only on the first 

derivative
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• Newton’s method to find the “zero” of a function
– Initialize estimate
– Approximate function by the tangent at initial value
– Update estimate to location where tangent becomes 0
– Iterate

Newton’s iterative method to find the 
zero of a function

ାଵ 






Newton’s Method to optimize a 
function
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• Apply Newton’s method to the derivative of the function!
– The derivative goes to 0 at the optimum

• Algorithm:
– Initialize x0

– Kth iteration: Approximate f ’(x) by the tangent at xk

– Find the location xintersect where the tangent goes to 0. Set xk+1 = xintersect

– Iterate

x

y

f’(x)

f(x)



Newton’s method to minimize 
univariate functions

• Apply Newton’s algorithm to find the zero of 
the derivative 

• is the current iteration
• The iterations continue until we achieve the 

stopping criterion  
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xk+1 = xk -
¢f (xk )
¢¢f (xk )

k



Newton’s method for multivariate 
functions

1. Select an initial starting point 

2. Evaluate the gradient and Hessian 
at 

3. Calculate the new using the following

4. Repeat Steps 2 and 3 until convergence 
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Newton’s Method example
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• This is the same optimization problem we saw 
previously 

• Minimize

• Gradient 
f (x1, x2, x3) = (x1)2 + x1(1- x2 )- (x2 )2 - x2x3 + (x3)2 + x3

f =

2x1 +1- x2

-x1 + 2x2 - x3

-x2 + 2x3 +1





















Newton’s Method example

• Initial Value of 

• The gradient for the vector 
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f (0, 0, 0) =
0 - 0 +1

-0 + 0 - 0
-0 - 0 +1
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Unconstrained Minimization of 
function (Example)

• The Hessian matrix is

• The inverse of the Hessian is needed as well
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Newton’s Method example

• The new vector    after iteration 1 is as follow
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Newton’s Method example

• The updated value of the gradient for

• The Gradient is zero => The Newton method 
has converged 
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f (-1,-1,-1) =
2 +1+1
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• Newton’s approach is based on the computation of both 
gradient and Hessian 
– Fast to converge (few iterations)
– Slow to compute

• Can arrive at the optimal solution in a single step for a quadratic 
function

Newton’s Method
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Newton’s method
(arrives at optimum
in a single step)





Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current 
estimate

• Solves for the optimum of the quadratic approximation 
– Single step

• Repeat
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Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current 
estimate

• Solves for the optimum of the quadratic approximation 
– Single step

• Repeat
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Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current 
estimate

• Solves for the optimum of the quadratic approximation 
– Single step

• Repeat
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Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current 
estimate

• Solves for the optimum of the quadratic approximation 
– Single step

• Repeat
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Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current 
estimate

• Solves for the optimum of the quadratic approximation 
– Single step

• Repeat
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Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current 
estimate

• Solves for the optimum of the quadratic approximation 
– Single step

• Repeat
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Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current 
estimate

• Solves for the optimum of the quadratic approximation 
– Single step

• Repeat
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Newton’s method: generic case

• Approximates function by a quadratic Taylor series at the current estimate
• Solves for the optimum of the quadratic approximation 

– Single step

• Repeat
– Can easily get lost if the initial point is poor
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• Newton’s approach is based on the computation of both gradient and 
Hessian 

– Fast to converge (few iterations)
– Slow to compute

• Can be very efficient
• This method is very sensitive to the initial point

– If the initial point is very far from the optimal point, the optimization process may not converge

Newton’s Method
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Newton’s method
(arrives at optimum
in a single step)





Poll 2

• Select true statements about Newton’s 
method for minimizing a function
– It is an iterative algorithm
– It will always find the minimum
– It requires computation of the second derivative
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Poll 2

• Select true statements about Newton’s 
method for minimizing a function
– It is an iterative algorithm
– It will always find the minimum
– It requires computation of the second derivative
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Descent methods

• Iterative solutions that attempt to “descend” 
the function in steps to arrive at the minimum

• Based on the first order derivatives (gradient) 
and in some cases the second order 
derivatives (Hessian).
– Newton’s method is based on both first and 

second derivatives 
– Gradient descent is based only on the first 

derivative
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The Approach of Gradient Descent

• Iterative solution:  
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A positive derivative moving left decreases error
– A negative derivative moving right decreases error

– Shift point in this direction



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
– Initialize 

– While 

• If ᇱ  is positive:

– ାଵ 

• Else
– ାଵ 

– But what must step be to ensure we actually get to the optimum?



