
Machine Learning for Signal
Processing

Detecting faces (and other objects) in
images

Bhiksha Raj

11755/18979 1

Previously: How to describe a face

• A “typical face” that captures the essence of
“facehood”..

• The principal Eigen face..

11755/18979 2

The typical face

A collection of least squares typical faces

• Extension: Many Eigenfaces
• Approximate every face f as f = wf,1 V1+ wf,2 V2 +.. + wf,k Vk

– V2 is used to “correct” errors resulting from using only V1

– V3 corrects errors remaining after correction with V2

– And so on..

• V = [V1 V2 V3] can be computed through Eigen analysis
• The weights [wf,1, wf,2, wf,3…] are features of the face

11755/18979 3

Detecting Faces in Images

11755/18979 4

Detecting Faces in Images

• Finding face like patterns
– How do we find if a picture has faces in it
– Where are the faces?

• A simple solution:
– Define a “typical face”
– Find the “typical face” in the image

11755/18979 5

Given an image and a ‘typical’ face
how do I find the faces?

11755/18979 6

+

100×100

400×200
(RGB)

+

Finding faces in an image

• Picture is larger than the “typical face”
– E.g. typical face is 100x100, picture is 600x800

• First convert to greyscale
– R + G + B
– Not very useful to work in color

11755/18979 7

Finding faces in an image

• Goal .. To find out if and where images that
look like the “typical” face occur in the picture

11755/18979 8

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 9

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 10

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 11

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 12

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 13

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 14

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 15

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 16

Finding faces in an image

• Try to “match” the typical face to each
location in the picture

11755/18979 17

Finding faces in an image

• Try to “match” the typical face to each location in
the picture

• The “typical face” will explain some spots on the
image much better than others
– These are the spots at which we probably have a face!

11755/18979 18

How to “match”

• What exactly is the “match”
– What is the match “score”

11755/18979 19

How to “match”

• What exactly is the “match”
– What is the match “score”

• The DOT Product
– Express the typical face as a vector
– Express the region of the image being evaluated as a vector
– Compute the dot product of the typical face vector and the “region”

vector

11755/18979 20

What do we get

• The right panel shows the dot product at
various locations
– Redder is higher

• The locations of peaks indicate locations of faces!

11755/18979 21

What do we get

• The right panel shows the dot product at various
locations
– Redder is higher

• The locations of peaks indicate locations of faces!

• Correctly detects all three faces
– Likes George’s face most

• He looks most like the typical face

• Also finds a face where there is none!
– A false alarm

11755/18979 22

Sliding windows solves only the
issue of location – what about

scale?

11755/18979 23

• Not all faces are the same size
• Some people have bigger faces
• The size of the face on the image

changes with perspective
• Our “typical face” only represents

one of these sizes

Scale-Space Pyramid

11755/18979 24

Scale the image
(but keep your typical
face template fixed)

Speed concerns

• Sliding windows AND Scale-space pyramid
may yield million’s of ‘windows’ to investigate!

• Especially for small objects in large images

11755/18979 25

Location – Scale – What about Rotation?

• The head need not
always be upright!

• Our typical face
image was upright

11755/18979 26

Solution

• Create many “typical faces”
– One for each scaling factor
– One for each rotation

• How will we do this?
• Match them all

• Does this work
– Kind of .. Not well enough at all
– We need more sophisticated models

11755/18979 27

Face Detection: A Quick Historical Perspective

• Many more complex methods
– Use edge detectors and search for face like patterns
– Find “feature” detectors (noses, ears..) and employ them in complex neural

networks..
– Feature computation/detection is itself expensive

• Also, what are the best features to use?

– Overall process is very expensive

• The Viola Jones method (40K+ Citations!)
– Boosted cascaded classifiers

11755/18979 28

Poll 1

Mark the true statements

1. Using full-color typical faces is superior to using grey faces for face
detection.

2. Dot product is an essential, but not the only way to evaluate the
similarity between 2 images.

3. We should scale, rotate and slide the typical face to perform scale
and rotation-invariant face detection. This methods works quite well
with little false alarm, except for the large amount of computation.

4. Viola Jones method is one of the most famous methods that
ensembles different features in a face to to perform detection. This
ensembling is computationally expensive.

11755/18979 29

Poll 1

Mark the true statements

1. Using full-color typical faces is superior to using grey faces for face
detection.

2. Dot product is an essential, but not the only way to evaluate the
similarity between 2 images.

3. We should scale, rotate and slide the typical face to perform scale
and rotation-invariant face detection. This methods works quite well
with little false alarm, except for the large amount of computation.

