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Last Lecture: How to describe a face

• A “typical face” that captures the essence of 
“facehood”..

• The principal Eigen face..
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The typical face



A collection of least squares typical faces

• Extension:  Many Eigenfaces
• Approximate every face f as f  = wf,1 V1+ wf,2 V2 +.. + wf,k Vk

– V2 is used to “correct” errors resulting from using only V1

– V3 corrects errors remaining after correction with V2

– And so on..

• V = [V1 V2 V3] can be computed through Eigen analysis
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Detecting Faces in Images

11755/18979 4



Detecting Faces in Images

• Finding face like patterns
– How do we find if a picture has faces in it
– Where are the faces?

• A simple solution:
– Define a “typical face”
– Find the “typical face” in the image
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Given an image and a ‘typical’ face
how do I find the faces?
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Finding faces in an image

• Picture is larger than the “typical face”
– E.g. typical face is 100x100, picture is 600x800

• First convert to greyscale
– R + G + B
– Not very useful to work in color
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Finding faces in an image

• Goal .. To find out if and where images that 
look like the “typical” face occur in the picture
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Finding faces in an image

• Try to “match” the typical face to each 
location in the picture
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Finding faces in an image

• Try to “match” the typical face to each 
location in the picture

11755/18979 17



Finding faces in an image

• Try to “match” the typical face to each location in 
the picture

• The “typical face” will explain some spots on the 
image much better than others
– These are the spots at which we probably have a face!
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How to “match”

• What exactly is the “match”
– What is the match “score”
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How to “match”

• What exactly is the “match”
– What is the match “score”

• The DOT Product
– Express the typical face as a vector
– Express the region of the image being evaluated as a vector
– Compute the dot product of the typical face vector and the “region” 

vector
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What do we get

• The right panel shows the dot product at 
various locations
– Redder is higher

• The locations of peaks indicate locations of faces!
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What do we get

• The right panel shows the dot product at various 
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm
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Poll 1

Q1. For a normalized typical face, the scanning method of face detection described 
just now is checking the length of the projection on the typical face of every same-
sized patch in the image.

1. True
2. False

Q2. False positives occur since the dot product of a patch that looks nothing like a face 
with the typical face can be large.

1. True
2. False
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Sliding windows solves only the 
issue of location – what about 

scale?
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• Not all faces are the same size
• Some people have bigger faces
• The size of the face on the image 

changes with perspective
• Our “typical face” only represents 

one of these sizes



Scale-Space Pyramid
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Scale the image
(but keep your typical
face template fixed)



Location – Scale – What about Rotation?

• The head need not 
always be upright!

• Our typical face 
image was upright
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Solution

• Create many “typical faces”
– One for each scaling factor
– One for each rotation

• How will we do this?
• Match them all

• Does this work
– Kind of .. Not well enough at all
– We need more sophisticated models
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Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex 

neural networks..

• The Viola Jones method
– Boosted cascaded classifiers
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Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex 

neural networks..

• The Viola Jones method (45K+ Citations!)
– Boosted cascaded classifiers
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And even before that – what is classification?

• Given “features” describing an entity, determine the 
category it belongs to
– Walks on two legs, has no hair. Is this

• A Chimpanizee
• A Human

– Has long hair, is 5’6” tall, is this
• A man
• A woman

– Matches “eye” pattern with score 0.5, “mouth pattern” with 
score 0.25, “nose” pattern with score 0.1. Are we looking at

• A face
• Not a face?
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Classification
• Multi-class classification

– Many possible categories
• E.g. Sounds “AH, IY, UW, EY..”
• E.g. Images “Tree, dog, house, person..”

• Binary classification
– Only two categories

• Man vs. Woman
• Face vs. not a face…
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Negative Classes (Not an X)
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Which of these IS NOT a Person/Pedestrian?



Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.
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Detection vs Classification

• Detection: Find an X
• Classification: Find the correct label X,Y,Z etc.
• Binary Classification as Detection: Find the 

correct label X or not-X
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Face Detection as Classification

• Faces can be many sizes
• They can happen anywhere in the image
• For each face size

– For each location
• Classify a rectangular region of the face size, at that location, as a face or 

not a face

• This is a series of binary classification problems
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For each square, run a
classifier to find out if it
is a face or not



Binary classification

• Classification can be abstracted as follows
• H:  X   (+1,-1) 
• A function H that takes as input some X and outputs a +1 or -1

– X is the set of “features”
– +1/-1 represent the two classes

• Many mechanisms (may types of “H”)
– Any many ways of characterizing “X”

• We’ll look at a specific method based on voting with simple rules
– A “META” method
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Introduction to Boosting
• An ensemble method that sequentially combines many simple 