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
– Initialize 

– While 

•

– Identical to previous algorithm



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
– Initialize 

– While

•

– is the “step size”
• What must the step size be?



Gradient descent/ascent 
(multivariate) 

• The gradient descent/ascent method to find the 
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the 

gradient

– To find a minimum move exactly opposite the 
direction of the gradient

• What is the step size 
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1. Fixed step size

• Fixed step size
– Use fixed value for 
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Influence of step size example
(constant step size)
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Variable step size

• Shrink step size by a constant factor each iteration:

– Where 
• Gradient descent algorithm:

– Initialize , 

– While

• ାଵ   ᇱ 

• ାଵ 

•
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Optimal step size

• Finding the optimal step size is a challenge
• Ideally, step size changes with iteration
• Several algorithms to find optimal step size

– On slides 
• Please read the slides, this will appear in the quiz
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2. Backtracking line search for step 
size

• Two parameters (typically 0.5) and (typically 0.8)
• At each iteration, estimate step size as follows:

– Set = 1
– Update = until

– Update 

• Intuitively: At each iteration
– Take a unit step size and keep shrinking it until we arrive at 

a place where the function actually 

decreases sufficiently w.r.t 
87



2. Backtracking line search for step size

• Keep shrinking step size till we find a good one
88



2. Backtracking line search for step size

• Keep shrinking step size till we find a good one
• Update estimate to the position at the converged step size 89
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2. Backtracking line search for step size

• At each iteration, estimate step size as follows:
– Set = 1
– Update = until

– Update 

• Figure shows actual evolution of 
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3. Full line search for step size

• At each iteration scan for that minimizes 

• Update  
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3. Full line search for step size

• At each iteration scan for  that minimizes   

• Can be computed by solving

  



• Update    
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Gradient descent convergence criteria 

• The gradient descent algorithm converges 
when one of the following criteria is satisfied

• Or

11-755/18-797 93

f (xk+1)- f (xk ) < e1

f (xk ) < e2



Gradient descent example
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• This is the same optimization problem as 
previously 

• Minimize

• Gradient                                    initial vector
f (x1, x2, x3) = (x1)2 + x1(1- x2 )- (x2 )2 - x2x3 + (x3)2 + x3

f =

2x1 +1- x2

-x1 + 2x2 - x3

-x2 + 2x3 +1



















x0 =
0
0
0



















Gradient descent example

• Find the best step value 
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f (x0 ) =
2 × 0 +1- 0

-0 + 2 × 0 - 0
-0 + 2 × 0 +1

















=
1
0
1

















x1 =
0
0
0
















-a 0

1
0
1

















=
-a 0

0

-a 0

















a 0



Gradient descent example

• Set the derivative equal to zero
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f (x1) = (-a 0 )2 -a 0 + (-a 0 )2 -a 0

= 2(a 0 )2 - 2(a 0 )

f (x1)

a 0
= 4(a 0 )- 2

f (x1)

a 0
= 4(a 0 )- 2 = 0 Þ a 0 = 1

2
x1 =

-a 0

0

-a 0

















=

- 1

2
0

- 1

2

























Gradient descent example

• Iteration 2
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f (- 1

2
, 0,- 1

2
) =

-1+1+ 0
1

2
+ 0 + 1

2
0 -1+1



















=
0
1
0

















x2 =

- 1

2
0

- 1

2























-a1

0
1
0

















=

- 1

2

-a1

- 1

2

























Gradient descent example

• Set the derivative equal to zero
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f (x2 ) = 1

4
- 1

2
(1+a1)+ (a1)2 - 1

2
a1 + 1

4
- 1

2

= (a1)2 -a1 - 1

2
f (x2 )

a1
= 2(a1)-1

f (x2 )

a1
= 2(a1)-1= 0 Þ a1 = 1

2
x2 =

- 1

2

-a1

- 1

2























=

- 1

2

- 1

2

- 1

2



























Gradient descent example

• Iteration 3
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f (- 1

2
,- 1

2
,- 1

2
) =

-1+1+ 1

2
1

2
-1+ 1

2
1

2
-1+1

























=

1

2
0
1

2























x3 =

- 1

2

- 1

2

- 1

2

























-a 2

1

2
0
1

2























=

- 1

2
(a 2 +1)

- 1

2

- 1

2
(a 2 +1)



























Gradient descent example

• Set the derivative equal to zero
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f (x3) = 1

