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Linear Algebra Reminders: 1

• A matrix transforms a sphereoid to an ellipsoid

• The Eigenvectors of the matrix are the vectors who do 
not change direction during this transformation
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Linear Algebra Reminders: 1.5

• Any square matrix can be “Eigen decomposed” as
ିଵ

– is the set of Eigen vectors. is a diagonal matrix of scaling terms

• If is symmetric, we will get
்

– The vectors in are orthogonal to one another. is an orthogonal matrix
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Linear Algebra Reminders: 2

• A matrix transforms the orthogonal set of right singular vectors to 
the orthogonal set of left singular vectors
– These are the major axes of the ellipsoid obtained from the sphereoid
– The scaling factors are the singular values
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Linear Algebra Reminders: 2

• A matrix transforms the orthogonal set of right singular vectors to the orthogonal 
set of left singular vectors

– These are the major axes of the ellipsoid obtained from the sphereoid
– The scaling factors are the singluar values

• The transpose of a matrix transforms the left singular vectors to the right singular 
vectors 11-755/18-797 5
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Linear Algebra Reminders: 3

• For a symmetric matrix left and right singular vectors are identical
– Orthogonal vectors which do not change direction from the transform
– These are the major axes of the ellipsoid obtained from a sphereoid

• These are also the eigenvectors of the matrix
– Since they do not change direction 
– SVD gives you Eigen decomposition,  with ଶ
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Linear Algebra Reminders: 4 –> SVD

• SVD decomposes a matrix into a the sum of a 
sequence of “unit-energy” matrices weighted 
by the corresponding singular values

• Retaining only the “high-singular-value” 
components retains most of the energy in the 
matrix
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SVD on data-container matrices
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SVD decomposes the data

• Each left singular vector and the corresponding right singular vector 
contribute one “basic” component to the data

• The “magnitude” of its contribution is the corresponding singular 
value
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Expanding the SVD

• Each left singular vector and the corresponding right singular vector 
contribute on “basic” component to the data

• The “magnitude” of its contribution is the corresponding singular 
value

• Low singular-value components contribute little, if anything
– Carry little information
– Are often just “noise” in the data
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Expanding the SVD

• Low singular-value components contribute little, if anything
– Carry little information
– Are often just “noise” in the data

• Data can be recomposed using only the “major” components with 
minimal change of value
– Minimum squared error between original data and recomposed data
– Sometimes eliminating the low-singular-value components will, in fact 

“clean” the data
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Linear Algebra recall

• What is 
– When is unit length

• What is the projection of onto 
– When is unit length

• What is the projection of onto 
– When is an orthogonal matri
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Linear Algebra recall
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• What is the projection of onto 
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• What is the projection of onto 
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Linear Algebra recall

• What is 
– When is unit length

• What is the projection of onto 
– When is unit length

• What is the projection of onto 
– When is an orthogonal matrix
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• On with the topic for today…
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Recall: Representing images

• The most common element in the image: 
background
– Or rather large regions of relatively featureless shading
– Uniform sequences of numbers
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Adding more bases

• Checkerboards with different variations
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“Bases”

• “Bases” are the “standard” units such that all instances can be 
expressed a weighted combinations of these units

• Ideal requirements: Bases must be orthogonal
• Checkerboards are one choice of bases

– Orthogonal
– But not “smooth”

• Other choices of bases:  Complex exponentials,  Wavelets, 
etc..
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Data specific bases?
• Issue:  The bases we have considered so far are data 

agnostic
– Checkerboards,  Complex exponentials, Wavelets..
– We use the same bases regardless of the data we analyze

• Image of face  vs.  Image of a forest
• Segment of speech vs. Seismic rumble

• How about data specific bases
– Bases that consider the underlying data

• E.g. is there something better than checkerboards to describe 
faces

• Something better than complex exponentials to describe music?
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• A collection of images
– All normalized to 100x100 pixels

• What is common among all of them?
– Do we have a common descriptor?
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A typical face

