
Machine Learning for Signal
Processing
ADABOOST

And an application to detecting faces
(& other objects) in images

Bhiksha Raj

11755/18979 1

Last Lecture: How to describe a face

• A “typical face” that captures the essence of
“facehood”..

• The principal Eigen face..

11755/18979 2

The typical face

A collection of least squares typical faces

• Extension: Many Eigenfaces
• Approximate every face f as f = wf,1 V1+ wf,2 V2 +.. + wf,k Vk

– V2 is used to “correct” errors resulting from using only V1

– V3 corrects errors remaining after correction with V2

– And so on..

• V = [V1 V2 V3] can be computed through Eigen analysis

11755/18979 3

Detecting Faces in Images

11755/18979 4

Detecting Faces in Images

• Finding face like patterns
– How do we find if a picture has faces in it
– Where are the faces?

• A simple solution:
– Define a “typical face”
– Find the “typical face” in the image

11755/18979 5

Given an image and a ‘typical’ face
how do I find the faces?

11755/18979 6

+

100×100

400×200
(RGB)

+

Finding faces in an image

• Picture is larger than the “typical face”
– E.g. typical face is 100x100, picture is 600x800

• First convert to greyscale
– R + G + B
– Not very useful to work in color

11755/18979 7

Finding faces in an image

• Goal .. To find out if and where images that
look like the “typical” face occur in the picture

11755/18979 8

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 9

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 10

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 11

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 12

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 13

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 14

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 15

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 16

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 17

Finding faces in an image

• Try to “match” the typical face to each location in
the picture

• The “typical face” will explain some spots on the
image much better than others
– These are the spots at which we probably have a face!

11755/18979 18

How to “match”

• What exactly is the “match”
– What is the match “score”

11755/18979 19

How to “match”

• What exactly is the “match”
– What is the match “score”

• The DOT Product
– Express the typical face as a vector
– Express the region of the image being evaluated as a vector
– Compute the dot product of the typical face vector and the “region”

vector

11755/18979 20

What do we get

• The right panel shows the dot product at
various locations
– Redder is higher

• The locations of peaks indicate locations of faces!

11755/18979 21

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 22

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 23

Poll 1

Q1. For a normalized typical face, the scanning method of face detection described
just now is checking the length of the projection on the typical face of every same-
sized patch in the image.

1. True
2. False

Q2. False positives occur since the dot product of a patch that looks nothing like a face
with the typical face can be large.

1. True
2. False

11755/18979 24

Poll 1

Q1. For a normalized typical face, the scanning method of face detection described
just now is checking the length of the projection on the typical face of every same-
sized patch in the image.

1. True
2. False

Q2. False positives occur since the dot product of a patch that looks nothing like a face
with the typical face can be large.

1. True
2. False

11755/18979 25

Sliding windows solves only the
issue of location – what about

scale?

11755/18979 26

• Not all faces are the same size
• Some people have bigger faces
• The size of the face on the image

changes with perspective
• Our “typical face” only represents

one of these sizes

Scale-Space Pyramid

11755/18979 27

Scale the image
(but keep your typical
face template fixed)

Location – Scale – What about Rotation?

• The head need not
always be upright!

• Our typical face
image was upright

11755/18979 29

Solution

• Create many “typical faces”
– One for each scaling factor
– One for each rotation

• How will we do this?
• Match them all

• Does this work
– Kind of .. Not well enough at all
– We need more sophisticated models

11755/18979 30

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

• The Viola Jones method
– Boosted cascaded classifiers

11755/18979 31

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

• The Viola Jones method (45K+ Citations!)
– Boosted cascaded classifiers

11755/18979 32

And even before that – what is classification?

• Given “features” describing an entity, determine the
category it belongs to
– Walks on two legs, has no hair. Is this

• A Chimpanizee
• A Human

– Has long hair, is 5’6” tall, is this
• A man
• A woman

– Matches “eye” pattern with score 0.5, “mouth pattern” with
score 0.25, “nose” pattern with score 0.1. Are we looking at

• A face
• Not a face?