2
(a 2 +1)2 - 3

2
(a 2 +1)+ 1

4

f (x3)

a 2
= (a 2 +1) - 3

2

f (x3)

a 2
= (a 2 +1)- 3

2
= 0 Þ a 2 = 1

2
x3 =

- 1

2
(a 2 +1)

- 1

2

- 1

2
(a 2 +1)

























=

- 3

4

- 1

2

- 3

4



























Gradient descent example

• Iteration 4
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f (- 3

4
,- 1

2
,- 3

4
) =

0
1

2
0



















x4 =

- 3

4

- 1

2

- 3

4

























-a 3

0
1

2
0



















=

- 3

4

- 1

2
(a 3 +1)

- 3

4



























Gradient descent example

• Set the derivative equal to zero
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f (x4 ) = 1

4
(a 3 +1)2 - 3

2
(a3)- 3

2

f (x4 )

a 3
= 1

2
(a 3 +1)- 9

8

f (x4 )

a 3
= 1

2
(a 3 +1)- 9

8
= 0 Þ a 3 = 5

4
x4 =

- 3

4

- 1

2
(a 3 +1)

- 3

4

























=

- 3

4

- 9

8

- 3

4



























Gradient descent example

• Iteration 5
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f (- 3

4
,- 9

8
,- 3

4
) =

5

8

- 3

4
5

8

























x4 =

- 3

4

- 9

8

- 3

4

























-a 4

5

8

- 3

4
5

8

























=

- 1

4
(3+ 5

2
a 4 )

- 3

4
(
3

2
-a 4 )

- 1

4
(3+ 5

3
a 4 )



























Gradient descent example

• Set the derivative equal to zero
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f (x5) = 73

32
(a 4 )2 - 43

32
(a 4 )- 51

64

f (x5 )

a 4
= 73

16
a 4 - 43

32

f (x5 )

a 4
= 73

16
a 4 - 43

32
= 0 Þ a 4 = 43

146
x5 =

-1091

1168

- 66

73

-1091

1168



























Gradient descent example

• Verifying the stopping criteria 
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f (x5 ) = 21

584

æ
è
ç

ö
ø
÷

2

+ 35

584

æ
è
ç

ö
ø
÷

2

+ 21

584

æ
è
ç

ö
ø
÷

2

= 0.0786

f (x5 ) =

21

584
35

584
21

584

























f (x5 )



Gradient descent example

• is very small. The stopping 
criteria is satisfied. 

• The vector                        can be taken as the 
minimum

• The vector      is very close to the optimal 
minimum
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f (x5 ) = 0.0786

x5 =

-1091

1168

- 66

73

-1091

1168

























x5

xoptimal =
-1
-1
-1



















Poll 3

• Gradient descent will always be slower to 
converge than Newton’s method
– True
– False
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Poll 3

• Gradient descent will always be slower to 
converge than Newton’s method
– True
– False
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Gradient descent vs. Newton’s
• Gradient descent is typically much slower to converge than 

Newton’s
– But much faster to compute

• Newton’s method is exponentially faster for “convex” problems
– Although derivatives and Hessians may be hard to derive
– May not converge for non-convex problems

109

Newton’s method

Gradient descent

x0



Index
1. The problem of optimization
2. Direct optimization
3. Descent methods

– Newton’s method
– Gradient methods

4. Online optimization
5. Constrained optimization

– Lagrange’s method
– Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals
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Online Optimization 

• Often our objective function is an error
• The error is the cumulative error from many 

signals
– E.g.  

• Optimization will find the that minimizes total 
error across all 

• What if wanted to update our parameters after 
each input x instead of waiting for all of them to 
arrive?
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A problem we saw
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M = 

N = ?

S =

• Given the music M and the score S of only four of the 
notes, but not the notes themselves, find the notes



The Actual Problem
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N = ?

S =

• Given the music M and the score S find a matrix N such the error of 
reconstruction
–  

ଶ


is minimized

• This is a standard optimization problem
• The solution gives us 

M = 



The Actual Problem
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N = ?

S =

• Given the music M and the score S find a matrix N such the error of 
reconstruction
–  

ଶ


is minimized

• This is a standard optimization problem
• The solution gives us 

M = 

This requires “seeing” all 
of M and S to estimate N



Online Updates
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N = ?