• Assumption: There is a “typical” face that captures most of 
what is common to all faces
– Every face can be represented by a scaled version of a typical face

– We will denote this face as V

• Approximate every face f as f  = wf V

• Estimate V to minimize the squared error
– How?  What is V?
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Abstracting the problem: 
Finding the typical face

• Each “point” represents a face in “pixel space”
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Abstracting the problem: 
Finding the typical face

• Each “point” represents a face in “pixel space”
• Any “typical face” V is a vector in this space
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Abstracting the problem: 
Finding the typical face

• Each “point” represents a face in “pixel space”
• The “typical face” V is a vector in this space
• The approximation wf, V for any face f is the projection of f onto V
• The distance between f and its projection wfV is the projection error for f
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Abstracting the problem: 
Finding the typical face

• Every face in our data will suffer error when 
approximated by its projection on V

• The total squared length of all error lines is the total 
squared projection error
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Abstracting the problem: 
Finding the typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face
• It is also the first Eigen face
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Abstracting the problem: 
Finding the typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face
• It is also the first Eigen face
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Abstracting the problem: 
Finding the typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face
• It is also the first Eigen face
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Abstracting the problem: 
Finding the typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face
• It is also the first Eigen face
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Abstracting the problem: 
Finding the typical face

• The problem of finding the first typical face V1:
Find the V for which the total projection error is minimum!

• This “minimum squared error” V is our “best” first typical face
• It is also the first Eigen face
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Formalizing the Problem: Error from 
approximating a single vector

• Consider:  approximating x = wv
– E.g x is a face, and “v” is the “typical face”

• Finding an approximation wv which is closest to x 
– In a Euclidean sense
– Basically projecting x onto v
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Projection of a vector on another

• The black arrow is the projection of on 
• is a unit vector in the direction of v

•
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Formalizing the Problem: Error from 
approximating a single vector

• Projection of a vector x on to a vector v

• Assuming v is of unit length:
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Error from approximating a single 
vector

• Projection 
• Squared length of projection 

ଶ ் ଶ ் ் ் ் ்

• Pythogoras theorem:  Squared length of error  

் ் ்
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Error for many vectors

• Error for one vector:
• Average error for many vectors

• Goal:  Estimate v to minimize this error!
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Definition: The correlation matrix

• The encircled term is the correlation matrix
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Error for many vectors

• Overall error:

• Add constraint:  vTv = 1

• Constrained objective to minimize: 
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Two Matrix Identities

• Derivative w.r.t v
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Minimizing error

• Differentiating w.r.t  v and equating to 0
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The best “basis”

• The minimum-error basis is found by solving

• v is an Eigen vector of the correlation matrix R
–  is the corresponding Eigen value
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What about the actual error?
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Minimizing the error
• The overall error is

• We already know that the optimal basis is an 
Eigen vector

• The total error depends on the negative of the 
corresponding Eigen value

• To minimize error, we must maximize 
• i.e. Select the Eigen vector with the largest 

Eigen value
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Poll 1
• Mark the true statements.

1. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying 
data.

2. Every face can be represented by a scaled version of a typical face that captures most of what is 
common to all faces (T)

3. the image vector for which the total projection error is minimum is the face basis that has largest eigen 
value.

4. the correlation matrix R is symmetric since it the matrix X multiplied by its transpose.
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Poll 1
• Mark the true statements.

1. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying 
data.

2. Every face can be represented by a scaled version of a typical face that captures most of what is 
common to all faces (T)

3. the image vector for which the total projection error is minimum is the face basis that has 
largest eigen value.