11755/18979 33

Classification
• Multi-class classification

– Many possible categories
• E.g. Sounds “AH, IY, UW, EY..”
• E.g. Images “Tree, dog, house, person..”

• Binary classification
– Only two categories

• Man vs. Woman
• Face vs. not a face…

11755/18979 34

Negative Classes (Not an X)

9/17/2023 11755/18979 35

Which of these IS NOT a Person/Pedestrian?

Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.

11755/18979 36

Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.
• Binary Classification as Detection: Find the

correct label X or not-X

11755/18979 37

Face Detection as Classification

• Faces can be many sizes
• They can happen anywhere in the image
• For each face size

– For each location
• Classify a rectangular region of the face size, at that location, as a face or

not a face

• This is a series of binary classification problems

11755/18979 38

For each square, run a
classifier to find out if it
is a face or not

Binary classification

• Classification can be abstracted as follows
• H: X (+1,-1)
• A function H that takes as input some X and outputs a +1 or -1

– X is the set of “features”
– +1/-1 represent the two classes

• Many mechanisms (may types of “H”)
– Any many ways of characterizing “X”

• We’ll look at a specific method based on voting with simple rules
– A “META” method

11755/18979 39

Introduction to Boosting
• An ensemble method that sequentially combines many simple

BINARY classifiers to construct a final complex classifier
– Simple classifiers are often called “weak” learners
– The complex classifiers are called “strong” learners

• Restrictions for weak learners
– Better than 50% correct

• Final classifier is a combination of the decisions of the weak
classifiers

– That somehow results in better classification that what is obtained with
a single classifier

11755/18979 40

11-755 MLSP: Bhiksha Raj

Formalizing the Boosting
Concept

• Given a set of instances (x1, y1), (x2, y2),… (xN, yN)
– xi is the set of attributes of the ith instance
– y1 is the class for the ith instance

• y1 can be +1 or -1 (binary classification only)

• Given a set of classifiers h1, h2, … , hT

– hi classifies an instance with attributes x as hi(x)
– hi(x) is either -1 or +1 (for a binary classifier)

– y*h(x) is 1 for all correctly classified points and -1 for incorrectly classified
points

• Devise a function f (h1(x), h2(x),…, hT(x)) such that classification based on f ()
is superior to classification by any hi(x)

– The function is succinctly represented as f (x)

11-755 MLSP: Bhiksha Raj

The Boosting Concept
• A simple combiner function: Voting

– f (x) = Si hi(x)
– Classifier H(x) = sign(f (x)) = sign(Si hi(x))
– Simple majority classifier

• A simple voting scheme

• A better combiner function: Boosting
– f (x) = Si ai hi(x)

• Can be any real number
– Classifier H(x) = sign(f (x)) = sign(Si ai hi(x))
– A weighted majority classifier

• The weight ai for any hi(x) is a measure of our trust in hi(x)

Boosting: A very simple idea
• One can come up with many rules to classify

– E.g. Chimpanzee vs. Human classifier:
– If arms == long, entity is chimpanzee
– If height > 5’6” entity is human
– If lives in house == entity is human
– If lives in zoo == entity is chimpanzee

• Each of them is a reasonable rule, but makes many mistakes
– Each rule has an intrinsic error rate

• Combine the predictions of these rules
– But not equally
– Rules that are less accurate should be given lesser weight

11755/18979 43

Boosting and the Chimpanzee Problem

• The total confidence in all classifiers that classify the entity as a
chimpanzee is

• The total confidence in all classifiers that classify it as a human is

• If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee
is greater than the belief that we have a human

11755/18979 44

chimpanzeefavorsclassifier

chimpScore

classifiera

humanfavorsclassifier

humanScore

classifiera

Arm length?
aarmlength

Height?
aheight

Lives in house?
ahouse

Lives in zoo?
azoo

human human chimp chimp

Boosting as defined by Freund
• A gambler wants to write a program to predict winning horses. His program

must encode the expertise of his brilliant winner friend

• The friend has no single, encodable algorithm. Instead he has many rules of
thumb

