Machine Learning for Signal

Processing
Data driven representations:
1. Eigenrepresentations

Instructor: Bhiksha Raj
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Linear Algebra Reminders: 1

AXx

<
I

* A matrix transforms a sphereoid to an ellipsoid

* The Eigenvectors of the matrix are the vectors who do
not change direction during this transformation
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Linear Algebra Reminders: 1.5

* Any square matrix A can be “Eigen decomposed” as
A=VAV!
— Vs the set of Eigen vectors.Ais a diagonal matrix of scaling terms
 If Ais symmetric, we will get
A = VAVT
— The vectors in V are orthogonal to one another. V is an orthogonal matrix

— VW =vTy =1 11-755/18-797



Linear Algebra Reminders: 2

A = USVT

<A | s |
ARG

\J

* A matrix transforms the orthogonal set of right singular vectors to
the orthogonal set of left singular vectors

— These are the major axes of the ellipsoid obtained from the sphereoid

— The scaling factors are the singular values
11-755/18-797



Linear Algebra Reminders: 2

A =USVT

y = AX

/& |\

/<7\ AT = vSu”
O =

A matrix transforms the orthogonal set of right singular vectors to the orthogonal
set of left singular vectors

— These are the major axes of the ellipsoid obtained from the sphereoid

— The scaling factors are the singluar values

The transpose of a matrix transforms the left singular vectors to the right singular
vectors 11-755/18-797



Linear Algebra Reminders: 3
A =A" uUsv'=vsu’ U=V A=USU’

U

U1 UZ S1
U,
y = AX 5,

* For a symmetric matrix left and right singular vectors are identical
— Orthogonal vectors which do not change direction from the transform
— These are the major axes of the ellipsoid obtained from a sphereoid
 These are also the eigenvectors of the matrix
— Since they do not change direction
— SVD gives you Eigen decomposition, with A = S?




Linear Algebra Reminders: 4 —> SVD

* SVD decomposes a matrix into a the sum of a
sequence of “unit-energy” matrices weighted
by the corresponding singular values

* Retaining only the “high-singular-value”
components retains most of the energy in the
matrix



SVD on data-container matrices

3 | [FS-CEE

X = Z sUV.T
i

T HUiViTHIZ: =1
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SVD decomposes the data
CYEEEEL ELELEL) '

X = [X1 X “‘XN]

X=sUV,' +s,UV,) +s UV, +s,UV, +

Each left singular vector and the corresponding right singular vector
contribute one “basic” component to the data

The “magnitude” of its contribution is the corresponding singular

value
11-755/18-797 9



Expanding the SVD
X =sUV" +s,UV] +1qu pl +S;U V%+

/

Each left singular vector and the corresponding right singular vector
contribute on “basic” component to the data

The “magnitude” of its contribution is the corresponding singular
value

Low singular-value components contribute little, if anything

— Carry little information
— Are often just “noise” in the data



Expanding the SVD

X = s UV +sUV] +50U, Vﬂs;U Vi
\

/ \ /

X~SUVT+52U v,

Low singular-value components contribute little, if anything
— Carry little information
— Are often just “noise” in the data

Data can be recomposed using only the “major” components with
minimal change of value
— Minimum squared error between original data and recomposed data

— Sometimes eliminating the low-singular-value components will, in fact
“clean” the data

11-755/18-797 11



Linear Algebra recall

* Whatisx'y
— When y is unit length

11-755/18-797
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Linear Algebra recall

e Whatisx'y
— When y is unit length

* What is the projection of X onto y
— When y is unit length

11-755/18-797
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Linear Algebra recall

e Whatisx'y
— When y is unit length

* What is the projection of X onto y
— When y is unit length

* What is the projection of xonto Y = |y;V¥; ... Vx|

— WhenY is an orthogonal matrix

11-755/18-797 14



* On with the topic for today...

11-755/18-797
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Recall: Representing images

aboard Apollo space capsule. Apollo Xi aboard Apollo space capsule. Building Apollo space ship. aboard Apollo spae capsule.
1038 x 1280 - 142k 1280 x 1265 - 226k 1029 x 1280 - 128k 1280 » 1257 - 114k 1017 « 1280 - 130k
HFE LIFE HFE LFE HFE

Apollo Xi
1228 x 1280 - 181k
LIFE LIFE HFE EEE Bl =

Apollo 10 space ship. w.
1280 % 853 - T2k

Splashdown of Apolle Xl mission.  Earth seen from space during the Apollo Xi
1280 x 866 - 184k 1280 % 839 - 60k 844 x 1280 - 123k

Apollo 8 working on Apollo space project. the moon as seen from Apollo 8 Ap Apollo § Crew
1278 x 1280 - T4k 1280 x 956 - 117k 1223 x 1280 - 214k 1280 % 1277 - 142k 968 x 1280 - 125k
HFE LIFE LIFE LIFE LIFE

* The most common element in the image:
background
— Or rather large regions of relatively featureless shading
— Uniform sequences of numbers

11-755/18-797 16



* Checkerboards with different variations

Image ~ wB; + wy By + w3B3 +...