4. the correlation matrix R is symmetric since it the matrix X multiplied by its transpose.
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A detour:  The correlation matrix
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A new definition:
The correlation matrix

• For data-holder matrices: the product of a matrix and its transpose
– Also equal to the sum of the outer products of the columns of the matrix
– The correlation matrix is symmetric
– It quantifies the average dependence of individual components of the data 

on other components
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Interpreting the correlation matrix

• Consider the effect of multiplying a unit vector 
by 
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Interpreting the correlation matrix

• Consider the effect of multiplying a unit vector 
by 
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The inner product term

• Consider v

• This is the projection of unit vector v on , 
scaled by the squared length of 
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Interpreting the correlation matrix

• Consider the effect of multiplying a unit vector 
by 
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Interpreting the correlation matrix
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Interpreting the correlation matrix
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Interpreting the correlation matrix

• Each unit vector is transformed to the sum of cosine-
weighted squared-length versions of the individual vectors
– Approximately the sum of the squared-length version of vectors 

that are close to it in angle
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Interpreting the correlation matrix
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Interpreting the correlation matrix

• The unit sphereoid is converted to an ellipsoid
– The major axes point to the directions of greatest energy
– These are the eigenvectors
– Their length is proportional to the square of the lengths of the data 

vectors
• Why?
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“Uncorrelated” data

• When the scatter of the data is aligned to the 
axes, the transformed ellipse is also aligned to 
the axes
– The data are “uncorrelated”
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Interpreting the correlation matrix

• For “uncentered” data..
– Note although the vectors near the major axis are shorter, there 

are more of them, so the ellipse is wider in that direction
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Returning to our problem..
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The typical face

• Compute the correlation matrix for your data
– Arrange them in matrix X and compute R = XXT

• Compute the principal Eigen vector of R
– The Eigen vector with the largest Eigen value
– Explains most of the “energy” in the faces

• This is the typical face
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The approximation with the first 
typical face

• The first typical face models 
some of the characteristics 
of the faces
• Simply by scaling its grey level

• But the approximation has 
error

• Can we do better?
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The second typical face

• Approximation with only one typical face V1 has error
– Approximating every face as f  = wf1 V1 is incomplete

• Lets add second face to explain this error
– Add a second typical face V1.  Explain each face now as
– f  = wf1 V1+ wf2 V2

• How do we find this second face?
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Solution: Iterate
• Get the “error” 

faces by 
subtracting the 
first-level 
approximation 
from the 
original image

• Repeat the 
estimation on 
the “error” 
images
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Solution: Iterate
• Get the “error” 

faces by 
subtracting the 
first-level 
approximation 
from the original 
image

• Repeat the 
estimation on the 
“error” images
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Abstracting the problem: 
Finding the second typical face

• Each “point” represents an error face in “pixel space”

• Find the vector V2 such that the projection of these 
error faces on V2 results in the least error
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Minimizing error

• Defining the autocorrelation of the error
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Minimizing error

• Differentiating w.r.t  v and equating to 0
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Minimizing error
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Which gives us our second typical 
face

• But approximation with the two faces will still result in error
• So we need more typical faces to explain this error

• We can do this by subtracting the appropriately scaled version 
of the second “typical” face from the error images and 
repeating the process
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Solution: Iterate

• Get the  second-
level “error” faces 
by subtracting the 
scaled second 
typical face from 
the first-level error

• Repeat the 
estimation on the 
second-level 
“error” images
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An interesting property

• Each “typical face” will be orthogonal to all 
other typical faces
– Because each of them is learned to explain what 

the rest could not
– None of these faces can explain one another!
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To add more faces

• We can continue the process, refining the 
error each time
– An instance of a procedure is called “Gram-

Schmidt” orthogonalization

• So what are we really doing?
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A collection of least squares typical faces

• Assumption: There are a set of K “typical” faces that captures most of all faces

• Approximate every face f as f  = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk

– V2 is used to “correct” errors resulting from using only V1. So on average

– V3 corrects errors remaining after correction with V2

– And so on..
– V = [V1 V2 V3]

• Estimate V to minimize the squared error
– What is V?
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• The most important challenge in ML:  Find the 
best set of bases for a given data set
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The Energy Compaction Property

• Define “best”?

