

Machine Learning for Signal Processing Data driven representations: 1. Eigenrepresentations **Processing

driven representations:

Eigenrepresentations**

Instructor: Bhiksha Raj **ppresentations**
pr: Bhiksha Raj
11-755/18-797

Linear Algebra Reminders: 1

-
- The Eigenvectors of the matrix are the vectors who do not change direction during this transformation phereoid to an ellipsoid

e matrix are the vectors who do

uring this transformation

11-755/18-797

Linear Algebra Reminders: 1.5

• Any square matrix A can be "Eigen decomposed" as

$$
A = V \Lambda V^{-1}
$$

- $-$ V is the set of Eigen vectors. A is a diagonal matrix of scaling terms
- \cdot If A is symmetric, we will get

$$
\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T
$$

- The vectors in V are orthogonal to one another. V is an orthogonal matrix
-

Linear Algebra Reminders: 2

 $A = USV^T$

- A matrix transforms the orthogonal set of right singular vectors to the orthogonal set of left singular vectors
	- These are the major axes of the ellipsoid obtained from the sphereoid
	- The scaling factors are the singular values

- A matrix transforms the orthogonal set of right singular vectors to the orthogonal set of left singular vectors
	- These are the major axes of the ellipsoid obtained from the sphereoid
	-
- The *transpose* of a matrix transforms the left singular vectors to the right singular

- For a symmetric matrix left and right singular vectors are identical
	- Orthogonal vectors which do not change direction from the transform
	- These are the major axes of the ellipsoid obtained from a sphereoid
- These are also the *eigenvectors* of the matrix
	- Since they do not change direction
	- SVD gives you Eigen decomposition, with $\Lambda = S^2$

Linear Algebra Reminders: 4 –> SVD

- SVD decomposes a matrix into a the sum of a sequence of "unit-energy" matrices weighted by the corresponding singular values
- Retaining only the "high-singular-value" components retains most of the energy in the matrix high-singular-value"

s most of the energy in the

11-755/18-797

SVD on data-container matrices

SVD decomposes the data
\n
$$
\begin{bmatrix}\n\text{or } \text{supp} \\
\text{or } \text{supp} \\
X = [X_1 \ X_2 \ \cdots X_N] & X = USV^T \\
X = s_1 U_1 V_1^T + s_2 U_2 V_2^T + s_3 U_3 V_3^T + s_4 U_4 V_4^T + \cdots\n\end{bmatrix}
$$

- \bullet contribute one "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular \bullet value

- Each left singular vector and the corresponding right singular vector contribute on "basic" component to the data
- The "magnitude" of its contribution is the corresponding singular value the corresponding right singular vector

binent to the data

ribution is the corresponding singular

ents contribute little, if anything

e data

11-755/18-797

10
- Low singular-value components contribute little, if anything
	- Carry little information
	- Are often just "noise" in the data

Expanding the SVD
\n
$$
X = s_1 U_1 V_1^T + s_2 U_2 V_2^T + s_3 U_3 V_3^T + s_4 U_4 V_4^T + ...
$$
\n
$$
X \approx s_1 U_1 V_1^T + s_2 U_2 V_2^T
$$

- Low singular-value components contribute little, if anything
	- Carry little information
	- Are often just "noise" in the data
- Data can be recomposed using only the "major" components with minimal change of value e data

ng only the "major" components with

tween original data and recomposed data

low-singular-value components will, in fact

11-755/18-797

11
	- Minimum squared error between original data and recomposed data
	- Sometimes eliminating the low-singular-value components will, in fact "clean" the data

Linear Algebra recall

• What is $\mathbf{x}^T \mathbf{y}$

 $-$ When y is unit length

Linear Algebra recall

• What is $\mathbf{x}^T \mathbf{y}$

 $-$ When y is unit length

• What is the projection of x onto y $-$ When y is unit length $11-755/18-797$ 13

Linear Algebra recall

• What is $\mathbf{x}^T \mathbf{y}$

 $-$ When **y** is unit length

- What is the projection of x onto y $-$ When y is unit length
- What is the projection of **x** onto $Y = [y_1y_1 \dots y_k]$ $-$ WhenY is an orthogonal matrix 1
1**1.1755/18-797**
11-755/18-797
11-755/18-797

. On with the topic for today...

Recall: Representing images

aboard Apollo space capsule. 1038 x 1280 - 142k LIFE

Apollo Xi 1280 x 1255 - 226k LIFE

aboard Apollo space capsule. 1029 x 1280 - 128k LIFE

Building Apollo space ship. 1280 x 1257 - 114k **LIFE**

aboard Apollo space capsule. 1017 x 1280 - 130k LIFE

1228 x 1280 - 181k LIFE

LIFE

Apollo 10 space ship, w. 1280 x 853 - 72k LIFF

Splashdown of Apollo XI mission. 1280 x 866 - 184k **I IFF**

Earth seen from space during the 1280 x 839 - 60k **I IFF**

I IFF

1278 x 1280 - 74k

1280 x 956 - 117k LIFE

- The most common element in the image: background 11-755/18-797 16
	- Or rather large regions of relatively featureless shading
	- Uniform sequences of numbers

• Checkerboards with different variations

$$
W = \begin{bmatrix} \n\frac{1}{2} & \text{if } 1 &
$$

- "Bases" are the "standard" units such that all instances can be expressed a weighted combinations of these units
- Ideal requirements: Bases must be orthogonal
- Checkerboards are one choice of bases
	- Orthogonal
	- But not "smooth"
- Other choices of bases: Complex exponentials, Wavelets, etc.. must be orthogonal
oice of bases
pmplex exponentials, Wavelets,
 $\frac{11}{13}$ 11-755/18-797

Data specific bases?

- **Issue: The bases we have considered so far are data** agnostic
	- Checkerboards, Complex exponentials, Wavelets..
	- We use the same bases regardless of the data we analyze
		- Image of face vs. Image of a forest
		- Segment of speech vs. Seismic rumble
- How about data specific bases
	- Bases that consider the underlying data
- E.g. is there something better than checkerboards to describe faces c bases

e underlying data

better than checkerboards to describe

complex exponentials to describe music?

11-755/18-797

19
	- Something better than complex exponentials to describe music?

Data-specific description of faces

- A collection of images
	- All normalized to 100x100 pixels
- What is common among all of them? (es
10x100 pixels
100 and of them?
100 descriptor?
11-755/18-797
	- Do we have a common descriptor?