W= W3 BZ[Bl B2 B3]

BW =~ Image
W = pinv(B)Image
PROJECTION = BW

Getting closer at 625 bases!

11-755/18-797 17



“Bases”
o
B, B, B. B,

image ~w,B, +w,B, + w, B, +...

e “Bases” are the “standard” units such that all instances can be
expressed a weighted combinations of these units

* Ideal requirements: Bases must be orthogonal

* Checkerboards are one choice of bases
— Orthogonal
— But not “smooth”

* Other choices of bases: Complex exponentials, Wavelets,
etc..

11-755/18-797 18



Data specific bases?

* |ssue: The bases we have considered so far are data
agnostic
— Checkerboards, Complex exponentials, Wavelets..
— We use the same bases regardless of the data we analyze

* Image of face vs. Image of a forest
* Segment of speech vs. Seismic rumble

* How about data specific bases
— Bases that consider the underlying data

* E.g.is there something better than checkerboards to describe
faces

* Something better than complex exponentials to describe music?

11-755/18-797 19



Data-specific description of faces ™

- o

) ')

—

* A collection of images
— All normalized to 100x100 pixels

* What is common among all of them?

— Do we have a common descriptor?

11-755/18-797 20



A typical face
,-=! lw—-‘

- ¥ b ﬁ

Assumption: There is a “typical” face that captures most of

The typical face

what is common to all faces

— Every face can be represented by a scaled version of a typical face

— We will denote this face as V
* Approximate every facefast =w,V

e Estimate V to minimize the squared error
— How? Whatis V?

11-755/18-797 21




Abstracting the problem:

Finding the typical face

N

Pixel 2

Pixel 1

A 4

MLSE

* Each “point” represents a face in “pixel space”

11-755/18-797
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Abstracting the problem: MLSP
Finding the typical face
\

B -

Pixel 2

A 4

Pixel 1

* Each “point” represents a face in “pixel space”
* Any “typical face” V is a vector in this space

11-755/18-797 23



Abstracting the problem: MLSP
Finding the typical face
\

Pixel 2

A 4

Pixel 1

Each “point” represents a face in “pixel space”

The “typical face” V is a vector in this space

The approximation w; V for any face f is the projection of f onto V

The distance between f and its projection w./V is the projection error for t

11-755/18-797 24



Abstracting the problem: MLSP
Finding the typical face
v /"

Pixel 2

A 4

Pixel 1

e FEvery face in our data will suffer error when
approximated by its projectionon V

* The total squared length of all error lines is the total
squared projection error

11-755/18-797 25



Abstracting the problem: MLSP
Finding the typical face
\%

N
\\

4
&

Pixel 2

A 4

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

11-755/18-797 26



Abstracting the problem:
Finding the typical face

Pixel 2

A 4

Pixel 1

The problem of finding the first typical face V,:
Find the V for which the total projection error is minimum!

11-755/18-797
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Abstracting the problem: MLSP
Finding the typical face

N
0
. \
\ \
= \ \
(o \ \ \
\ \
2 . \ '\ \
Q u \\ \\ \\ “ \
M \ [ \ ! [\ \ \‘
m . [\ \Y \ \‘ ‘ v
\ \\ \ ‘
‘\ by k V
v
‘\ ‘\
Wy
>
Ld
Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

11-755/18-797 28



Abstracting the problem: MLSP
Finding the typical face

N

Pixel 2

A 4

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

11-755/18-797 29



Abstracting the problem:

Pixel 2

Finding the typical face

Vi

@

A 4

Pixel 1

The problem of finding the first typical face V,:
Find the V for which the total projection error is minimum!

This “minimum squared error” V is our “best” first typical face
It is also the first Eigen face

11-755/18-797
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Formalizing the Problem: Error from ™=

approximating a single vector

Approximating: x = wv

* Consider: approximating x = wv
— E.g xis a face, and “v” is the “typical face”
* Finding an approximation wv which is closest to x

— In a Euclidean sense
— Basically projecting x onto v

11-755/18-797 31



MLSP
Projection of a vector on another

* The black arrow is the projection of X on v

» —is a unit vector in the direction of v

v
Vv

Vv
= |x|cos 6 — = |x]||v|cos @ o2

pTOj |V|
.
V|2

* X

11-755/18-797 32



Formalizing the Problem: Error from ™=

approximating a single vector

Approximating: x = wv

~ \-z -------------------------------- > X-VVTX

>

* Projection of a vector x on to a vector v
T
A XV

X= 2
v

* Assuming v is of unit length: =(x"v}v

\

A

2
T
error = X—X = X—(X V)V squarederror: HX—(XTV)VH

11-755/18-797 33



MLSP

Error from approximating a single
vector

* Projection® = (xTv)v

e Squared length of projection
IR]1? = xXTv)? = XTV)T(xTv) = vixxTv

* Pythogoras theorem: Squared length of error e(x) = [|x]||? — ||R]|?
e(x) =x'x—vixx'v

11-755/18-797 34



MLSP
Error for many vectors

>

* Error for one vector: e(x)=x'x—v'xx' v
* Average error for many vectors

1 1 1 1
E = NZ e(X;) = N (Z X] X; — Z VTxixl-Tv) = ﬁz X; X; — Vv’ <NZ XiXiT> v
[ i i L i

e Goal: Estimate v to minimize this error!