4. Viola Jones method is one of the most famous methods that
ensembles different features in a face to to perform detection. This
ensembling is computationally expensive.

11755/18979 30

Face Detection as Classification

• Faces can be many sizes
• They can happen anywhere in the image
• For each face size

– For each location
• Classify a rectangular region of the face size, at that location, as a face or

not a face

• This is a series of binary classification problems

11755/18979 35

For each square, run a
classifier to find out if it
is a face or not

Binary classification and
ADA Boost

• ADA Boost: a meta classification method that learns to combine a
number of weak learners to an arbitrarily strong learner

• Adaboost with decision stumps
– Each weak learner is a simple threshold-based classifier operating on a

single feature
• A “decision stump”

• Advantages:
– Stumps are trivial to compute

• Computational complexity is just that of feature computation

– Naturally also gives us info on what are good features
• Provided we define the features themselves properly

11755/18979 36

The ADABoost Algorithm

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln ((1 – et) / et)
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

11755/18979 37

Training Data

11755/18979 38

ClassE2.E1ID

+1-0.60.3A

+1-0.50.5B

+1-0.10.7C

+1-0.40.6D

-10.40.2E

-1-0.1-0.8F

-1-0.90.4G

-10.50.2H

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

Face = +1
Non-face = -1

A
B
C
D

D
E
F
G

• Initialize D1(xi) = 1/N
• For t = 1, …, T

– Train a weak classifier ht using distribution Dt

– Compute total error on training data
• et = Sum {Dt (xi) ½(1 – yi ht(xi))}

– Set at = ½ ln (et /(1 – et))
– For i = 1… N

• set Dt+1(xi) = Dt(xi) exp(- at yi ht(xi))
– Normalize Dt+1 to make it a distribution

• The final classifier is
– H(x) = sign(St at ht(x))

The ADABoost Algorithm

11755/18979 39

The E1 “Stump”

11755/18979 40

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

WeightClassE2.E1ID

1/8+1-0.60.3A

1/8+1-0.50.5B

1/8+1-0.10.7C

1/8+1-0.40.6D

1/8-10.40.2E

1/8-1-0.1-0.8F

1/8-1-0.90.4G

1/8-10.50.2H

threshold

ADA Boost by boosting decision stump classifiers

ADA Boost

• The final classifier is
– H(x) = sign(St at ht(x))

• The output is 1 if the total weight of all weak learners
that classify x as 1 is greater than the total weight of all
weak learners that classify it as -1

11755/18979 41

E1 E2

= 0.4 E1 - 0.4 E2

• Even though decision stumps are simple threshold
classifiers, a boosted ensemble of stumps can learn an
arbitrarily complex boundary!!!

11755/18979 42

Boosting: An Example

Poll 2

• Mark true statements

1. AdaBoost trains a series of classifiers in parallel, and each
focuses on the data that other gets wrong classification results on.

– T
– F

2. AdaBoost is a meta classification method that learns to
combine a number of weak learners to an arbitrarily strong learner

– T
– F

11755/18979 43

Poll 2

• Mark true statements

1. AdaBoost trains a series of classifiers in parallel, and each
focuses on the data that other gets wrong classification results on.

– T
– F

2. AdaBoost is a meta classification method that learns to
combine a number of weak learners to an arbitrarily strong learner

– T
– F

11755/18979 44

Boosting and Face Detection

• Boosting is the basis of one of the most
popular methods for face detection: The
Viola-Jones algorithm
– Current methods use other classifiers like CNNs,

SVMs, but adaboost classifiers remain easy to
implement and popular

– OpenCV implements Viola Jones..

11755/18979 45

The problem of face detection
• 1. Defining Features

– Should we be searching for noses, eyes, eyebrows etc.?
• Nice, but expensive

– Or something simpler

• 2. Selecting Features
– Of all the possible features we can think of, which ones make

sense

• 3. Classification: Combining evidence
– How does one combine the evidence from the different features?

11755/18979 46

Feature requirements

• Must be sufficiently descriptive
– So that we achieve good classification

• Must be extremely inexpensive to compute
– Face detection typically required to be performed realtime

on very cheap devices

• Preferably computable using only integer operations
– Less power

11755/18979 47

Features: The Viola Jones Method

• Integral Features!!
– Like the Checkerboard

• The same principle as we used to decompose images in terms of
checkerboards:
– The image of any object has changes at various scales
– These can be represented coarsely by a checkerboard pattern

• The checkerboard patterns must however now be localized
– Stay within the region of the face

11755/18979 48

B1 B2 B3 B4 B5 B6

...Im 332211  BwBwBwage

Features
• Checkerboard Patterns to represent facial features

– The white areas are subtracted from the black ones.
– Each checkerboard explains a localized portion of the

image
• Four types of checkerboard patterns (only)

11755/18979 49

Explaining a portion of the face with a
checker..