A typical face

- Assumption: There is a "typical" face that captures most of what is common to all faces • **Assumption: There is a "typical" face that captures most of**

• **Assumption: There is a "typical" face that captures most of**

• Every face can be represented by a scaled version of a typical face

• We will denote thi
	- Every face can be represented by a scaled version of a typical face 11-755/18-797 21
	- $-$ We will denote this face as V
-
- Estimate V to minimize the squared error
	- $-$ How? What is V ?

• Each "point" represents a face in "pixel space"

- Each "point" represents a face in "pixel space"
- Any "typical face" V is a vector in this space

- Each "point" represents a face in "pixel space"
- The "typical face" V is a vector in this space
- The **approximation** w_f V for any face f is the projection of f onto V
- The distance between f and its projection w_fV is the *projection error* for f

- Every face in our data will suffer error when approximated by its projection on V
- The total squared length of all error lines is the total squared projection error

- The problem of finding the first typical face V_1 : : Find the V for which the total projection error is minimum!
- This "minimum squared error" V is our "best" first typical face
- It is also the first *Eigen face*

- Consider: approximating $x = wv$
	- $-$ E.g **x** is a face, and " \mathbf{v} " is the "typical face"
- Finding an approximation $w\mathbf{v}$ which is closest to \mathbf{x} Consider: approximating $\mathbf{x} = w\mathbf{v}$

– E.g **x** is a face, and "**v**" is the "typical face

Finding an approximation w**v** which is

– In a Euclidean sense

– Basically projecting **x** onto **v 11.755/18-797**

11-755/18-797

11-755/18-797

11-755/18-797

11-755/18-797
	- In a Euclidean sense
	-

Projection of a vector on another

- The black arrow is the projection of x on v
- $\frac{v}{|v|}$ is a *unit* vector in the direction of v

\n- The black arrow is the *projection* of **x** on **v**
\n- $$
\frac{v}{|v|}
$$
 is a *unit* vector in the direction of **v**
\n- $\mathbf{x}_{proj} = |\mathbf{x}| \cos \theta \frac{v}{|v|} = |\mathbf{x}| |\mathbf{v}| \cos \theta \frac{v}{|v|^2}$ \n $= \mathbf{x}^T \mathbf{v} \frac{v}{|v|^2}$ \n
\n

Formalizing the Problem: Error from MLSP approximating a single vector \mathcal{A} and \mathcal{A} $\sqrt{ }$ vv^Tx $\mathbf{x}-\mathbf{v}\mathbf{v}^{\mathrm{T}}\mathbf{x}$ Approximating: $x = wv$

 \boldsymbol{x}

x

- Projection of a vector x on to a vector v or **x** on to a vector **v**
it length: $\hat{\mathbf{x}} = (\mathbf{x}^T \mathbf{v})\mathbf{v}$
y)v squared error = $\|\mathbf{x} - (\mathbf{x}^T \mathbf{v})\mathbf{v}\|^2$ v \mathbf{v} $\mathbf{x}^T\mathbf{v}$ $\hat{\mathbf{x}} = \frac{\mathbf{A} \cdot \mathbf{v}}{1 - 1^2}$ T $=$
- Assuming v is of unit length: $\hat{\mathbf{x}} = (\mathbf{x}^T \mathbf{v}) \mathbf{v}$

 $error = \mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - (\mathbf{x}^T \mathbf{v})\mathbf{v}$ squared error = $\|\mathbf{x} - (\mathbf{x}^T \mathbf{v})\mathbf{v}\|^2$ 2 squared error $= ||\mathbf{x} - (\mathbf{x}^T \mathbf{v}) \mathbf{v}||$

MLSF Error from approximating a single vector $(\mathbf{v}^T \mathbf{x}) \mathbf{v}$

- Projection $\hat{\mathbf{x}} = (\mathbf{x}^T \mathbf{v}) \mathbf{v}$
- Squared length of projection \bullet $||\hat{\mathbf{x}}||^2 = (\mathbf{x}^T \mathbf{v})^2 = (\mathbf{x}^T \mathbf{v})^T (\mathbf{x}^T \mathbf{v}) = \mathbf{v}^T \mathbf{x} \mathbf{x}^T \mathbf{v}$
- Pythogoras theorem: Squared length of error $e(\mathbf{x}) = ||\mathbf{x}||^2 ||\hat{\mathbf{x}}||^2$

$$
e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{v}^T \mathbf{x} \mathbf{x}^T \mathbf{v}
$$

Error for many vectors

- Error for one vector: $e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} \mathbf{v}^T \mathbf{x} \mathbf{x}^T \mathbf{v}$
- Average error for many vectors

$$
E = \frac{1}{N} \sum_{i} e(\mathbf{x}_{i}) = \frac{1}{N} \left(\sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \sum_{i} \mathbf{v}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v} \right) = \frac{1}{N} \sum_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbf{v}^{T} \left(\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v}
$$

• Goal: Estimate y to minimize this error!

Definition: The correlation matrix

• The encircled term is the **correlation matrix**

$$
\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \dots \mathbf{x}_N]
$$

$$
\frac{1}{N}\sum_{i} \mathbf{x}_{i}\mathbf{x}_{i}^{T} = \frac{1}{N}\mathbf{X}\mathbf{X}^{T} = \frac{1}{N}\mathbf{R}
$$

Error for many vectors

-
- Constrained objective to minimize:

error:
$$
E = \frac{1}{N} \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \mathbf{v}^T \mathbf{R} \mathbf{v}
$$

strain: $\mathbf{v}^T \mathbf{v} = 1$
ned objective to minimize:

$$
L = \frac{1}{N} \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \mathbf{v}^T \mathbf{R} \mathbf{v} + \lambda (\mathbf{v}^T \mathbf{v} - 1)
$$

Two Matrix Identities

• Derivative w.r.t v $L = \frac{1}{N} \sum_i \mathbf{x}_i^T \mathbf{x}_i - \mathbf{v}^T \mathbf{R} \mathbf{v} + \lambda (\mathbf{v}^T \mathbf{v} - 1)$

$$
\nabla_{\mathbf{v}} \left(\mathbf{v}^T \mathbf{v} \right) = 2 \mathbf{v}
$$

$$
\nabla_{\mathbf{v}} \mathbf{v}^T \mathbf{R} \mathbf{v} = 2\mathbf{R} \mathbf{v}
$$