BINARY classifiers to construct a final complex classifier
– Simple classifiers are often called “weak” learners
– The complex classifiers are called “strong” learners

• Restrictions for weak learners
– Better than 50% correct

• Final classifier is a combination of the decisions of the weak 
classifiers

– That somehow results in better classification that what is obtained with 
a single classifier
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11-755 MLSP: Bhiksha Raj

Formalizing the Boosting 
Concept

• Given a set of instances (x1, y1), (x2, y2),… (xN, yN)
– xi is the set of attributes of the ith instance
– y1 is the class for the ith instance

• y1 can be +1 or -1  (binary classification only)

• Given a set of classifiers h1, h2, … , hT

– hi classifies an instance with attributes x as hi(x)
– hi(x) is either -1 or +1 (for a binary classifier)

– y*h(x) is 1 for all correctly classified points and -1 for incorrectly classified 
points

• Devise a function f (h1(x), h2(x),…, hT(x)) such that classification based on f () 
is superior to classification by any hi(x)

– The function is succinctly represented as f (x)
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The Boosting Concept
• A simple combiner function: Voting

– f (x) = Si hi(x)
– Classifier H(x) = sign(f (x)) = sign(Si hi(x))
– Simple majority classifier

• A simple voting scheme

• A better combiner function: Boosting
– f (x) = Si ai hi(x)

• Can be any real number
– Classifier H(x) = sign(f (x)) = sign(Si ai hi(x))
– A weighted majority classifier

• The weight ai for any hi(x) is  a measure of our trust in hi(x)



Boosting: A very simple idea
• One can come up with many rules to classify

– E.g. Chimpanzee vs. Human classifier:
– If arms == long, entity is chimpanzee
– If height > 5’6” entity is human
– If lives in house == entity is human
– If lives in zoo == entity is chimpanzee

• Each of them is a reasonable rule, but makes many mistakes
– Each rule has an intrinsic error rate

• Combine the predictions of these rules
– But not equally
– Rules that are less accurate should be given lesser weight
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Boosting and the Chimpanzee Problem

• The total confidence in all classifiers that classify the entity as a 
chimpanzee is

• The total confidence in all classifiers that classify it as a human is 

• If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee 
is greater than the belief that we have a human
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chimpanzeefavorsclassifier

chimpScore
   

classifiera


humanfavorsclassifier

humanScore
   

classifiera

Arm length?
aarmlength

Height?
aheight

Lives in house?
ahouse

Lives in zoo?
azoo

human human chimp chimp



Boosting as defined by Freund
• A gambler wants to write a program to predict winning horses. His program 

must encode the expertise of his brilliant winner friend

• The friend has no single, encodable algorithm. Instead he has many rules of 
thumb

– He uses a different rule of thumb for each set of races
• E.g. “in this set, go with races that have black horses with stars on their 

foreheads”

– But cannot really enumerate what rules of thumbs go with what 
sets of races: he simply “knows” when he encounters  a set

• A common problem that faces us in many situations

• Problem:

– How best to combine all of the friend’s rules of thumb
– What is the best set of races to present to the friend, to extract 

the various rules of thumb
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Boosting

• The basic idea: Can a “weak” learning algorithm 
that performs just slightly better than a random 
guess be boosted into an arbitrarily accurate 
“strong” learner

• This is  a “meta” algorithm, that poses no 
constraints on the form of the weak learners 
themselves
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Boosting: A Voting Perspective

• Boosting is a form of voting
– Let a number of different classifiers classify the data
– Go with the majority
– Intuition says that as the number of classifiers increases, 

the dependability of the majority vote increases
• Boosting by majority

• Boosting by weighted majority
– A (weighted) majority vote taken over all the classifiers
– How do we compute weights for the classifiers?
– How do we actually train the classifiers
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ADA Boost

• Challenge: how to optimize the classifiers and 
their weights?
– Trivial solution: Train all classifiers independently
– Optimal: Each classifier focuses on what others missed
– But joint optimization becomes impossible

• Adaptive Boosting:  Greedy incremental 
optimization of classifiers
– Keep adding classifiers incrementally, to fix what 

others missed
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AdaBoost
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ILLUSTRATIVE 
EXAMPLE



AdaBoost
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First WEAK Learner



AdaBoost
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The First Weak
Learner makes
Errors



AdaBoost
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Reweighted data



AdaBoost
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SECOND Weak Learner

FOCUSES ON DATA
“MISSED” BY FIRST
LEARNER



AdaBoost
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SECOND STRONG Learner Combines both Weak Learners



AdaBoost
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RETURNING TO THE SECOND WEAK LEARNER