S =

M = 

• What if we want to update our estimate of the notes after every 
input
– After observing each vector of music and its score
– A situation that arises in many similar problems

 ଵ ଶ ଷ ସ



Incremental Updates 
• Easy solution:  To obtain the kth estimate , minimize the error on 

the kth input
– The error on the kth input is:

  

– The squared error is:

– Differentiating it gives us

• Update the parameter to move in the direction of this update

• must typically be very small to prevent the updates from being 
influenced entirely by the latest observation
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Online update: Non-quadratic 
functions

• The earlier problem has a linear predictor as the underlying model

• We often have non-linear predictors

• The derivative of the squared error w.r.t is often ugly or 
intractable

• For such problems we will still use the following generalization of 
the online update rule for linear predictors

• This is the Widrow-Hoff rule
– Based on quadratic Taylor series approximation of 
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Index
1. The problem of optimization
2. Direct optimization
3. Descent methods

– Newton’s method
– Gradient methods

4. Online optimization
5. Constrained optimization

– Lagrange’s method
– Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals
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A problem we recently saw

• The projection matrix is the matrix that minimizes 
the total error between the projected matrix and the 
original matrix
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M = 

N = S



CONSTRAINED optimization

• Recall the projection problem:

• Find such that we minimize

• AND such that the projection is composed of 
the notes in 

• This is a problem of constrained optimization
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Optimization problem 
with constraints

• Finding the minimum of a function 
subject to constraints

• Constraints define a feasible region, which is 
nonempty
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min
x

f (x)

s.t. gi (x) £ 0 i = 1,..., k{ }
hj (x) = 0 j = 1,..., l{ }



Optimization without constraints

• No Constraints
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min
x

f (x, y, z)= x2 + y2

Best minimum 
point



Optimization with constraints

• With Constraints
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min
x,y

f (x, y)= x2 + y2

s.t. 2x + y £ -4



Optimization with constraints
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• Minima w/ and w/o constraints

Minimum
Without constraints

Minimum
With constraints

min
x,y

f (x, y)= x2 + y2

s.t. 2x + y £ -4



Solving for constrained optimization: 
the method of Lagrangians

• Consider a function that must be 
maximized w.r.t subject to

– Note, we’re using a maximization example to go 
with the figures that have been obtained from 
Wikipedia
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The Lagrange Method

• Purple surface is 
– Must be maximized

• Red curve is constraint 
– All solutions must line on this curve

• Problem: Find the position of the largest on the red 
curve!
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The Lagrange Method

• Dotted lines are constant-value contours 
– has the same value at all points on a contour

• The constrained optimum will be at the point where the 
highest constant-value contour touches the red curve
– It will be tangential to the red curve
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The Lagrange Method

• The constrained optimum is where the highest 
constant-value contour is tangential to the red curve

• The gradient of will be parallel to the 
gradient of 

128



The Lagrange Method

• At the optimum

• Find that satisfies both above conditions
129



The Lagrange Method

• Find that satisfies both above conditions
• Combine the above two into one equation

• Optimize it for 

• Solving for ,    
=0 

• Solving for 

11-755/18-797 130



The Lagrange Method

• Find that satisfies both above conditions
• Combine the above two into one equation

• Optimize it for 

• Solving for ,    
=0 

• Solving for 
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Formally:

to maximize : 

to minimize :  



Poll

• Select all true statements about the Lagrange multiplier 
method for constrained minimization
– The constraint must have the form constraint(x)=0
– The modified loss adds lambda*constraint(x) to the function
– We maximize the modified loss w.r.t lambda
– This means that the loss value at any proposed solution where 

the constraint is not satisfied can be sent to infinity by 
maximizing lambda

– Only solutions where the constraint is satisfied result in 
meaningful minima
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Poll

• Select all true statements about the Lagrange multiplier 
method for constrained minimization
– The constraint must have the form constraint(x)=0
– The modified loss adds lambda*constraint(x) to the function
– We maximize the modified loss w.r.t lambda
– This means that the loss value at any proposed solution where 

the constraint is not satisfied can be sent to infinity by 
maximizing lambda

– Only solutions where the constraint is satisfied result in 
meaningful minima
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Generalizes to inequality constraints

• Optimization problem with constraints

• Lagrange multipliers

• The necessary condition
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L(x, l,n ) = f (x)+ ligi
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k

å (x)+ n jhj (x)
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Generalizes to inequality constraints

• Optimization problem with constraints

• Lagrange multipliers

• The necessary condition
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L(x, l,n ) = f (x)+ ligi

i=1

k

å (x)+ n jhj (x)
j=1

l

å
li ³ 0,n Î Â

L(x, l,n ) = 0 Û L

x
= 0,

L

l
= 0,

L

n
= 0

{ }
{ }ljxh

kixgts

xf

j

i

x

,...,10)(

,...,10)(..