 $2x = 2Rx$
but that does not affect the overall result that follows
 $x_{11-755/18-797}$ These are actually transposed derivatives, but that does not affect the overall result that follows

• Differentiating w.r.t v and equating to 0

$$
-2Rv + 2\lambda v = 0
$$

$$
Rv = \lambda v
$$

$$
R\mathbf{v} = \lambda \mathbf{v}
$$

The best "basis"

- The minimum-error basis is found by solving basis is found by solving
 $\frac{\partial^2 u}{\partial x^2}$

of the correlation matrix **R**

ing Eigen value

interation $Rv = \lambda v$
- v is an Eigen vector of the correlation matrix $$
	- $-\lambda$ is the corresponding Eigen value

What about the actual error?

$$
E = \frac{1}{N} \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \mathbf{v}^T \mathbf{R} \mathbf{v}
$$

$$
= \frac{1}{N} \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \mathbf{v}^T \lambda \mathbf{v} = \frac{1}{N} \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \lambda \mathbf{v}^T \mathbf{v}
$$

$$
E = \frac{1}{N} \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \lambda
$$

Minimizing the error • The overall error is $E = \frac{1}{N} \sum_{i} x_i^T x_i - \lambda$

- We already know that the optimal basis is an Eigen vector
- The total error depends on the *negative* of the corresponding Eigen value • We already know that the optimal basis is an
Eigen vector
• The total error depends on the *negative* of the
corresponding Eigen value
• To *minimize* error, we must *maximize* λ
• i.e. Select the Eigen vector with t
- To minimize error, we must maximize λ
- Eigen value α value

ve must *maximize* λ

vector with the largest
 α

Poll 1

• Mark the true statements.

- **POII**

1. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying

2. Every face can be represented by a scaled version of a typical face that captures most of what is

comm data. **POII**
2. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying
2. Every face can be represented by a scaled version of a typical face that captures most of what is
3. the **3.** Mark the true statements.
3. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying data.
3. Every face can be represented by a scaled version of a typical face that ca **4.** The wavelet bases like checkerboard patterns are data specific that describe the property of underly data.

1. The wavelet bases like checkerboard patterns are data specific that describe the property of underly data
- common to all faces (T)
- value.
-

Poll 1

- Mark the true statements.
- **POII**

1. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying

2. Every face can be represented by a scaled version of a typical face that captures most of what is

comm data. **POII**

2. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying

data.

2. Every face can be represented by a scaled version of a typical face that captures most of what i **3.** Mark the true statements.
3. The wavelet bases like checkerboard patterns are data specific that describe the property of underlying data.
3. Every face can be represented by a scaled version of a typical face that ca **1.** The wavelet bases like checkerboard patterns are data specific that describe the property of underlying data.

2. Every face can be represented by a scaled version of a typical face that captures most of what is comm
	- common to all faces (T)
	- largest eigen value.
	-

A detour: The correlation matrix

- For data-holder matrices: the product of a matrix and its transpose
	- Also equal to the sum of the outer products of the columns of the matrix
	- The correlation matrix is symmetric
	- It quantifies the average dependence of individual components of the data on other components

• Consider the effect of multiplying a unit vector by R of multiplying a unit vector
11-755/18-797
11-755/18-797

• Consider the effect of multiplying a unit vector by $\bf R$ of multiplying a unit vector
 $\frac{1}{11-755/18-797}$

- Consider $(\mathbf{x}_i^T \mathbf{v}) \mathbf{x}_i$
- This is the projection of unit vector **v** on \mathbf{x}_i , scaled by the squared length of \mathbf{x}_i

• Consider the effect of multiplying a unit vector by $\bf R$ of multiplying a unit vector
11-755/18-797
11-755/18-797

- Each unit vector is transformed to the sum of cosineweighted squared-length versions of the individual vectors
	- Approximately the sum of the squared-length version of vectors that are close to it in angle

- Each unit vector is transformed to the sum of cosineweighted squared-length versions of the individual vectors
	- Approximately the sum of the squared-length version of vectors that are close to it in angle

- Each unit vector is transformed to the sum of cosineweighted squared-length versions of the individual vectors
	- Approximately the sum of the squared-length version of vectors that are close to it in angle

- |
|
| primed to the sum of cosine-
| versions of the individual vectors
| primed:
| primed: • Each unit vector is transformed to the sum of cosineweighted squared-length versions of the individual vectors
	- Approximately the sum of the squared-length version of vectors that are close to it in angle

- -
	-
	- Their length is proportional to the *square* of the lengths of the data vectors
		- Why?

"Uncorrelated" data

- When the scatter of the data is aligned to the axes, the transformed ellipse is also aligned to the axes |
| f the data is aligned to the
| ed ellipse is also aligned to
| rrelated" | started" | started in the started in t
	- The data are "uncorrelated"

- For "uncentered" data..
	- Note although the vectors near the major axis are shorter, there are more of them, so the ellipse is wider in that direction

Returning to our problem..

The typical face

- Compute the correlation matrix for your data – Arrange them in matrix **X** and compute $R = XX^T$ matrix for your data

12 and compute $\mathbf{R} = \mathbf{XX}^T$

12 and compute $\mathbf{R} = \mathbf{X} \mathbf{X}^T$

12 and compute \mathbf{R}

13 and compute \mathbf{R}

- Compute the *principal* Eigen vector of R
	- The Eigen vector with the largest Eigen value
	- Explains most of the "energy" in the faces
- This is the typical face

The approximation with the first MLSP typical face

- The first typical face models some of the characteristics of the faces
	- Simply by scaling its grey level

• But the approximation has error 11-755/18-797 60

• Can we do better?

The second typical face

- Approximation with only one typical face V_1 has error The second typical face V_1 has error
– Approximating every face as $f = w_0$, V_1 is incomplete
ets add *second* face to explain this error
	- Approximating every face as $f = w_{f1} V_1$ is incomplete
-
- Approximation with only one typical face V_1 has error Approximating every face as $f = w_{f1} V_1$ is incomplete
• Lets add *second* face to explain this error Add a *second* typical face V_1 . Explain each face now $-$ Add a second typical face V_1 . Explain each face now as upproximation with only one typical fa

- Approximating every face as $f = w_{f1} V$

ets add *second* face to explain this er

- Add a *second* typical face V_1 . Explain

- $f = w_{f1} V_1 + w_{f2} V_2$

How do we find this second s $f = w_{f1} V_1$ is incomplete
ain this error
1. Explain each face now as
face?
 $11-755/18-797$
	-
- How do we find this second face?