AdaBoost
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The SECOND Weak
Learner makes
Errors



AdaBoost
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Reweighting data



AdaBoost
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FOCUSES ON DATA
“MISSED” BY FIRST
AND SECOND
LEARNERs

THIRD Weak
Learner



AdaBoost
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THIRD STRONG
Learner



Boosting: An Example

• Red dots represent training data from Red class
• Blue dots represent training data from Blue class
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• The final strong learner has learnt a complicated decision 
boundary
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Boosting: An Example



• The final strong learner has learnt a complicated decision boundary

• Decision boundaries in areas with low density of training 
points assumed inconsequential
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Boosting: An Example



Overall Learning Pattern
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 Strong learner increasingly accurate with increasing 
number of weak learners

 Residual errors increasingly difficult to correct
‒ Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

number of weak learners



Overfitting
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Note: Can continue to add weak learners 
EVEN after strong learner error goes to 0!
 Shown to IMPROVE generalization!

Error of nth weak learner

Error of nth strong learner

number of weak learners

This may go to 0



AdaBoost: Summary
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• No relation to Ada Lovelace
• Adaptive Boosting
• Adaptively Selects Weak Learners
• ~17.5K citations of just one paper by Freund 

and Schapire



Poll 2

Q1. Select the True statements

1. AdaBoost allows for the use of several simple, weak classifiers to build a strong 
classifier that is a weighted majority vote of the weak classifier.

2. AdaBoost is very prone to overfitting.
3. AdaBoost is a greedy algorithm.

4. AdaBoost trains all classifiers independently
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The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N 

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 69



First, some example data

• Face detection with multiple Eigen faces
• Step 0: Derived top 2 Eigen faces from Eigen face training data
• Step 1: On a (different) set of examples, express each image 

as a linear combination of Eigen faces
– Examples include both faces and non faces
– Even the non-face images are explained in terms of the Eigen faces
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E1

E2

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Image = a*E1 + b*E2  a = Image.E1



Training Data
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ClassE2.E1ID

+1-0.60.3A

+1-0.50.5B

+1-0.10.7C

+1-0.40.6D

-10.40.2E

-1-0.1-0.8F

-1-0.90.4G

-10.50.2H

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Face = +1
Non-face = -1

A
B
C
D

D
E
F
G



The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N 

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))
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Initialize D1(xi) = 1/N
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Training Data
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WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2



• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln (et /(1 – et))
– For i = 1… N 

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

The ADABoost Algorithm
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The E1 “Stump”
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

threshold
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1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

The E1 “Stump”



The Best E1 “Stump”
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H



The E2“Stump”
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-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if ( sign*wt(E2) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

Note order

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H



The Best E2“Stump”
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-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if ( sign*wt(E2) > thresh) > 0) 

face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

threshold

G A B D C F E H

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H



The Best “Stump”
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E1

If (wt(E1) > 0.45)  Face
Sign = +1, error = 1/8

threshold

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H



The Best “Stump”
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The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln (et /(1 – et))
– For i = 1… N   
–

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979
91



The Best “Stump”
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The Best Error
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances

Sign = +1, error = 1/8

threshold

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H



The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N 

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 94



Poll 3

• The classifier weight assigns 0 weight to a perfectly random 
classifier (T/F)
– T
– F

• We assign infinite weight for a perfectly correct classifier (T/F)
– T
– F

• We assign 0 weight for a classifier that is always wrong (T/F)
– T
– F (We assign weight)
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Poll 3

• The classifier weight assigns 0 weight to a perfectly random 
classifier (T/F)
– T
– F

• We assign infinite weight for a perfectly correct classifier (T/F)
– T
– F

• We assign 0 weight for a classifier that is always wrong (T/F)
– T
– F (We assign weight)
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Computing Alpha
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97 

Sign = +1, error = 1/8

threshold



The Boosted Classifier Thus Far
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97 

Sign = +1, error = 1/8

threshold

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)



The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N 

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))
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The Best Error
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WeightWeightClassE2.E1ID

0.331/8  * 2.63+1-0.60.3A

0.051/8 * 0.38+1-0.50.5B

0.051/8 * 0.38+1-0.10.7C

0.051/8 * 0.38+1-0.40.6D

0.051/8 * 0.38-10.40.2E

0.051/8 * 0.38-10.1-0.8F

0.051/8 * 0.38-1-0.90.4G

0.051/8 * 0.38-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Dt+1(xi) = Dt(xi) exp(- at yi ht (xi))

exp(at) = exp(0.97) = 2.63
exp(-at) = exp(-0.97) = 0.38

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63



AdaBoost
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AdaBoost
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Poll 4