11-755/18-797 35



MLSP
Definition: The correlation matrix

e The encircled term is the correlation matrix

1 1. 1
X = [Xl X, '“XN] Ninxi =% =yR
l

X = Data Matrix

£

Correlation

Transposed
Data Matrix

XT =

11-755/18-797 36



MLSP
Error for many vectors

>

X
1
* Overall error: E =NZXiTxi—vTRV
l

* Add constraint: viv=1
* Constrained objective to minimize:

1
= NE XiX; —VIRv+ A(viv—1)
i

37



MLSP
Two Matrix ldentities

L 1
* Derivativew.rtv L= NZ: XiX; —VIRv+ A(viv—1)
L

V. v'Rv =2Ry

These are actually transposed derivatives, but that does not affect the overall result that follows

11-755/18-797 38



MLSP
Minimizing error

>

1
L= NZ xXiX; —VIRV+ A(viv—1)
i

e Differentiating w.r.t v and equating to O

—2Rv+2Av=0 Rv = Av

11-755/18-797 39



MLSP
The best “basis”

>

* The minimum-error basis is found by solving
Rv = Av

* vis an Eigen vector of the correlation matrix R

— A is the corresponding Eigen value

11-755/18-797 40



What about the actual error?

1
E = —Z X] X; — VIRV
N&

12 T T 1 T T
=— ) X;X;—V )\v=—zxixi—7\VV
N : N i

1 T
E=Nzxixi—/1
i

11-755/18-797
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MLSP

Vishinedasming o Sl

Minimizing the error

. 1
The overall erroris E = Nz x'x; — A
L

We already know that the optimal basis is an
Eigen vector

The total error depends on the negative of the
corresponding Eigen value

To minimize error, we must maximize A

l.e. Select the Eigen vector with the largest
Eigen value



TSP

Poll 1

e  Mark the true statements.

1. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying
data.

2. Every face can be represented by a scaled version of a typical face that captures most of what is
common to all faces (T)

3. the image vector for which the total projection error is minimum is the face basis that has largest eigen
value.

4. the correlation matrix R is symmetric since it the matrix X multiplied by its transpose.

11-755/18-797 43



TSP

Poll 1

e  Mark the true statements.

1. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying
data.

2. Every face can be represented by a scaled version of a typical face that captures most of what is
common to all faces (T)

3. the image vector for which the total projection error is minimum is the face basis that has
largest eigen value.

4. the correlation matrix R is symmetric since it the matrix X multiplied by its transpose.

11-755/18-797 44



A detour: The correlation matrix

11-755/18-797
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MLSP

ainelaaiing o S0aProcessng o

A new definition:
The correlation matrix

12 r_ 1 1o
X:[xlxz...xN] N2 X =X =g
l

D

4 ~
~ 7

D X = Data Matrix

= Correlation |D

X; are D dimensional

R=R’

XT = Transposed
Data Matrix

* For data-holder matrices: the product of a matrix and its transpose
— Also equal to the sum of the outer products of the columns of the matrix
— The correlation matrix is symmetric

— It quantifies the average dependence of individual components of the data
on other components

11-755/18-797 46



MLSP
Interpreting the correlation matrix

v y = Rv

> 7

* Consider the effect of multiplying a unit vector
by R

11-755/18-797 47



MLSP
Interpreting the correlation matrix

v B Rv = XXTv
y=Rv .
Ignoring the 1/N factor

> Rv=Y;X;X,V

Rv = Z(xiTv)xi

i

* Consider the effect of multiplying a unit vector
by R

11-755/18-797 48



MLSP
The inner product term

Understanding (X{ v)x;

(x{ v)x; = |x;|cosb;.x; = cost;||x;]|*%;

» Consider (X] v)x;
* This is the projection of unit vector v on X;,
scaled by the squared length of Xx;

11-755/18-797 49



MLSP
Interpreting the correlation matrix

\"

YR Rv = Z(xiTV)xi
i

SN

Rv = Z cosO; ||x;||*X;

[

* Consider the effect of multiplying a unit vector
by R

11-755/18-797 50



MLSP
Interpreting the correlation matrix

‘\

Rv = z cosB;||x;|I*X; Where will Rv be?

i

e Each unit vector is transformed to the sum of cosine-
weighted squared-length versions of the individual vectors

— Approximately the sum of the squared-length version of vectors
that are close to it in angle