Solution: Iterate

• Get the "error" faces by subtracting the first-level approximation from the original image

Solution: Iterate

• Get the "error" faces by subtracting the first-level approximation from the original image

Repeat the estimation on the "error" images image

Properties the estimation on the "error" images

Filters and the "error" images

Abstracting the problem: Finding the second typical face

- Each "point" represents an error face in "pixel space"
- Find the vector V_2 such that the projection of these error faces on V_2 results in the least error Pixel 1

s an *error* face in "pixel space"

that the projection of these

s in the least error

• Defining the autocorrelation of the error

$$
\mathbf{R}_e = \frac{1}{N} \sum \mathbf{e} \mathbf{e}^T
$$

$$
L = \frac{1}{N} \sum_{i} \mathbf{e}_{i}^{T} \mathbf{e}_{i} - \mathbf{v}^{T} \mathbf{R}_{e} \mathbf{v} + \lambda (\mathbf{v}^{T} \mathbf{v} - 1)
$$

The same math applies but now to the set of error data points

• Differentiating w.r.t v and equating to 0

$$
-2\mathbf{R}_e \mathbf{v} + 2\lambda \mathbf{v} = 0 \qquad \qquad \mathbf{R}_e \mathbf{v} = \lambda \mathbf{v}
$$

$$
\mathbf{R}_e \mathbf{v} = \lambda \mathbf{v}
$$

The same math applies but now to the set of error data points

• The minimum-error basis is found by solving

$$
\mathbf{R}_e \mathbf{v}_2 = \lambda \mathbf{v}_2
$$

basis is found by solving
 $=\lambda v_2$

The correlation matrix \mathbf{R}_e

e largest eigen value λ of \mathbf{R}_e
 $\sum_{\text{A11-755/18-797}}$ • \mathbf{v}_2 is an Eigen vector of the correlation matrix \mathbf{R}_e The minimum-error basis is found by solving
 $R_e v_2 = \lambda v_2$
 v_2 is an Eigen vector of the correlation matrix R_e

corresponding to the largest eigen value λ of R_e

Which gives us our second typical face

- But approximation with the two faces will still result in error
-
- We can do this by subtracting the appropriately scaled version of the second "typical" face from the error images and repeating the process aces to explain *this* error
ting the appropriately scaled version
te from the error images and
 $\frac{11}{11-755/18-797}$

Solution: Iterate

• Get the secondlevel "error" faces by subtracting the scaled second typical face from the first-level error

Repeat the estimation on the second-level "error" images Repeat the

estimation on the

second-level

"error" images

An interesting property

- Each "typical face" will be orthogonal to all other typical faces
	- Because each of them is learned to explain what the rest could not
	- None of these faces can explain one another! 11-755/18-797 70

To add more faces

- We can continue the process, refining the error each time • We can continue the process, refining
error each time
— An instance of a procedure is called "Gran
Schmidt" orthogonalization
• So what are we really doing?
	- An instance of a procedure is called "Gram-Schmidt" orthogonalization
- $11-755/18-797$
 $11-755/18-797$

A collection of least squares typical faces

- Assumption: There are a set of K "typical" faces that captures most of all faces
- - $\sim V_2$ is used to "correct" errors resulting from using only V_1 . So on average

$$
\left|f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2})\right|^2 < \left\|f - w_{f,1}V_{f,1}\right\|^2
$$

 \sim V₃ corrects errors remaining after correction with V₂

is used to "correct" errors resulting from using only V₁. So on average
\n
$$
||f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2})||^2 < ||f - w_{f,1}V_{f,1}||^2
$$
\ncorrects errors remaining after correction with V₂
\n
$$
||f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2} + w_{f,3}V_{f,3})||^2 < ||f - (w_{f,1}V_{f,1} + w_{f,2}V_{f,2})||^2
$$
\nAs on...
\n= [V₁ V₂ V₃]
\ne V to minimize the squared error
\n*at is V*?

- And so on..
- $V = [V_1 V_2 V_3]$]
- Estimate V to minimize the squared error
	- What is V?

Recall: Basis based representation

• The most important challenge in ML: Find the best set of bases for a given data set \therefore challenge in ML: Find the

r a given data set
 $\frac{11.755/18-797}{73}$

The Energy Compaction Property

- Define "best"?
- The description

 $X = w_1 B_1 + w_2 B_2 + w_3 B_3 + ... + w_N B_N$

- The ideal: $\hat{X}_i \approx w_1 B_1 + w_2 B_2 + ... + w_i B_i$ $v_1 - w_2 - v_2$ $Error_i = \|X - \hat{X}_i\|^2$ $Error_i$ < $Error_{i-1}$
	- If the description is terminated at any point, we should still get most of the information about the data $\begin{aligned} &E}{\textit{error}_i} = \lVert X - X_i \rVert \ &\text{erminated at any point, we should} \ &\text{information about the data} \ &\text{(for any leading subset of bases) should} \ &\text{or the same number of bases} \ &\text{if } \frac{1}{74} \end{aligned}$
		- No other set of bases (for any leading subset of bases) should result in lower Error for the same number of bases

Finding the bases \mathbf{u}_1 u₂ $\mathbf{u_3}$ $\mathbf{v_2}$ v₁ v_2 V_3

• Finding the optimal set of "typical faces" in this example is the problem of finding the optimal basis set for the data **set of "typical faces" in
problem of finding the
r the data
11-755/18-797**

A recollection

 $S = \text{pinv}(N)M$ $U = NS \approx M$

- Finding the best explanation of music M in terms of notes N
- Also finds the score S of M in terms of N

How about the other way?