)(min

==
=£

Maximize w.r.t l

If constraint is not satisfied
this term can be made to
go to inf with high choice of l

Minimizing the loss while maximizing
l forces constraint to be satisfied
and l to go to 0



Lagrange multiplier example

• Lagrange multiplier

• Evaluate   
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L(x, l,n ) = 0 Û L
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= 0,

L

n
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Lagrange multiplier example

• Critical point
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L

x
= 2x + 2l = 0

L

y
= 2y + l = 0

L

l
= 2x + y + 4 = 0

x = -l

y = - l
2

2x + y + 4 = 0

-2l + - l
2

æ
è
ç

ö
ø
÷+ 4 = 0

- 5

2
l = -4

l = 8

5 x = - 8

5

y = - 4

2



Optimization with constraints
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• Lagrange Multiplier results

Minimum With constraints
(-8/5,-4/5,16/5)

min
x,y

f (x, y)= x2 + y2

s.t. 2x + y £ -4



An Alternate Approach: Projected 
Gradients

• The constraints specify a “feasible set”
– The region of the space where the solution can lie

11-755/18-797 139

Feasible
Set



An Alternate Approach: Projected 
Gradients

• From the current estimate, take a step using the conventional 
gradient descent approach
– If the update is inside the feasible set, no further action is required 
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Feasible
Set



An Alternate Approach: Projected 
Gradients

• If the update falls outside the feasible set, 
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Feasible
Set



An Alternate Approach: Projected 
Gradients

• If the update falls outside the feasible set, 
– find the closest point to the update on the boundary of the 

feasible set
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Feasible
Set



An Alternate Approach: Projected 
Gradients

• If the update falls outside the feasible set, 
– find the closest point to the update on the boundary of the feasible set
– And move the updated estimate to this new point
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Feasible
Set



The method of projected gradients

• The constraints specify a “feasible set”
– The region of the space where the solution can lie

• Update current estimate using the conventional gradient descent 
approach
– If the update is inside the feasible set, no further action is required 
– If the update falls outside the feasible set, 

• find the closest point to the update on the boundary of the feasible set
• And move the updated estimate to this new point

• The closest point “projects” the update onto the feasible set
• For many problems, however, finding this “projection” can be 

difficult or intractable
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Index
1. The problem of optimization
2. Direct optimization
3. Descent methods

– Newton’s method
– Gradient methods

4. Online optimization
5. Constrained optimization

– Lagrange’s method
– Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals
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Regularization

• Sometimes we have additional “regularization” on the 
parameters
– Note these are not hard constraints

• E.g.   
– Minimize while requiring that the length is also 

minimum
– Minimize while requiring that is also minimal
– Minimize such that is maximum

• We will encounter problems where such requirements are 
logical
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Contour Plot of a Quadratic Objective

• Left:  Actual 3D plot
– x = [x1, x2]

• Right:  constant-value contours
– Innermost contour has lowest value

• Unconstrained/unregularized solution: The center of the innermost 
contour
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f(x)

x2 x1
x1

x2

f(x)



Examples of regularization

• Left:  “L1” regularization, find x that minimizes f(x)
o Also minimize |x|1
o |x|1 = const is a diamond
o Find x that also minimizes “diameter” of diamond

• Right: “L2” or Tikhonov regularization
o Also minimize ||x||2

o ||x||2 = const is a circle (sphere)
o Find x that also minimizes “diameter” of circle
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Image Credit: Tibshirani



Regularization

• The problem:  multiple simultaneous objectives
– Minimize 
– Also minimize 

• These are “regularizers”

• Solution: Define
–

– , etc are regularization parameters. These are set and 
not estimated

• Unlike Lagrange multipliers

– Minimize 
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Contour Plot of a Quadratic Objective

• Left:  Actual 3D plot
– x = [x1, x2]

• Right:  equal-value contours of 
– Innermost contour has lowest value
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f(x)

x2 x1
x1

x2

f(x)



With L1 regularization

• L1 regularized objective , for 
different values of regularization parameter l
– Note:  Minimum value occurs on x1 axis for l = 1