– He uses a different rule of thumb for each set of races
• E.g. “in this set, go with races that have black horses with stars on their

foreheads”

– But cannot really enumerate what rules of thumbs go with what
sets of races: he simply “knows” when he encounters a set

• A common problem that faces us in many situations

• Problem:

– How best to combine all of the friend’s rules of thumb
– What is the best set of races to present to the friend, to extract

the various rules of thumb

9/17/2023 11755/18979 45

Boosting

• The basic idea: Can a “weak” learning algorithm
that performs just slightly better than a random
guess be boosted into an arbitrarily accurate
“strong” learner

• This is a “meta” algorithm, that poses no
constraints on the form of the weak learners
themselves

11755/18979 46

Boosting: A Voting Perspective

• Boosting is a form of voting
– Let a number of different classifiers classify the data
– Go with the majority
– Intuition says that as the number of classifiers increases,

the dependability of the majority vote increases
• Boosting by majority

• Boosting by weighted majority
– A (weighted) majority vote taken over all the classifiers
– How do we compute weights for the classifiers?
– How do we actually train the classifiers

11755/18979 47

ADA Boost

• Challenge: how to optimize the classifiers and
their weights?
– Trivial solution: Train all classifiers independently
– Optimal: Each classifier focuses on what others missed
– But joint optimization becomes impossible

• Adaptive Boosting: Greedy incremental
optimization of classifiers
– Keep adding classifiers incrementally, to fix what

others missed

11755/18979 48

AdaBoost

11755/18979 50

ILLUSTRATIVE
EXAMPLE

AdaBoost

11755/18979 51

First WEAK Learner

AdaBoost

11755/18979 52

The First Weak
Learner makes
Errors

AdaBoost

11755/18979 53

Reweighted data

AdaBoost

11755/18979 54

SECOND Weak Learner

FOCUSES ON DATA
“MISSED” BY FIRST
LEARNER

AdaBoost

11755/18979 55
SECOND STRONG Learner Combines both Weak Learners

AdaBoost

11755/18979 56
RETURNING TO THE SECOND WEAK LEARNER

AdaBoost

11755/18979 57

The SECOND Weak
Learner makes
Errors

AdaBoost

11755/18979 58

Reweighting data

AdaBoost

11755/18979 59

FOCUSES ON DATA
“MISSED” BY FIRST
AND SECOND
LEARNERs

THIRD Weak
Learner

AdaBoost

11755/18979 60

THIRD STRONG
Learner

Boosting: An Example

• Red dots represent training data from Red class
• Blue dots represent training data from Blue class

11755/18979 61

• The final strong learner has learnt a complicated decision
boundary

11755/18979 62

Boosting: An Example

• The final strong learner has learnt a complicated decision boundary

• Decision boundaries in areas with low density of training
points assumed inconsequential

11755/18979 63

Boosting: An Example

Overall Learning Pattern

11755/18979 64

 Strong learner increasingly accurate with increasing
number of weak learners

 Residual errors increasingly difficult to correct
‒ Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

number of weak learners

Overfitting

11755/18979 65

Note: Can continue to add weak learners
EVEN after strong learner error goes to 0!
 Shown to IMPROVE generalization!

Error of nth weak learner

Error of nth strong learner

number of weak learners

This may go to 0

AdaBoost: Summary

11755/18979 66

• No relation to Ada Lovelace
• Adaptive Boosting
• Adaptively Selects Weak Learners
• ~17.5K citations of just one paper by Freund

and Schapire

Poll 2

Q1. Select the True statements

1. AdaBoost allows for the use of several simple, weak classifiers to build a strong
classifier that is a weighted majority vote of the weak classifier.

2. AdaBoost is very prone to overfitting.
3. AdaBoost is a greedy algorithm.

4. AdaBoost trains all classifiers independently

11755/18979 67

Poll 2

Q1. Select the True statements

1. AdaBoost allows for the use of several simple, weak classifiers to build a strong
classifier that is a weighted majority vote of the weak classifier.