- Finding the *notes* N given music M and score S
- Also finds best explanation of M in terms of S

Find the four notes and their score that generate the closest approximation to M

The Same Problem

- Here U, V and W are all unknown and must be estimated
- Such that the total squared error between F and U is minimized wn and must be estimated

ror between F and U is minimized
 $\mathcal{L}_{f,K}V_K$
 VW

the number of faces in the set
 $\mathcal{L}_{11-755/18-797}$
- For each face f

$$
- f = w_{f,1}V_1 + w_{f,2}V_2 + \dots + w_{f,K}V_K
$$

- For the collection of faces $F \approx VW$
	- $-$ V is $D \times K$, W is $K \times N$
		- D is the number of pixels, N is the number of faces in the set

Poll 2

• Mark true statements

Some of the "typical faces" will not be orthogonal to all other typical faces • Mark true statements

Some of the "typical faces" will not be orthogonal to all other

typical faces
 $- T$
 $- F$

The typical faces are actually a collection of least squares data-

specific bases
 $- T$

$$
\begin{array}{c}\n-T \\
-F\n\end{array}
$$

specific bases a collection of least squares data-

11-755/18-797

11-755/18-797

$$
\begin{array}{c}\n-T \\
-F\n\end{array}
$$

Poll 2

• Mark true statements

Some of the "typical faces" will not be orthogonal to all other typical faces

 $-$ T – F

• Mark true statements

Some of the "typical faces" will not be orthogonal to all other

typical faces
 $- T$
 $- F$

The typical faces are actually a collection of least squares data-

specific bases
 $- T$ specific bases a collection of least squares data-

11-755/18-797

11-755/18-797

$$
\begin{array}{c}\n-\mathbf{T} \\
\end{array}
$$

Finding the bases

- We just saw an incremental procedure for finding the bases
	- Finding one new basis at a time that explains residual error not explained by previous bases
	- An instance of a procedure is called "Gram-Schmidt" orthogonalization alization

	alization

	1 at once
- We can also do it all at once

- as $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$

nknown and must be determined

thetween U and M is minimum

thetween U and M is minimum

thetarmined
- Here W, V and U are ALL unknown and must be determined
	- Such that the squared error between U and M is minimum

With multiple bases

- Assumption: all bases v_1 v_2 v_3 .. are unit length
- Assumption: all bases are orthogonal to one another: $v_i^T v_i = 0$ if $i := j$
	- 1 ¹ $\frac{1}{7}$
 \frac
	-
	- Constraining them to be orthogonal does not change this
- $V_2 V_3 ...$], $V^T V = I$
	- $-$ Pinv(V) = V^T T_a a strong the strong s
- Projection matrix for $V = VPinv(V) = VV^{T}$

With multiple bases

• Projection for a vector

• Error vector = $\mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{V} \mathbf{V}^T \mathbf{x}$

\n- Projection for a vector
\n- Error vector =
$$
\overline{\mathbf{x} - \hat{\mathbf{x}} = \mathbf{x} - \mathbf{V} \mathbf{V}^T \mathbf{x}}
$$
\n- Error length =
$$
e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}
$$
\n

With multiple bases

- y $V \times$
- Error for one vector:

$$
e(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{V} \mathbf{V}^T \mathbf{x}
$$
\n
$$
\mathbf{r} \mathbf{s}
$$
\n
$$
\sum_{i} \mathbf{x}_i^T \mathbf{V} \mathbf{V}^T \mathbf{x}_i
$$
\n
$$
\sum_{i} \mathbf{x}_i^T \mathbf{V} \mathbf{V}^T \mathbf{x}_i
$$
\n
$$
\text{minimize this error!}
$$
\n
$$
\sum_{11 \text{--}755/18\text{--}797}
$$

• Error for many vectors

$$
E = \sum_i \mathbf{x}_i^T \mathbf{x}_i - \sum_i \mathbf{x}_i^T \mathbf{V} \mathbf{V}^T \mathbf{x}_i
$$

Skipping the 1/N factor as it cancels out

• Goal: Estimate V to minimize this error!

Minimizing Error

• With constraint $V^T V = I$, we get the modified objective

IVINIMIZING Error
\nWith constraint
$$
\mathbf{V}^T \mathbf{V} = \mathbf{I}
$$
, we get the modified
\nobjective
\n
$$
L = \sum_i \mathbf{x}_i^T \mathbf{x}_i - \sum_i \mathbf{x}_i^T \mathbf{V} \mathbf{V}^T \mathbf{x}_i + trace(\Lambda(\mathbf{V}^T \mathbf{V} - \mathbf{I}))
$$
\n
$$
- \Lambda
$$
 is a diagonal Lagrangian matrix
\n
$$
- \text{ Constraints are } \mathbf{v}_i^T \mathbf{v}_i = 1 \text{ and } \mathbf{v}_i^T \mathbf{v}_j = 0 \text{ for } i \neq j
$$

-
- Differentiating w.r.t V and equating to 0

Constraints are
$$
\mathbf{v}_i^T \mathbf{v}_i = 1
$$
 and $\mathbf{v}_i^T \mathbf{v}_j = 0$ for $i \neq j$

\nfferentiating w.r.t **V** and equating to 0

\n
$$
-2\left(\sum_i \mathbf{x}_i \mathbf{x}_i^T\right) \mathbf{V} + 2\mathbf{V}\Lambda = 0 \quad \Rightarrow \quad \mathbf{RV} = \mathbf{V}\Lambda
$$
\n
$$
11\text{-}755/18\text{-}797
$$

Finding the optimal K bases

- **Finding the optimal K bases**
RV = $V\Lambda$
• Compute the Eigendecompsition of the
correlation matrix correlation matrix
- Select *K* Eigen vectors
- But which K?
- Total error =

$$
E = \sum_{i} \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \lambda_j
$$

• Compute the Eigendecompsition of the

correlation matrix

• Select K Eigen vectors

• Total error = $\frac{E = \sum_i \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \lambda_j}{\sum_{i=1}^K \mathbf{x}_i}$

• Select K eigen vectors corresponding to the K

largest Eigen largest Eigen values $\sum_i \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \lambda_j$
prs corresponding to the K
 $\sum_{11\cdot 755/18\cdot 797}$

Eigen Faces!

- Arrange your input data into a matrix X
- Compute the correlation $\mathbf{R} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$
- Solve the Eigen decomposition: $\mathbf{R} \mathbf{V} = \Lambda \mathbf{V}$
- The Eigen vectors corresponding to the K largest eigen values are our optimal bases $R = XX^T$
ition: $RV = AV$
onding to the K largest eigen values
igen faces.
i11-755/18-797
- We will refer to these as eigen faces.