• If the classifier is perfectly random, we do not change the weights of the 
instances (T/F)
– T
– F

• If the classifier is perfectly correct, we scale down the importance of 
correctly classified instances to 0 (T/F)
– T
– F

• For a (nearly) perfect classifier we scale down the importance of 
incorrectly classified instances to 0
– T
– F (We scale them up to infinity – they are inifintely hard to fix)
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Poll 4

• If the classifier is perfectly random, we do not change the weights of the 
instances (T/F)
– T
– F

• If the classifier is perfectly correct, we scale down the importance of 
correctly classified instances to 0 (T/F)
– T
– F

• For a (nearly) perfect classifier we scale down the importance of 
incorrectly classified instances to 0
– T
– F (We scale them up to infinity – they are inifintely hard to fix)
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The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N 

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))
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The Best Error
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WeightWeightWeightClassE2.E1ID

0.480.331/8  * 2.63+1-0.60.3A

0.0740.051/8 * 0.38+1-0.50.5B

0.0740.051/8 * 0.38+1-0.10.7C

0.0740.051/8 * 0.38+1-0.40.6D

0.0740.051/8 * 0.38-10.40.2E

0.0740.051/8 * 0.38-10.1-0.8F

0.0740.051/8 * 0.38-1-0.90.4G

0.0740.051/8 * 0.38-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0



The Best Error
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WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0



The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Average {½ (1 – yi ht(xi))}

– Set at = ½ ln (et /(1 – et))
– For i = 1… N 

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))
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E1 classifier
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WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .48 .074 .074 .074 .074

threshold

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778



E1 classifier
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

.48 .074

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H



The Best E1 classifier
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 0.074

.48 .074

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H



The Best E2 classifier
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-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

.074 .48 .074 .074 .074 .074 .074 .074

threshold

Classifier based on E2:
if ( sign*wt(E2) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = -1, error = 0.148

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H



The Best Classifier
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (wt(E1) > 0.45) face = true

Sign = +1, error = 0.074

.48 .074

Alpha = 0.5ln((1-0.074) / 0.074)
= 1.26 

WeightClassE2.E1ID

0.48+1-0.60.3A

0.074+1-0.50.5B

0.074+1-0.10.7C

0.074+1-0.40.6D

0.074-10.40.2E

0.074-10.1-0.8F

0.074-1-0.90.4G

0.074-10.50.2H



The Boosted Classifier Thus Far
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h1(X) = wt(E1) > 0.45 ? +1 : -1

h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold



Reweighting the Data
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WeightClassE2.E1ID

0.320.48*0.28+1-0.60.3A

0.050.074*0.28+1-0.50.5B

0.050.074*0.28+1-0.10.7C

0.050.074*0.28+1-0.40.6D

0.050.074*0.28-10.40.2E

0.050.074*0.28-10.1-0.8F

0.380.074*3.5-1-0.90.4G

0.050.074*0.28-10.50.2H

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

RENORMALIZE



Reweighting the Data
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0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

RENORMALIZE

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER
IS NOW SUDDENLY HIGH

WeightClassE2.E1ID

0.320.48*0.28+1-0.60.3A

0.050.074*0.28+1-0.50.5B

0.050.074*0.28+1-0.10.7C

0.050.074*0.28+1-0.40.6D

0.050.074*0.28-10.40.2E

0.050.074*0.28-10.1-0.8F

0.380.074*3.5-1-0.90.4G

0.050.074*0.28-10.50.2H



AdaBoost
• In this example both of our first two classifiers were 

based on E1
– Additional classifiers may switch to E2

• In general, the reweighting of the data will result in a 
different feature being picked for each classifier

• This also automatically gives us a feature selection 
strategy
– In this data the wt(E1) is the most important feature
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AdaBoost
• NOT required to go with the best classifier so far
• For instance, for our second classifier, we might use the 

best E2 classifier, even though its worse than the E1 
classifier
– So long as its right more than 50% of the time

• We can continue to add classifiers even after we get 100% 
classification of the training data
– Because the weights of the data keep changing
– Adding new classifiers beyond this point is often a good 

thing to do
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ADA Boost

• The final classifier is
– H(x) = sign(St at ht(x))

• The output is 1 if the total weight of all weak learners 
that classify x as 1 is greater than the total weight of all 
weak learners that classify it as -1
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E1 E2

= 0.4 E1 - 0.4 E2



Boosting and Face Detection

• Boosting is the basis of one of the most 
popular methods for face detection:  The 
Viola-Jones algorithm
– Current methods use other classifiers like CNNs, 

SVMs, but adaboost classifiers remain easy to 
implement and popular

– OpenCV implements Viola Jones..

• Next class…
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