2. AdaBoost is very prone to overfitting.
3. AdaBoost is a greedy algorithm.

4. AdaBoost trains all classifiers independently

11755/18979 68

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 69

First, some example data

• Face detection with multiple Eigen faces
• Step 0: Derived top 2 Eigen faces from Eigen face training data
• Step 1: On a (different) set of examples, express each image

as a linear combination of Eigen faces
– Examples include both faces and non faces
– Even the non-face images are explained in terms of the Eigen faces

11755/18979 70

E1

E2

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Image = a*E1 + b*E2 a = Image.E1

Training Data

11755/18979 71

ClassE2.E1ID

+1-0.60.3A

+1-0.50.5B

+1-0.10.7C

+1-0.40.6D

-10.40.2E

-1-0.1-0.8F

-1-0.90.4G

-10.50.2H

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Face = +1
Non-face = -1

A
B
C
D

D
E
F
G

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 72

Initialize D1(xi) = 1/N

11755/18979 73

Training Data

11755/18979 74

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln (et /(1 – et))
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

The ADABoost Algorithm

11755/18979 75

The E1 “Stump”

11755/18979 76

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

threshold

The E1 “Stump”

11755/18979 77

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

threshold

The E1 “Stump”

11755/18979 78

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

threshold

The E1 “Stump”

11755/18979 79

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

threshold

11755/18979 80

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”

Sign = +1, error = 3/8
Sign = -1, error = 5/8

11755/18979 81

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”

11755/18979 82

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”

11755/18979 83

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”

11755/18979 84

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”

11755/18979 85

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”

The Best E1 “Stump”

11755/18979 86

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E2“Stump”

11755/18979 87

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

Note order

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The Best E2“Stump”

11755/18979 88

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

threshold

G A B D C F E H

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The Best “Stump”

11755/18979 89

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E1

If (wt(E1) > 0.45) Face
Sign = +1, error = 1/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The Best “Stump”

11755/18979 90

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln (et /(1 – et))
– For i = 1… N
–

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979
91

The Best “Stump”

11755/18979 92

The Best Error

11755/18979 93

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances

Sign = +1, error = 1/8

threshold

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 94

Poll 3

• The classifier weight assigns 0 weight to a perfectly random
classifier (T/F)
– T
– F

• We assign infinite weight for a perfectly correct classifier (T/F)
– T
– F

• We assign 0 weight for a classifier that is always wrong (T/F)
– T
– F (We assign weight)

11755/18979 95

Poll 3

• The classifier weight assigns 0 weight to a perfectly random
classifier (T/F)
– T
– F

• We assign infinite weight for a perfectly correct classifier (T/F)
– T
– F

• We assign 0 weight for a classifier that is always wrong (T/F)
– T
– F (We assign weight)

11755/18979 96

Computing Alpha

11755/18979 97

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

The Boosted Classifier Thus Far

11755/18979 98

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 99

The Best Error

11755/18979 100

WeightWeightClassE2.E1ID

0.331/8 * 2.63+1-0.60.3A

0.051/8 * 0.38+1-0.50.5B

0.051/8 * 0.38+1-0.10.7C

0.051/8 * 0.38+1-0.40.6D

0.051/8 * 0.38-10.40.2E

0.051/8 * 0.38-10.1-0.8F

0.051/8 * 0.38-1-0.90.4G

0.051/8 * 0.38-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Dt+1(xi) = Dt(xi) exp(- at yi ht (xi))

exp(at) = exp(0.97) = 2.63
exp(-at) = exp(-0.97) = 0.38

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

AdaBoost

11755/18979 101

AdaBoost

11755/18979 102

Poll 4

• If the classifier is perfectly random, we do not change the weights of the
instances (T/F)
– T
– F

• If the classifier is perfectly correct, we scale down the importance of
correctly classified instances to 0 (T/F)
– T
– F

• For a (nearly) perfect classifier we scale down the importance of
incorrectly classified instances to 0
– T
– F (We scale them up to infinity – they are inifintely hard to fix)