11-755/18-797 51



MLSP
Interpreting the correlation matrix

Rv

Rv = z coso; ||x;||*X;

i

e Each unit vector is transformed to the sum of cosine-
weighted squared-length versions of the individual vectors

— Approximately the sum of the squared-length version of vectors
that are close to it in angle

11-755/18-797 52



MLSP
Interpreting the correlation matrix

Rv = z cosB;||x;|I*X; Where will Rv be?

i

e Each unit vector is transformed to the sum of cosine-
weighted squared-length versions of the individual vectors

— Approximately the sum of the squared-length version of vectors
that are close to it in angle
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MLSP
Interpreting the correlation matrix

Rv °

Rv = z coso; ||x;||*X;

i

e Each unit vector is transformed to the sum of cosine-
weighted squared-length versions of the individual vectors

— Approximately the sum of the squared-length version of vectors
that are close to it in angle

11-755/18-797 54



MLSP
reting the correlation matrix

“Centered” zero-mean data

 The unit sphereoid is converted to an ellipsoid
— The major axes point to the directions of greatest energy
— These are the eigenvectors

— Their length is proportional to the square of the lengths of the data
vectors

 Why?
11-755/18-797 55



“Uncorrelated” data

Rv = ZIIXiIIZCOSHi)?i
i

MLSP

“Centered” zero-mean data

e When the scatter of the data is a

axes, the transformed ellipse is a
the axes

— The data are “uncorrelated”

11-755/18-797
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MLSP
Interpreting the ¢ atrix

“Uncentered”

e For “uncentered” data..

— Note although the vectors near the major axis are shorter, there
are more of them, so the ellipse is wider in that direction

11-755/18-797 57



Returning to our problem..

11-755/18-797
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The typical face

Sl IS
W W

 Compute the correlation matrix for your data
— Arrange them in matrix X and compute R = XX'

The typical face

 Compute the principal Eigen vector of R
— The Eigen vector with the largest Eigen value
— Explains most of the “energy” in the faces

* This is the typical face

11-755/18-797
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The approximation with the first "=
typical face

ﬂ “ * The first typical face models

some of the characteristics
of the faces

e Simply by scaling its grey level

* But the approximation has
error

e Can we do better?

11-755/18-797 60



The second typical face o

The first typical face

- ' w

U !H

* Approximation with only one typical face V, has error

The second typical face?

?

— Approximating every face as f = w,, V, is incomplete

* Lets add second face to explain this error
— Add a second typical face V,. Explain each face now as
—f=wy Vitw, V,

e How do we find this second face?

11-755/18-797 61



Solution: Iterate

11-755/18-797

* Get the “error”
faces by
subtracting the
first-level
approximation
from the
original image

62



Solution: Iterate

11-755/18-797

* Get the “error”
faces by
subtracting the
first-level
approximation
from the original
image

* Repeat the
estimation on the
“error” images

63



Abstracting the problem: MLSP
Finding the second typical face

A a

E < ERROR
“ FACES

Pixel 2

A 4

Pixel 1

* Each “point” represents an error face in “pixel space”

* Find the vector V, such that the projection of these
error faces on V, results in the least error

11-755/18-797 64



MLSP
Minimizing error

The same math applies
but now to the set

ERROR of error data points

« /" .  €TFACES

Pixel 2

O
7

Pixel 1

1
NZe e —V —Zee v+A(viv—-1)

* Defining the autocorrelatlon of the error

Ro=1Y
eNee

1
= NZ e;e; —VIR,v+A(viv—1)

65



MLSP
Minimizing error

1 The same math applies
but now to the set

ERROR of error data points

« /" .  €TFACES

Pixel 2

O
7

Pixel 1

1
L = Nz e/e;—VvIR,v+ A(viv—-1)
i

e Differentiating w.r.t v and equatingto O

2R v+2Av=0 R v=Av

11-755/18-797 66



MLSP
Minimizing error

1 The same math applies
ERROR but now to the set
% . ) £ TICES of error data points
.
Pixel 1 ”
* The minimum-error basis is found by solving
R v, =Av,

* Vv, is an Eigen vector of the correlation matrix R,
corresponding to the largest eigen value A of R,

11-755/18-797 67



Which gives us our second typic
face

Yglete
we
U!b“[ﬂ

But approximation with the two faces will still result in error

 So we need more typical faces to explain this error

 We can do this by subtracting the appropriately scaled version
of the second “typical” face from the error images and

repeating the process

11-755/18-797 68



Error face

Solution: Iterate

-

Second-level error

11-755/18-797

e Get the second-
level “error” faces
by subtracting the
scaled second
typical face from
the first-level error

* Repeat the
estimation on the
second-level
“error” images

69



An interesting property

* Each “typical face” will be orthogonal to all
other typical faces

— Because each of them is learned to explain what
the rest could not

— None of these faces can explain one another!

11-755/18-797

MLSP

Vinelasming or 507
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MLSP
To add more faces

 We can continue the process, refining the
error each time

— An instance of a procedure is called “Gram-
Schmidt” orthogonalization

* So what are we really doing?