Mark the true statements

1. The singular value decomposition of correlation matrix is evaluated to get eigen faces as the SVD of a symmetric matrix is actually the eigen decomposition. (T)

– T – F

2. The only way we get all the eigen faces is to iterate it one by one. igen faces is to iterate it one by one.
 $\hbox{11-755/18-797} \hskip 2.2cm \hbox{90}$

- T
- F

Mark the true statements

1. The singular value decomposition of correlation matrix is evaluated to get eigen faces as the SVD of a symmetric matrix is actually the eigen decomposition. (T)

 $-$ T – F

2. The only way we get all the eigen faces is to iterate it one by one. igen faces is to iterate it one by one.
 $\hbox{11-755/18-797} \hbox{11-755/18-797} \hbox{12}$

How many Eigen faces

- How to choose "K" (number of Eigen faces)
- Lay all faces side by side in vector form to form a matrix nber of Eigen faces)

in vector form to form a matrix

i. So the matrix is 10000 x 300

is transpose
10000x10000

110000x10000
- Multiply the matrix by its transpose
	- The correlation matrix is 10000x10000

Eigen faces

- Compute the eigen vectors
	- Only 300 of the 10000 eigen values are non-zero
		- Why?
- Retain eigen vectors with high eigen values (>0) **ors
gen values are non-zero
h high eigen values (>0)**
nold
11-755/18-797 ₉₃
	- Could use a higher threshold

- The eigen vector with the highest eigen value is the first typical face
- The vector with the second highest eigen value is the second typical face. nest eigen value is the first typical face
ghest eigen value is the second typical
 $\frac{1}{11-755/18-797}$
- Etc.

Representing a face

• The weights with which the eigen faces must be combined to compose the face are used to represent the face! hich the eigen faces must
npose the face are used to
11-755/18-797

• One outcome of the "energy compaction" principle": the approximations are recognizable

• Approximating a face with one basis: ce with one basis:
 $\begin{array}{ccc}\n & \text{if } 1\text{-}755/18-797 \\
\end{array}$

 $f = w_1 \mathbf{v}_1$

• One outcome of the "energy compaction" principle": the approximations are recognizable

• Approximating a face with one Eigenface: ce with one Eigenface:
11-755/18-797
11-755/18-797

$$
f = w_1 \mathbf{v}_1
$$

• One outcome of the "energy compaction" principle": the approximations are recognizable

• Approximating a face with 10 eigenfaces: $\frac{1}{10}$
 $\frac{1}{10}\mathbf{V}_{10}$
 $\frac{1}{11-755/18-797}$ $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... w_{10} \mathbf{v}_{10}$

• One outcome of the "energy compaction" principle": the approximations are recognizable

• Approximating a face with 30 eigenfaces:

 $1 = W_1 V_1 + W_2 V_2 + ... + W_{10} V_{10} + ... + W_{30} V_{30}$

• One outcome of the "energy compaction" principle": the approximations are recognizable

• Approximating a face with 60 eigenfaces:

 $1 f = W_1 V_1 + W_2 V_2 + ... + W_{10} V_{10} + ... + W_{30} V_{30} + ... + W_{60} V_{60}$

How did I do this?

How did I do this?

• Hint: only changing weights assigned to Eigen faces..

eigenface1 eigenface2

• The Eigenimages (bases) are very specific to the class of data they are trained on Propriet trained on
11-755/18-797
11-755/18-797

– Faces here

• They will not be useful for other classes

• Eigen bases are class specific

• Composing a fishbowl from Eigenfaces wl from Eigenfaces
11-755/18-797
11-755/18-797

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces wl from Eigenfaces $\Gamma = w_1 \mathbf{v}_1$
 Γ _{11-755/18-797}
- With 1 basis

$$
f = w_1 \mathbf{v}_1
$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces wl from Eigenfaces
 w_2 **v**₂ + ... + w_{10} **v**₁₀
 w_1 ₁₀₆
- With 10 bases

$$
f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_{10} \mathbf{v}_{10}
$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 30 bases

mposing a fishbowl from Eigenfaces
ith 30 bases

$$
f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... + w_{10} \mathbf{v}_{10} + ... + w_{30} \mathbf{v}_{30}
$$

• Eigen bases are class specific

- Composing a fishbowl from Eigenfaces
- With 100 bases

wl from Eigenfaces
 ${}_{0}\mathbf{v}_{10} + ... + w_{30}\mathbf{v}_{30} + ... + w_{100}\mathbf{v}_{100}$
 ${}_{11\cdot 755/18\cdot 797}$ $f = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + ... + w_{10} \mathbf{v}_{10} + ... + w_{30} \mathbf{v}_{30} + ... + w_{100} \mathbf{v}_{100}$

Universal bases

• Universal bases..

- End up looking a lot like discrete cosine transforms!!!!
- DCTs are the best "universal" bases – If you don't know what your data are, use the DCT

Mark the true statements

1. We should choose DCT bases to represent the image of **Poll 4**
Mark the true statements
1. We should choose DCT bases to represent the ima
Bhiksha's sword instead of the eigen faces
2. The number of eigen faces you choose is a hyperp
and you can choose it with magic like the

2. The number of eigen faces you choose is a hyperparameter and you can choose it with magic like the birthday of your boyfriend/girlfriend

3. The information of a faces can be recovered for the weight numbers directly before knowing what the eigen faces are. magic like the birthday or your
s can be recovered for the weight
pwing what the eigen faces are.
ss better with eigen faces if we
es.
11-755/18-797

4. Every image can be express better with eigen faces if we increase the number of bases.

Poll 4

Mark the true statements

1. We should choose DCT bases to represent the image of **Poll 4**
Mark the true statements
1. We should choose DCT bases to represent the ima
Bhiksha's sword instead of the eigen faces
2. The number of eigen faces you choose is a hyperpa
and you can choose it with magic like the

2. The number of eigen faces you choose is a hyperparameter and you can choose it with magic like the birthday of your boyfriend/girlfriend

3. The information of a faces can be recovered for the weight numbers directly before knowing what the eigen faces are. magic like the birthday or your
s can be recovered for the weight
pwing what the eigen faces are.
ss better with eigen faces if we
es.
11-755/18-797