• The description

• The ideal:

– If the description is terminated at any point,  we should 
still get most of the information about the  data

• No other set of bases (for any leading subset of bases) should 
result in lower Error for the same number of bases
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Finding the bases

• Finding the optimal set of “typical faces” in 
this example is the problem of finding the 
optimal basis set for the data
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A recollection
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How about the other way?
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Finding Everything
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The Same Problem

• Here , and are all unknown and must be estimated
– Such that the total squared error between and is minimized

• For each face 

– ௙,ଵ ଵ ௙,ଶ ଶ ௙,௄ ௄

• For the collection of faces 
– is , is 

• 𝐷 is the number of pixels, 𝑁 is the number of faces in the set
11-755/18-797 79

F =                        

U = Approximation

W

V

Typical faces



Poll 2

• Mark true statements

Some of the “typical faces” will not be orthogonal to all other 
typical faces

– T 
– F 

The typical faces are actually a collection of least squares data-
specific bases

– T 
– F
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Poll 2

• Mark true statements

Some of the “typical faces” will not be orthogonal to all other 
typical faces

– T 
– F

The typical faces are actually a collection of least squares data-
specific bases

– T 
– F
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Finding the bases

• We just saw an incremental procedure for 
finding the bases
– Finding one new basis at a time that explains 

residual error not explained by previous bases
– An instance of a procedure is called “Gram-

Schmidt” orthogonalization

• We can also do it all at once
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With many typical faces

• Approximate every face f as f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk

• Here W, V and U are ALL unknown and must be determined
– Such that the squared error between U and M is minimum
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With multiple bases

• Assumption: all bases v1 v2 v3.. are unit length
• Assumption:  all bases are orthogonal to one another: vi

Tvj = 0 if i != j
– We are trying to find the optimal K-dimensional subspace to project the data
– Any set of basis vectors in this subspace will define the subspace
– Constraining them to be orthogonal does not change this

• I.e. if  V = [v1 v2 v3 … ],      VTV = I
– Pinv(V) = VT

• Projection matrix for V =  VPinv(V) = VVT
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With multiple bases

• Projection for a vector
• Error vector =

• Error length =  
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With multiple bases

• Error for one vector:
• Error for many vectors

• Goal:  Estimate V to minimize this error!
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Minimizing Error
• With constraint , we get the modified 

objective

– is a diagonal Lagrangian matrix

– Constraints are and for 

• Differentiating w.r.t and equating to 0
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Finding the optimal K bases

• Compute the Eigendecompsition of the 
correlation matrix

• Select K Eigen vectors
• But which K?
• Total error = 
• Select K eigen vectors corresponding to the K 

largest Eigen values
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Eigen Faces!

• Arrange your input data into a matrix X
• Compute the correlation R = XXT

• Solve the Eigen decomposition:  RV = LV

• The Eigen vectors corresponding to the  K largest eigen values 
are our optimal bases

• We will refer to these as eigen faces.
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Poll 3

Mark the true statements

1. The singular value decomposition of correlation matrix is evaluated 
to get eigen faces as the SVD of a symmetric matrix is actually the
eigen decomposition. (T)

– T
– F

2. The only way we get all the eigen faces is to iterate it one by one.
– T 
– F
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Poll 3

Mark the true statements

1. The singular value decomposition of correlation matrix is evaluated 
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How many Eigen faces

• How to choose “K” (number of Eigen faces)
• Lay all faces side by side in vector form to form a matrix

– In my example: 300 faces. So the matrix is 10000 x 300
• Multiply the matrix by its transpose

– The correlation matrix is 10000x10000
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Eigen faces

• Compute the eigen vectors
– Only 300 of the 10000 eigen values are non-zero

• Why?

• Retain eigen vectors with high eigen values (>0)
– Could use a higher threshold
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Eigen Faces

• The eigen vector with the highest eigen value is the first typical face
• The vector with the second highest eigen value is the second typical 

face.
• Etc.
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Representing a face

• The weights with which the eigen faces must 
be combined to compose the face are used to 
represent the face!