11-755/18-797 71



 Assumption: There are a set of K “typical” faces that captures most of all faces

* Approximate every facefasf = wg; Vi+ we, V, +wey Vi +o 4+ wi V)
— V,is used to “correct” errors resulting from using only V. So on average
2 2
|7 =00, <[ =wiat]
— V3 corrects errors remaining after correction with V2
2 2
Hf —Wp Vv we Ve, +we sl )H < Hf_(wf,lVf,l +w oV, )H
— Andsoon..
— V=[V,V,V;]
* Estimate V to minimize the squared error
— Whatis V?

11-755/18-797 72



MLSP

Recall: Basis based representation

uj

A

* The most important challenge in ML: Find the
best set of bases for a given data set

11-755/18-797 73



MLSP

Vinelasming or 507

The Energy Compaction Property

e Define “best”?

* The description

X =wbB +w,B, +w,B, +...+w, B,

* The ideal:
)A(l. ~wB +w,B, +...+ w,B, Error, =HX—)A(Z.

2

Error, < Error,_|

— If the description is terminated at any point, we should
still get most of the information about the data

* No other set of bases (for any leading subset of bases) should
result in lower Error for the same number of bases

11-755/18-797 74



* Finding the optimal set of “typical faces” in
this example is the problem of finding the
optimal basis set for the data

11-755/18-797 75
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[1114 T

1: == = - == U=NS=~M
E = = [— g —  —  S=pinv(N)M

Finding the best explanation of music M in terms of notes N
Also finds the score S of M in terms of N
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How about the other way?

00000

{
syl

Sooo

—_— e ——— —— = =
= = _— —_— ——
—— — -— - - = = e =
2000 = 5 e — — ——————— == _—— . = = ——— e
e e e o g e e T P ps
ocoo —— e ————a> — e e S — - — e e L o ——
— ——————=— = —— = —_—
e —— = =

N = M Piny(S)

U=NS~M

N = ? U = ? N =M pinv(S)

* Finding the notes N given music M and score S
e Also finds best explanation of M in terms of S
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00000

Sooo

[Slelala] e

?

v= 2

= Find the four notes and their score that generate the

closest approximation to M

11-755/18-797
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Typical faces

The Same Problem

-- it

W

e Here U,V and W are all unknown and must be estimated

— Such that the total squared error between F and U is minimized

* Foreachface f

— f = Wf,1V1 + Wf,ZVZ + e+ Wf,KVK

e Forthe collection of faces F = VW
— VisDXK,WisK XN

* D isthe number of pixels, N is the number of faces in the set

11-755/18-797 79



 LSP
i o S Processing Crek

Poll 2

e Mark true statements

Some of the “typical faces” will not be orthogonal to all other
typical faces

— T

— F

The typical faces are actually a collection of least squares data-
specific bases

— T

— F



 LSP
i o S Processing Crek

Poll 2

e Mark true statements

Some of the “typical faces” will not be orthogonal to all other
typical faces

— T

— F

The typical faces are actually a collection of least squares data-
specific bases

— T

— F



Finding the bases

* We just saw an incremental procedure for
finding the bases

— Finding one new basis at a time that explains
residual error not explained by previous bases

— An instance of a procedure is called “Gram-
Schmidt” orthogonalization

e \We can also do it all at once

11-755/18-797
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Vinelasming or 507
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With many typical faces

- e

W

Typical faces

* Approximate every facefast = w;, V,+ w;, V, +... + w; V,

e Here W,V and U are ALL unknown and must be determined
— Such that the squared error between U and M is minimum
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MLSP

With multiple bases

VAVAYAY AV A AAAA [N 777777777 7

Assumption: all bases v, v, v;.. are unit length

Assumption: all bases are orthogonal to one another: ViTVj =0ifi!=]
— We are trying to find the optimal K-dimensional subspace to project the data
— Any set of basis vectors in this subspace will define the subspace
— Constraining them to be orthogonal does not change this

le.if V=[v,v,v;...], VV=I
— Pinv(V)=VT

Projection matrix for V= VPinv(V) = VV'
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MLSP

With multiple bases

5 y < Representsa
K-dimensional subspace

* Projection for a vector X=VV'x

e Errorvector=x—-x=x-VV’'x

* Errorlength= e(x)=x"x—x"VV’'x
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MLSP

With multiple bases

* Error for one vector:
* Error for many vectors

E:inTxl. —inTVVTXZ.