4. Every image can be express better with eigen faces if we increase the number of bases.

Relation of Eigen decomposition to SVD

Eigen Decomposition of the Correlation Matrix

$$
\mathbf{X}\mathbf{X}^T = \mathbf{R} = \mathbf{E}\mathbf{D}\mathbf{E}^T
$$

SVD of the Data Matrix

$$
X = USVT
$$

$$
XXT = USVT VSUT = US2UT
$$

$$
\frac{\text{Comparing}}{\text{E}} = U
$$

$$
D = S2
$$

• Eigen decomposition of the correlation matrix gives you left singular vectors of data matrix $D = S^2$

n of the correlation matrix

ar vectors of data matrix
 $11.755/18.797$

Dimensionality Reduction

• $\mathbf{R} = \mathbf{E} \mathbf{D} \mathbf{E}^T$

 $-$ The columns of E are our "Eigen" bases

- We can express any vector X as a combination of these bases
- Using only the "top" K bases – Corresponding to the top K Eigen values $w_D^X E_D + \cdots + w_D^X E_D$
" K bases
ne top K Eigen values
 $\frac{X}{D}E_D + \cdots + w_K^X E_K$
 $\frac{X}{D}E_{D} + \cdots + w_K^X E_K$

Dimensionality Reduction

- Using only the "top" K bases
	- $-$ Corresponding to the top K Eigen values

 $X \approx w_{D}^{X} E_{1} + w_{D}^{X} E_{D} + \cdots + w_{K}^{X} E_{K}$

• In vector form:

$$
X \approx E_{1:K} \mathbf{w}_K^X
$$

$$
\mathbf{w}_K^X = Pinv(E_{1:K})X = E_{1:K}^T X
$$

$$
\mathbf{W}_K^X = E_{1:K}^T \mathbf{X}
$$

- If " E " is agreed upon, knowing W_K^X is sufficient to reconstruct X
- Store only K numbers per vector instead of D without losing too much information $X_K^X = E_{1:K}^T X$

ng W_K^X is sufficient to reconstruct X

r vector instead of D without losing too

n
	- Dimensionality Reduction

Lets give it a name

T

E are the "Eigen Bases"

$$
\mathbf{W}_K^X = \boldsymbol{E}_{1:K}^T \mathbf{X}
$$

- Retaining only the top K weights for every data vector
- Computed by multiplying the data matrix by the transpose of the top K Eigen vectors of R **•** Retaining only the top K weights for every data vector

– Computed by multiplying the data matrix by the transpose

of the top K Eigen vectors of **R**

• This is called the Karhunen Loeve Transform

– **Not PCA!** The data matrix by the transpose
ors of R
nen Loeve Transform
 $\frac{1}{2}$
 $\frac{1}{2$
- - Not PCA!

An audio example

- The spectrogram has 974 vectors of dimension 1025 5 974 vectors of dimension
ix is size 1025 x 1025
nvectors
11-755/18-797
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors

Eigenvalues and Eigenvectors

- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values
	- Most Eigen values are close to zero
		- The corresponding eigenvectors are "unimportant"

Eigenvalues and Eigenvectors

- The vectors in the spectrogram are linear combinations of all 1025 Eigen vectors rogram are linear combinations of all
bw Eigen values contribute very little
s proportional to the square root of the
ffect the composition of the spectrogram
11-755/18-797
118
- The Eigen vectors with low Eigen values contribute very little
	- $-$ The average value of a_i is proportional to the square root of the Eigenvalue
	- Ignoring these will not affect the composition of the spectrogram

- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values projected down to the 25 eigen

eigen values

al weights are shown

the 25 eigen vectors must be added to

s approximation to the spectrogram

11-755/18-797

119
	- Only the 25-dimensional weights are shown
		- The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram

- The same spectrogram constructed from only the 25 Eigen vectors with the highest Eigen values 11-755/18-797
11-755/18-797
11-755/18-797
11-755/18-797
11-^{755/18-797}
	- Looks similar
		- With 100 Eigenvectors, it would be indistinguishable from the original
	- Sounds pretty close
	- But now sufficient to store 25 numbers per vector (instead of 1024)

With only 5 eigenvectors

- The same spectrogram constructed from only the 5 Eigen vectors with the highest Eigen values The constructed from only
with the highest Eigen
and the highest Eigen
and the minimals of the minimals of the minimal samples of the minimals of the minimal samples.
	- Highly recognizable

SVD instead of Eigen

- Do we need to compute a 10000 x 10000 correlation matrix and then perform Eigen analysis? eed to compute a 10000 x 10000 correlation matrix and
form Eigen analysis?
ke a very long time on your laptop
eed to perform "Thin" SVD. Very fast
= 10000 x 300
- The Us corresponding to the "zero" eigen values are not com
	- Will take a very long time on your laptop
- SVD
	- Only need to perform "Thin" SVD. Very fast
		- $\cdot U = 10000 \times 300$
			-
- n your laptop
"
SVD. Very fast
e eigen faces!
b the "zero" eigen values are not computed
 $\begin{array}{l} \text{11-755/18-797} \end{array}$
	- $S = 300 \times 300$
	- $V = 300 \times 300$

Using SVD to compute Eigenbases

$[U, S, V] = SVD(X)$

- U will have the Eigenvectors
- Thin SVD for 100 bases: $[U, S, V] = s\nu ds(X, 100)$ ||**ses:
|xds(X, 100)**
|-
|11-755/18-797
|-
- Much more efficient

Eigen Decomposition of data

- Eigen Decomposition of data
• Nothing magical about faces or sound can
be applied to any data. be applied to any data.
	- Eigen analysis is one of the key components of data compression and representation
	- Represent N-dimensional data by the weights of the K leading Eigen vectors Sionian data by the merghies of

	vectors

	imension of the data from N to K

	edge of Eigen vectors

	11-755/18-797

	124
		- Reduces effective dimension of the data from N to K
		- But requires knowledge of Eigen vectors

What kind of representation?