11-755/18-797 95

= w1 +  w2 +  w3

Representation                               =     [w1 w2 w3 …. ]T























Energy Compaction Example

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable

• Approximating a face with one basis:
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Energy Compaction Example

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable

• Approximating a face with one Eigenface:
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Energy Compaction Example

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable

• Approximating a face with 10 eigenfaces:
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Energy Compaction Example

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable

• Approximating a face with 30 eigenfaces:
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Energy Compaction Example

• One outcome of the “energy compaction 
principle”:  the approximations are 
recognizable

• Approximating a face with 60 eigenfaces:

11-755/18-797 100

6060303010102211 ......... vvvvv wwwwwf 



How did I do this?
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How did I do this?

• Hint:  only changing weights assigned to Eigen faces..
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Class specificity

• The Eigenimages (bases) are very specific to 
the class of data they are trained on
– Faces here

• They will not be useful for other classes

11-755/18-797 103

eigenface1 eigenface2

eigenface3



Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces

11-755/18-797 104



Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
• With 1 basis
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Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
• With 10 bases
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Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
• With 30 bases
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Class specificity

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces
• With 100 bases
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Universal bases
• Universal bases..

• End up looking a lot like discrete cosine transforms!!!!
• DCTs are the best “universal” bases

– If you don’t know what your data are, use the DCT
11-755/18-797 109



Poll 4

Mark the true statements

1. We should choose DCT bases to represent the image of 
Bhiksha’s sword instead of the eigen faces
2. The number of eigen faces you choose is a hyperparameter 
and you can choose it with magic like the birthday of your 
boyfriend/girlfriend
3. The information of a faces can be recovered for the weight 
numbers directly before knowing what the eigen faces are.
4. Every image can be express better with eigen faces if we 
increase the number of bases.
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Relation of Eigen decomposition 
to SVD

• Eigen decomposition of the correlation matrix 
gives you left singular vectors of data matrix
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Eigen Decomposition of the Correlation Matrix

SVD of the Data Matrix
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Dimensionality Reduction

•
– The columns of are our “Eigen” bases

• We can express any vector as a combination 
of these bases

• Using only the “top” bases
– Corresponding to the top Eigen values
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Dimensionality Reduction

• Using only the “top” bases
– Corresponding to the top Eigen values

• In vector form:

• If “ ” is agreed upon, knowing is sufficient to reconstruct 
– Store only numbers per vector instead of without losing too 

much information
– Dimensionality Reduction
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Lets give it a name

• Retaining only the top K weights for every data vector
– Computed by multiplying the data matrix by the transpose 

of the top K Eigen vectors of R

• This is called the Karhunen Loeve Transform
– Not PCA!
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An audio example

• The spectrogram has 974 vectors of dimension 
1025

• The covariance matrix is size 1025 x 1025
• There are 1025 eigenvectors
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Eigenvalues and Eigenvectors

• Left panel: Matrix with 1025 eigen vectors
• Right panel: Corresponding eigen values

– Most Eigen values are close to zero
• The corresponding eigenvectors are “unimportant”
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Eigenvalues and Eigenvectors

• The vectors in the spectrogram are linear combinations of all 
1025 Eigen vectors

• The Eigen vectors with low Eigen values contribute very little
– The average value of ai is proportional to the square root of the 

Eigenvalue
– Ignoring these will not affect the composition of the spectrogram
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An audio example

• The same spectrogram projected down to the 25 eigen 
vectors with the highest eigen values
– Only the 25-dimensional weights are shown

• The weights with which the 25 eigen vectors must be added to 
compose a least squares approximation to the spectrogram
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An audio example

• The same spectrogram constructed from only the 25 
Eigen vectors with the highest Eigen values
– Looks similar

• With 100 Eigenvectors, it would be indistinguishable from the original
– Sounds pretty close
– But now sufficient to store 25 numbers per vector (instead of 