11755/18979 103

Poll 4

• If the classifier is perfectly random, we do not change the weights of the
instances (T/F)
– T
– F

• If the classifier is perfectly correct, we scale down the importance of
correctly classified instances to 0 (T/F)
– T
– F

• For a (nearly) perfect classifier we scale down the importance of
incorrectly classified instances to 0
– T
– F (We scale them up to infinity – they are inifintely hard to fix)

11755/18979 104

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 105

The Best Error

11755/18979 106

WeightWeightWeightClassE2.E1ID

0.480.331/8 * 2.63+1-0.60.3A

0.0740.051/8 * 0.38+1-0.50.5B

0.0740.051/8 * 0.38+1-0.10.7C

0.0740.051/8 * 0.38+1-0.40.6D

0.0740.051/8 * 0.38-10.40.2E

0.0740.051/8 * 0.38-10.1-0.8F

0.0740.051/8 * 0.38-1-0.90.4G

0.0740.051/8 * 0.38-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The Best Error

11755/18979 107

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set at = ½ ln (et /(1 – et))
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 108

E1 classifier

11755/18979 109

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .48 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778

E1 classifier

11755/18979 110

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

.48 .074

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

The Best E1 classifier

11755/18979 111

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.074

.48 .074

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

The Best E2 classifier

11755/18979 112

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

.074 .48 .074 .074 .074 .074 .074 .074

threshold

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = +1 or -1

Sign = -1, error = 0.148

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

The Best Classifier

11755/18979 113

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (wt(E1) > 0.45) face = true

Sign = +1, error = 0.074

.48 .074

Alpha = 0.5ln((1-0.074) / 0.074)
= 1.26

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

The Boosted Classifier Thus Far

11755/18979 114

h1(X) = wt(E1) > 0.45 ? +1 : -1

h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

Reweighting the Data

11755/18979 115

WeightClassE2.E1ID

0.320.48*0.28+1-0.60.3A

0.050.074*0.28+1-0.50.5B

0.050.074*0.28+1-0.10.7C

0.050.074*0.28+1-0.40.6D

0.050.074*0.28-10.40.2E

0.050.074*0.28-10.1-0.8F

0.380.074*3.5-1-0.90.4G

0.050.074*0.28-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

RENORMALIZE

Reweighting the Data

11755/18979 116

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

RENORMALIZE

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER
IS NOW SUDDENLY HIGH

WeightClassE2.E1ID

0.320.48*0.28+1-0.60.3A

0.050.074*0.28+1-0.50.5B

0.050.074*0.28+1-0.10.7C

0.050.074*0.28+1-0.40.6D

0.050.074*0.28-10.40.2E

0.050.074*0.28-10.1-0.8F

0.380.074*3.5-1-0.90.4G

0.050.074*0.28-10.50.2H

AdaBoost
• In this example both of our first two classifiers were

based on E1
– Additional classifiers may switch to E2

• In general, the reweighting of the data will result in a
different feature being picked for each classifier

• This also automatically gives us a feature selection
strategy
– In this data the wt(E1) is the most important feature

11755/18979 117

AdaBoost
• NOT required to go with the best classifier so far
• For instance, for our second classifier, we might use the

best E2 classifier, even though its worse than the E1
classifier
– So long as its right more than 50% of the time

• We can continue to add classifiers even after we get 100%
classification of the training data
– Because the weights of the data keep changing
– Adding new classifiers beyond this point is often a good

thing to do

11755/18979 118

ADA Boost

• The final classifier is
– H(x) = sign(St at ht(x))

• The output is 1 if the total weight of all weak learners
that classify x as 1 is greater than the total weight of all
weak learners that classify it as -1

11755/18979 119

E1 E2

= 0.4 E1 - 0.4 E2

Boosting and Face Detection

• Boosting is the basis of one of the most
popular methods for face detection: The
Viola-Jones algorithm
– Current methods use other classifiers like CNNs,

SVMs, but adaboost classifiers remain easy to
implement and popular

– OpenCV implements Viola Jones..

• Next class…
11755/18979 120