-
- What kind of representation?
• What we just saw: Karhunen Loeve Expansion
• What you may be familiar with: Principal • What you may be familiar with: Principal Component Analysis

• The two are similar, but not the same!! but not the same!!
intrastance
introduced:
 $11-755/18-797$

Linear vs. Affine

- The model we saw (KLE)
- Approximate every face f as **Linear vs. Affine**
The model we saw (KLE)

- Approximate every face f as

f = $w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$

- Linear combination of bases pproximate every face f as

= $w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$

near combination of bases

u add a constant (PCA)

f = $w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$

fine combination of bases
	-
- If you add a constant (PCA)

ou add a constant (PCA)

\n
$$
f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m
$$
\nffine combination of bases

\n
$$
u_{11-755/18-797}
$$

– Affine combination of bases

Affine expansion

• Estimate

Affine expansion

\nmake

\n
$$
f = m + w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k
$$
\nnot the *energy connection principal leads*

- Using the energy compaction principle leads to the usual incremental estimation rule
	- $-$ m must explain most of the energy
	- Each new basis must explain most of the residual energy eritar estimation rule
st of the energy
t explain most of the residual
11-755/18-797

Estimation with the constant

• Estimate

$$
f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m
$$

- Lets do this incrementally first:
- $f \approx m$
	- For every face
	- the approximation
11-755/18-797
11-755/18-797

Estimation with the constant

- Estimate
	- $f \approx m$
	- for every f!
- Error over all faces $E = \sum_f ||f m||^2$
- in with respect to m , we
ta
 $\frac{1}{11\cdot755/18\cdot797}$ simply get

$$
-m=\frac{1}{N}\sum_{f}f
$$

Estimation the remaining

- Same procedure as before:
	- Remaining "typical faces" must model what the constant m could not
- Subtract the constant from every data point $-\hat{f} = f - m$
- Now apply the model:

 $1+\mathrm{w}_{\mathrm{f},\mathrm{k}}\,\mathrm{V}_{\mathrm{k}}$
is of the "mean-normalized"
ed" data
 11 -755/18-797 data

Estimating the Affine model

$$
f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m
$$

• First estimate the mean m

$$
m = \frac{1}{N} \sum_{f} f
$$

 \bullet m $(f - m)^T$

matrix of the set of f
 $\frac{11-755/18-797}{131}$ data $\hat{f} = f - m$

$$
- \mathbf{C} = \sum_f \hat{f} \hat{f}^T = \sum_f (f - m)(f - m)^T
$$

Estimating the Affine model

$$
f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m
$$

First estimate the mean m \bullet

$$
m = \frac{1}{N} \sum_{f} f
$$

- Compute the covariance matrix $- C = \sum_f (f - m)(f - m)^T$
- Eigen decompose! \bullet

11-755/18-797 132 \bullet the bases V_k

Linear vs. Affine

- The model we saw
	- Approximate every face f as
		-
	-
- **Example 12 Section 2011 V11- We**

The model we saw

 Approximate every face f as
 $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$

 The **Karhunen Loeve Expansion**

 Retains maximum *Energy* for any order k
- If you add a constant
- = $w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k$

ie *Karhunen Loeve Expansion*

tains maximum *Energy* for any order k

u add a constant
 $f = w_{f,1} V_1 + w_{f,2} V_2 + ... + w_{f,k} V_k + m$
 incipal Component Analysis
	- Principal Component Analysis
- Retains maximum **Variance** for any order k 1 $U_2 + ... + w_{f,k} V_k + m$
 nt Analysis
 Analysis
 Ariance for any order k
 $\frac{11.755/18.797}{133}$

How do they relate

• Relationship between correlation matrix and covariance matrix • Relationship between correlation matrix and
 $\textbf{covariance matrix}$
 $\textbf{R} = \textbf{C} + mm^T$

• Karhunen Loeve bases are Eigen vectors of **R**

• PCA bases are Eigen vectors of **C**

 $\mathbf{R} = \mathbf{C} + \mathbf{m}\mathbf{m}^{\mathrm{T}}$

-
- PCA bases are Eigen vectors of C 1 vectors of C

1 vectors of C

11-755/18-797
- How do they relate

– Not easy to say..

The Eigen vectors

• The Eigen vectors of C are the major axes of the ellipsoid Cv , where v are the vectors on the unit sphere t C are the major axes of
ere **v** are the vectors on
 $\frac{1}{11-755/18-797}$

- The Eigen vectors of *are the major axes of* the ellipsoid $Cv + mm^T v$ v t *R* are the major axes of
 nm^T **v**

rank 1 and mm^T **v** is a line
 $1355/18-797$
- Note that $mm⁷$ has rank 1 and $mm⁷v$ is a line

• The principal Eigenvector of R lies between the principal Eigen vector of C and m Les between the principal Eigen vector of **C**
 $\frac{1-\alpha}{\|\mathbf{m}\|}$ $0 \le \alpha \le 1$

we
 $\mathbb{E}[(1-\alpha)||\mathbf{m}||^2]$

dable to the other Eigenvectors, however

$$
\mathbf{e}_R = \alpha \mathbf{e}_C + (1 - \alpha) \frac{\mathbf{m}}{\|\mathbf{m}\|} \qquad \qquad 0 \le \alpha \le 1
$$

$$
0 \leq \alpha \leq 1
$$

$$
\lambda_R = \alpha \lambda_C + (1 - \alpha) ||\mathbf{m}||^2
$$

• Similar logic is not easily extendable to the other Eigenvectors, however

- Turns out: Eigenvectors of the correlation matrix represent the major and minor axes of an ellipse centered at the origin which encloses the data most compactly ne *correlation* matrix represent the
ellipse centered at the origin which
pactly
covers these vectors
 $\frac{111-755/18-797}{138}$
- The SVD of data matrix X uncovers these vectors
	- KLT

- Turns out: Eigenvectors of the *covariance* represent the major and minor axes of an ellipse centered at the *mean* which encloses the data most compactly ne *covariance* represent the major and
ered at the *mean* which encloses the
ers to *PCA* faces, and not KLT faces
11-755/18-797
- PCA uncovers these vectors
- In practice, "Eigen faces" refers to PCA faces, and not KLT faces

What about sound?

• Finding Eigen bases for speech signals:

- Look like DFT/DCT
- Or wavelets

• DFTs are pretty good most of the time

Eigen Analysis

- Can often find surprising features in your data
- Trends, relationships, more
- Commonly used in recommender systems
- An interesting example.. 11-755/18-797 141

Eigen Analysis

Figure1. Experiment setup @Wean Hall mechanical processing.

Figure 2. Damage detection results compared with conventional methods. Top: Ground truth of whether
the pipe is damaged or not. Middle: Conventional
method only captures temperature variations, and
shows no indication of the presence of damage.
Bottom: The SVD method cle

- Cheng Liu's research on pipes..
- SVD automatically separates useful and uninformative features