1024)
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With only 5 eigenvectors

• The same spectrogram constructed from only 
the 5 Eigen vectors with the highest Eigen 
values
– Highly recognizable
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SVD instead of Eigen

• Do we need to compute a 10000 x 10000 correlation matrix and 
then perform Eigen analysis?
– Will take a very long time on your laptop

• SVD
– Only need to perform “Thin” SVD. Very fast

• U = 10000 x 300
– The columns of U are the eigen faces!
– The Us corresponding to the “zero” eigen values are not computed

• S = 300 x 300
• V = 300 x 300
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Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

• U will have the Eigenvectors

• Thin SVD for 100 bases:
[U,S,V] = svds(X, 100)

• Much more efficient
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Eigen Decomposition of data

• Nothing magical about faces or sound – can 
be applied to any data.
– Eigen analysis is one of the key components of 

data compression and representation
– Represent N-dimensional data by the weights of 

the K leading Eigen vectors
• Reduces effective dimension of the data from N to K
• But requires knowledge of Eigen vectors
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What kind of representation?

• What we just saw:  Karhunen Loeve Expansion
• What you may be familiar with: Principal 

Component Analysis

• The two are similar, but not the same!!
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Linear vs. Affine

• The model we saw (KLE)
– Approximate every face f as 

f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk

– Linear combination of bases

• If you add a constant (PCA)
f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk + m

– Affine combination of bases
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Affine expansion

• Estimate
f  = m + wf,1 V1+ wf,2 V2 +... + wf,k Vk

• Using the energy compaction principle leads 
to the usual incremental estimation rule
– m must explain most of the energy
– Each new basis must explain most of the residual 

energy

11-755/18-797 127



Estimation with the constant
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Estimation with the constant
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Estimation the remaining
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Estimating the Affine model
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Estimating the Affine model
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Linear vs. Affine

• The model we saw
– Approximate every face f as 

f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk

– The Karhunen Loeve Expansion
– Retains maximum Energy for any order k

• If you add a constant
f  = wf,1 V1+ wf,2 V2 +... + wf,k Vk + m

– Principal Component Analysis
– Retains maximum Variance for any order k
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How do they relate

• Relationship between correlation matrix and 
covariance matrix

R = C + mmT

• Karhunen Loeve bases are Eigen vectors of R
• PCA bases are Eigen vectors of C
• How do they relate 

– Not easy to say..
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The Eigen vectors

• The Eigen vectors of C are the major axes of 
the ellipsoid Cv, where v are the vectors on 
the unit sphere
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The Eigen vectors

• The Eigen vectors of R are the major axes of 
the ellipsoid  Cv + mmTv

• Note that mmT has rank 1 and mmTv is a line
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The Eigen vectors

• The principal Eigenvector of R lies between the principal Eigen vector of C
and m

• Similarly the principal Eigen value

• Similar logic is not easily extendable to the other Eigenvectors, however
11-755/18-797 137

mmT

||||
)1(

m

m
ee   CR

10 

2||||)1( m  CR



Eigenvectors

• Turns out:  Eigenvectors of the correlation matrix represent the 
major and minor axes of an ellipse centered at the origin which 
encloses the data most compactly

• The SVD of data matrix X uncovers these vectors
• KLT
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Eigenvectors

• Turns out:  Eigenvectors of the covariance represent the major and 
minor axes of an ellipse centered at the mean which encloses the 
data most compactly

• PCA  uncovers these vectors
• In practice, “Eigen faces” refers to PCA faces, and not KLT faces
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What about sound?

• Finding Eigen bases for speech signals:

• Look like DFT/DCT
• Or wavelets

• DFTs are pretty good most of the time
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Eigen Analysis

• Can often find surprising features in your data
• Trends, relationships, more
• Commonly used in recommender systems

• An interesting example..
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Eigen Analysis

• Cheng Liu’s research on pipes..
• SVD automatically separates useful and uninformative 

features
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