N
7

e(x)=x'x—x VV'x

Skipping the 1/N factor
as it cancels out

e Goal: Estimate V to minimize this error!
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MLSP
Minimizing Error

 With constraint VIV = I, we get the modified
objective

L= z X! X; — 2 x; VVTx; + trace(A(VTV —I))
i i

— Ais a diagonal Lagrangian matrix
— Constraints are v v; = 1 and v/ v; = 0 for i # j

e Differentiating w.r.t V and equating to O

—z(zxix{)v+2VA= 0 = RV=VA

l
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Finding the optimal K bases
RV = VA

Compute the Eigendecompsition of the
correlation matrix

Select K Eigen vectors
But which K?
Total error= £ = ZX X; _Zl

Select K eigen vectors correspondmg to the K
largest Eigen values
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Eigen Faces!
w -_-4!‘-.«-!
U!HEI

* Arrange your input data into a matrix X

 Compute the correlation R = XX"
* Solve the Eigen decomposition: RV = AV

 The Eigen vectors corresponding to the K largest eigen values
are our optimal bases

* We will refer to these as eigen faces.
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eigen decomposition. (T)
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2. The only way we get all the eigen faces is to iterate it one by one.
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Ting o 53 Procesing o

Poll 3

Mark the true statements

1. The singular value decomposition of correlation matrix is evaluated
to get eigen faces as the SVD of a symmetric matrix is actually the
eigen decomposition. (T)

— T

~ F

2. The only way we get all the eigen faces is to iterate it one by one.
— T
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How many Eigen faces

300x10000

10000x300 10000x10000

* How to choose “K” (number of Eigen faces)

e Lay all faces side by side in vector form to form a matrix
— In my example: 300 faces. So the matrix is 10000 x 300

 Multiply the matrix by its transpose
— The correlation matrix is 10000x10000
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[U,S] = eig(correlation)

A . 0 . 0
0 4 0 . 0
0 . 0 . ﬂ“l 0000 |

Eigen faces

eigenface1
eigenface2
.
o

« Compute the eigen vectors

— Only 300 of the 10000 eigen values are non-zero

e Retain eigen vectors with high eigen values (>0)

e Why?

— Could use a higher threshold

11-755/18-797
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Eigen Faces

eigenface1

eigenface2
.
[

eigenface1

|
|
o
o 5
B
o r
g
3
8
]

The eigen vector with the highest eigen value is the first typical face

The vector with the second highest eigen value is the second typical
face.

Etc.

11-755/18-797

94



Representation -

* The weights with which the eigen faces must
be combined to compose the face are used to
represent the face!
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Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognhizable

* Approximating a face with one basis:

f=wmv,
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Energy Compaction Example

* One outcome of the “energy compaction

principle”: the approximations are
recognhizable

* Approximating a face with one Eigenface:

f=wmv,
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Energy Compaction Example

* One outcome of the “energy compaction

principle”: the approximations are
recognhizable

* Approximating a face with 10 eigenfaces:

=WV, +wW,v, +.. W,V
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Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognhizable

) E .

* Approximating a face with 30 eigenfaces:
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Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are

recognhizable

- |

* Approximating a face with 60 eigenfaces:

f — WIVI W2V2 L) WIOVIO LI W3OV3O LI} W6OV6O
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How did | do this?
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How did | do this?

10
20
30
40
50
60
70
80

80

100 & 19 L , | r
10 20 30 40 50 60 70 80 90 100

* Hint: only changing weights assigned to Eigen faces..

11-755/18-797
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Class specificity

eigenface1 eigenface2

1) 1
B ) Y
) y
1 2 1
@ 4
) =
%)
) « 1
®
w o
7|
- &
)
- | K
)
| %
™ 100l
% %
% 1 100 .
W2 W 4 s @ 70 o w1
100 A
w2 W 4 s w7 s w1

eigenface3

 The Eigenimages (bases) are very specific to
the class of data they are trained on

— Faces here

* They will not be useful for other classes

11-755/18-797
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MLSP
Class specificity

* Eigen bases are class specific

* Composing a fishbowl| from Eigenfaces
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Class specificity

* Eigen bases are class specific

N

* Composing a fishbowl| from Eigenfaces
* With 1 basis

f=wv,

11-755/18-797
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Class specificity

* Eigen bases are class specific

g [ %

* Composing a fishbowl| from Eigenfaces

e With 10 bases

f=wv, +w,v,

11-755/18-797
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Class specificity

* Eigen bases are class specific

* Composing a fishbowl! from Eigenfaces
* With 30 bases
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* Eigen bases are class specific

* Composing a fishbowl! from Eigenfaces

Class specificity

e With 100 bases

| =wy,

w,v,

WioVio

11-755/18-797
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Universal bases

* Universal bases..

10 10 10
20 20 20

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
10 20 30 10 20 30 10 20 30 10 20 30

10

20 20 20

30 30 30

10 20 30 10 20 30 10 20 30 10 20 30

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

 End up looking a lot like discrete cosine transforms!!!!