• “Sparse” solution
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x1

x2

f(x) + |x|1

x1

x2

f(x) + 0.5|x|1



L2 and L1-L2regularization

• L2 regularized objective results in “shorter” 
optimum

• L1-L2 regularized objective results in sparse, short optimum
– l = 1 for both regularizers in example
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x1

x2

f(x) + |x|1 + |x|22

x1

x2

f(x) + |x|22



Regularization
• Sparse signal reconstruction 

– Minimum Square Error 
• Signal of length 100
• 10 non-zero components

• Reconstructing the original signal from noisy 50 
measurements
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Signal reconstruction 
Minimum Square Error

• Signal reconstruction 
• Least square problem
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min Ax - b
2

2



L2-Regularization 

• Signal reconstruction 
• Least squares problem
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min Ax - b
2

2 +g x
2

2



L1-Regularization 

• Signal reconstruction 
• Least square problem
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min Ax - b
2

2 +g x
1



Index
1. The problem of optimization
2. Direct optimization
3. Descent methods

– Newton’s method
– Gradient methods

4. Online optimization
5. Constrained optimization

– Lagrange’s method
– Projected gradients

6. Regularization
7. Convex optimization and Lagrangian duals
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Convex optimization Problems

• An convex optimization problem is defined by
– convex objective function
– Convex inequality constraints
– Affine equality constraints  

11-755/18-797 158

min
x

f0 (x) (convex function)

s.t. fi (x) £ 0 (convex sets)

hj (x) = 0 (Affine)

fi

hj



Convex Sets

• a set              is convex, if for each             and 
then
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x

y

C Î Ân x, y Î C

a Î 0,1  ax + (1-a)y Î C

x

y

Convex
Non Convex



Convex functions
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f (ax + (1-a)y) £ a f (x)+ (1-a) f (y)

f (x)

f (y)

a f (x)+ (1-a) f (y)

f (y)

f (x)

a f (x)+ (1-a) f (y)

Non Convex

Convex

• A function is convex if for each 
and [0,1]



Concave functions
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f (ax + (1-a)y) ³ a f (x)+ (1-a) f (y)

f (y)

a f (x)+ (1-a) f (y)

Concave

• A function is convex if for each 
and [0,1]



First order convexity conditions
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f (x)+ f (x)T (y - x)

(x, f (x))

• A differentiable function is convex 
if and only if for the 
following condition is satisfied

f (y) ³ f (x)+ f (x)t (y - x)

Lower Bound



Second order convexity conditions
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• A twice-differentiable function is convex 
if and only if for all the Hessian is 
superior or equal to zero                       

2 f (x) ³ 0



Properties of Convex Optimization

• For convex objectives over convex feasible 
sets, the optimum value is unique
– There are no local minima/maxima that are not 

also the global minima/maxima

• Any gradient-based solution will find this 
optimum eventually
– Primary problem: speed of convergence to this 

optimum
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Lagrange multiplier duality

• Optimization problem with constraints

• Lagrange multipliers

• The Dual function
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Lagrange multiplier duality

• The Original optimization problem

• The Dual optimization

• Property of the Dual for convex function 
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sup
l³0,n

inf
x

L(x, l,n ){ } = f (x*)

min
x

sup
l³0,n

L(x, l,n )

max
l³0,n

inf
x

L(x, l,n ){ }



Lagrange multiplier duality
• Previous Example

– is convex
– Constraint function is convex
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min
x,y

f (x, y)= x2 + y2

s.t. 2x + y £ -4



Lagrange multiplier duality

• Primal system                  

• Lagrange Multiplier
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L

x
= 2x + 2l = 0 Þ x = -l

L

y
= 2y + l = 0 Þ y = - l

2

L = x2 + y2 + l(2x + y - 4)

max
l

w(l) = 5

4
l 2 + 4l

s.t. l ³ 0

min
x,y

f (x, y)= x2 + y2

s.t. 2x + y £ -4

• Dual system                  

• Property 

w(l*) = f (x*, y*)



Lagrange multiplier duality

• Dual system

• Concave function
– Convex function become concave function in dual problem
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max
l

w(l) = 5

4
l 2 + 4l

s.t. l ³ 0

w

x
= - 5

2
l + 4 = 0 Þ l* = 8

5



Lagrange multiplier duality

• Primal system                  

• Evaluating
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x* = - 8

5
, y* = - 4

5

f (x*, y*) = - 8
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+ - 4
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f (x*, y*) = 16

5

max
l

w(l) = 5

4
l 2 + 4l

s.t. l ³ 0

min
x,y

f (x, y)= x2 + y2

s.t. 2x + y £ -4

• Dual system                  

w(l*) = f (x*, y*)

l* = 8

5

w(l*) = - 5

4

8
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+ 32

5

w(l*) = 16
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