* DCTs are the best “universal” bases
— If you don’t know what your data are, use the DCT

11-755/18-797 109



L SP
Tang " 537 Processing Ceos:

Poll 4
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1. We should choose DCT bases to represent the image of
Bhiksha’s sword instead of the eigen faces

2. The number of eigen faces you choose is a hyperparameter
and you can choose it with magic like the birthday of your
boyfriend/girlfriend

3. The information of a faces can be recovered for the weight
numbers directly before knowing what the eigen faces are.

4. Every image can be express better with eigen faces if we
increase the number of bases.



Poll 4

Mark the true statements

1. We should choose DCT bases to represent the image of
Bhiksha’s sword instead of the eigen faces

2. The number of eigen faces you choose is a hyperparameter
and you can choose it with magic like the birthday of your
boyfriend/girlfriend

3. The information of a faces can be recovered for the weight
numbers directly before knowing what the eigen faces are.

4. Every image can be express better with eigen faces if we
increase the number of bases.
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. . o  ® MLSP
Relation of Eigen decomposition

to SVD

Eigen Decomposition of the Correlation Matrix
XX" = R = EDE’
SVD of the Data Matrix
X = USV?
XX" =usv? vsu’ =us“u’

Comparing E=U D = S2

Eigen decomposition of the correlation matrix
gives you left singular vectors of data matrix
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Dimensionality Reduction

R = EDE’

— The columns of E are our “Eigen” bases

* We can express any vector X as a combination
of these bases

e Using only the “top” K bases

— Corresponding to the top K Eigen values
X ~wWiE{ +WAEp + -+ Wi Ex
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MLSP
Dimensionality Reduction

e Using only the “top” K bases
— Corresponding to the top K Eigen values
X ~wiE, + wiEp + -+ Wi Eyg
* |n vector form:
X = Eq Wi
wi = Pinv(E{.x)X = ET . X
Wi = ET . X

 If “E” is agreed upon, knowing W3 is sufficient to reconstruct X

— Store only K numbers per vector instead of D without losing too
much information

— Dimensionality Reduction
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MLSP
Lets give it a hame

R = EDE’

E are the “Eigen Bases”

Wi = E1¢X
e Retaining only the top K weights for every data vector

— Computed by multiplying the data matrix by the transpose
of the top K Eigen vectors of R

* Thisis called the Karhunen Loeve Transform
— Not PCA!
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An audio example
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MLSEP

* The spectrogram has 974 vectors of dimension

1025

nere are 1025 eigenvectors

11-755/18-797

ne covariance matrix is size 1025 x 1025
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MLSP
Eigenvalues and Eigenvectors

e Left panel: Matrix with 1025 eigen vectors

* Right panel: Corresponding eigen values
— Most Eigen values are close to zero

* The corresponding eigenvectors are “unimportant”
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MLSP
Eigenvalues and Eigenvectors

gl s e S S S S
00 300 400 500 600 700 800 900 1000 [ 200 400 600 800 1000

Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 ...

 The vectors in the spectrogram are linear combinations of all
1025 Eigen vectors
 The Eigen vectors with low Eigen values contribute very little

— The average value of a, is proportional to the square root of the
Eigenvalue

— lgnoring these will not affect the composition of the spectrogram
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An audio example
V

reduced

M

= . . Vil
— P in V(I/reduced )M

lowdim

25

20 [— =l

L i L L i 1 1 i L
100 =200 300 400 S500 S0o0 rgels] S00 D00

The same spectrogram projected down to the 25 eigen
vectors with the highest eigen values

— Only the 25-dimensional weights are shown

* The weights with which the 25 eigen vectors must be added to
compose a least squares approximation to the spectrogram
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reconstructed reduced lowdim

* The same spectrogram constructed from only the 25
Eigen vectors with the highest Eigen values
— Looks similar
* With 100 Eigenvectors, it would be indistinguishable from the original
— Sounds pretty close

— But now sufficient to store 25 numbers per vector (instead of
1024)
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With only 5 eigenvectors
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 The same spectrogram constructed from only

the 5 Eigen vectors with the highest Eigen

values

— Highly recognizable
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SVD instead of Eigen

U=10000x300

S=300x300

V=300x300

eigenface1

eigenface2
.
o

Do we need to compute a 10000 x 10000 correlation matrix and
then perform Eigen analysis?

— Will take a very long time on your laptop

SVD

— Only need to perform “Thin” SVD. Very fast

* U=10000x 300

— The columns of U are the eigen faces!
— The Us corresponding to the “zero” eigen values are not computed

* $S=300x300
* V=300x 300

11-755/18-797
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MLSP

Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

* U will have the Eigenvectors

e Thin SVD for 100 bases:
[U,S,V] = svds(X, 100)
e Much more efficient
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Eigen Decomposition of data

* Nothing magical about faces or sound — can
be applied to any data.

— Eigen analysis is one of the key components of
data compression and representation

— Represent N-dimensional data by the weights of
the K leading Eigen vectors
* Reduces effective dimension of the data from N to K
* But requires knowledge of Eigen vectors

11-755/18-797
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MLSP
What kind of representation?

* What we just saw: Karhunen Loeve Expansion

 What you may be familiar with: Principal
Component Analysis

e The two are similar, but not the same!!
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Linear vs. Affine

* The model we saw (KLE)

— Approximate every face f as
t =wg Vi+w, V, +..+ Wil V.,
— Linear combination of bases

 |f you add a constant (PCA)
f =we Vit we, Vo +o+wg Vit m
— Affine combination of bases

11-755/18-797
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Affine expansion

 Estimate
f=m + Wiy V,+ W) V, ..+ Wil \'A

* Using the energy compaction principle leads
to the usual incremental estimation rule

— m must explain most of the energy

— Each new basis must explain most of the residual
energy

11-755/18-797
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MLSP
Estimation with the constant

e Estimate
= Wiy V,+ We) V, +.. + Wi V,+m

* Lets do this incrementally first:
. f~m
— For every face
— Find m to optimize the approximation
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Estimation with the constant

Estimate
f *m
— for every f!

Error over all faces E = Zfo—mHz

Minimizing the error with respect to m, we
simply get

—m = %fo

The mean of the data

11-755/18-797
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MLSP
Estimation the remaining

Same procedure as before:

— Remaining “typical faces” must model what the constant m
could not

Subtract the constant from every data point
-f=f-m

Now apply the model:

— [ = Wiy Vit we, V, +oo+wg Vo

This is just Eigen analysis of the “mean-normalized”
data

— Also called the “centered” data
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MLSP

Estimating the Affine model

f — Wf’1 V1+ Wf,z VZ +... 1+ Wf,k Vk -1 m
* First estimate the mean m
GO
m= —
N
f

* Compute the correlation matrix of the “centered”
dataf =f —m

— C =3, ffT=Ep(f —=m)(f —m)T

— This is the covariance matrix of the set of f
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MLSE

Estimating the Affine model

f — Wf’1 V1+ Wf,Z VZ +... T Wf,k Vk + m
First estimate the mean m
1
m= —
vO.S
f
Compute the covariance matrix
~ C=X,(f —m)(f =m)"
Eigen decompose!
CV =VA

The Eigen vectors corresponding to the top k Eigen values give us
the bases V,
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MLSP
Linear vs. Affine

e The model we saw

— Approximate every face f as
f = Wi V,+ We) V, +..+ Wil Vi
— The Karhunen Loeve Expansion
— Retains maximum Energy for any order k

* |f you add a constant
f =weg Vit we, Vy+oo+wg Vi +m
— Principal Component Analysis
— Retains maximum Variance for any order k
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How do they relate

Relationship between correlation matrix and

covariance matrix

R=C+mm!

Karhunen Loeve bases are Eigen vectors of R
PCA bases are Eigen vectors of C

How do they relate
— Not easy to say..

11-755/18-797
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MLSP

The Eigen vectors

* The Eigen vectors of C are the major axes of
the ellipsoid Cv, where v are the vectors on
the unit sphere
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MLSP

The Eig%n vectors

mm

' 0 ofs&% 15 2
* The Eigen vectors of R are the major axes of
the ellipsoid Cv+ mm'v

* Note that mm’ has rank 1 and mm’v is a line
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MLSP

The Eig%n vectors

mm

05 &1‘ 15 2
The principal Eigenvector of R lies between the principal Eigen vector of C
and m

e, =ae.+(1-a)— O<ac<l
Similarly the principal Eigen value
2
Ar=al.+(1-a)|m|

Similar logic is not easily extendable to the other Eigenvectors, however
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MLSP

Eigenvectors

N

Pixel 1

Turns out: Eigenvectors of the correlation matrix represent the
major and minor axes of an ellipse centered at the origin which
encloses the data most compactly

The SVD of data matrix X uncovers these vectors
o KLT
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Eigenvectors

N

Pixel 2

Pixel 1

Turns out: Eigenvectors of the covariance represent the major and

minor axes of an ellipse centered at the mean which encloses the
data most compactly

PCA uncovers these vectors

In practice, “Eigen faces” refers to PCA faces, and not KLT faces
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What about sound?

Finding Eigen bases for speech signals:

Look like DFT/DCT
Or wavelets

MLSP

Vinelasming or 507

: 1 01
or 1 0 1
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DFTs are pretty good most of the time
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Eigen Analysis

MLSP

Vinelasming or 507

Can often find surprising features in your data

Trends, relationships, more
Commonly used in recommender systems

An interesting example..

11-755/18-797
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Eigen Analysis

Figurel. Experiment setup @Wean Hall mechanical
space. Pipe with arrow indicates a 107 diameter hot
water pipe carrying pressurized hot water flow, on
which piezoelectric sensors are installed every 10 ft.
A National mstruments data acquisiion system 1s
used to acquire and store the data for later

processing.
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Figure 2. Damage detection results compared with
conventional methods. Top: Ground truth of whether
the pipe 1= damaged or not. Middle: Conventional
method only captures temperature wvariations, and
shows no indication of the presence of damage.

Bottom: The SVD method clearly picks up the steps
where damage are introduced and removed.

* Cheng Liu’s research on pipes..
e SVD automatically separates useful and uninformative

features
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