• How much is the difference in average intensity of the image
in the black and white regions
– Sum(pixel values in white region) – Sum(pixel values in black region)

• This is actually the dot product of the region of the face
covered by the rectangle and the checkered pattern itself
– White = 1, Black = -1

11755/18979 50

“Integral” features

• Each checkerboard has the following characteristics
– Length
– Width
– Type

• Specifies the number and arrangement of bands

• The four checkerboards above are the four used by Viola and Jones

11755/18979 51

Integral images
• Summed area tables

• For each pixel store the sum of ALL pixels to the left of and above it.

11755/18979 52

Fast Computation of Pixel Sums

• To compute the sum of the pixels within “D”:
– Pixelsum(1) = Area(A)
– Pixelsum(2) = Area(A) + Area(B)
– Pixelsum(3) = Area(A) + Area(C)
– Pixelsum(4) = Area(A)+Area(B)+Area(C) +Area(D)

• Area(D) = Pixelsum(4) – Pixelsum(2) – Pixelsum(3) + Pixelsum(1)
11755/18979 53

1 2

3 4

A B

C D

• Store pixel table for every pixel in the image
– The sum of all pixel values to the left of and above the pixel

• Let A, B, C, D, E, F be the pixel table values at the locations shown
– Total pixel value of black area = D + A – B – C
– Total pixel value of white area = F + C – D – E
– Feature value = (F + C – D – E) – (D + A – B – C)

11755/18979 54

A B

D

F
C

E

A Fast Way to Compute the Feature

How many features?

• Each checker board of width P and height H can start at any of
(N-P)(M-H) pixels

• (M-H)*(N-P) possible starting locations
– Each is a unique checker feature

• E.g. at one location it may measure the forehead, at another the chin

55

MxN
PxH

11755/18979

How many features

• Each feature can have many sizes
– Width from (min) to (max) pixels
– Height from (min ht) to (max ht) pixels

• At each size, there can be many starting locations
– Total number of possible checkerboards of one type:

No. of possible sizes x No. of possible locations
• There are four types of checkerboards

– Total no. of possible checkerboards: VERY VERY LARGE!

11755/18979 56

Learning: No. of features

• Analysis performed on images of 24x24 pixels
only
– Reduces the no. of possible features to about

180000

• Restrict checkerboard size
– Minimum of 8 pixels wide
– Minimum of 8 pixels high

• Other limits, e.g. 4 pixels may be used too

– Reduces no. of checkerboards to about 50000

11755/18979 57

No. of features

• Each possible checkerboard gives us one feature
• A total of up to 180000 features derived from a 24x24 image!
• Every 24x24 image is now represented by a set of 180000

numbers
– This is the set of features we will use for classifying if it is a face or not!

11755/18979 58

F180000…..F4F3F2F1

12…..-1297

2…..17193-11

The Classifier
• The Viola-Jones algorithm uses AdaBoost with “stumps”

• At each stage find the best feature to classify the data
with
– I.e the feature that gives us the best classification of all the

training data
• Training data includes many examples of faces and non-face

images

– The classification rule is of the kind
• If feature > threshold, face (or if feature < threshold, face)
• The optimal value of “threshold” must also be determined.

11755/18979 59

To Train
• Collect a large number of facial images

– Resize all of them to 24x24
– These are our “face” training set

• Collect a much much much larger set of 24x24
non-face images of all kinds
– Each of them is
– These are our “non-face” training set

• Train a boosted classifier

11755/18979 60

The Viola Jones Classifier

• During tests:
– Given any new 24x24 image

• R = Sf af (f > pf q(f))
• Only a small number of features (f < 10000) typically used

• Problems:
– Only classifies 24 x 24 images entirely as faces or non-faces

• Pictures are typically much larger
• They may contain many faces
• Faces in pictures can be much larger or smaller

– Not accurate enough

11755/18979 61

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 62

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 63

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 64

Multiple faces in the picture

• Scan the image
– Classify each 24x24 rectangle from the photo
– All rectangles that get classified as having a face indicate the location

of a face
• For an NxM picture, we will perform (N-24)*(M-24) classifications
• If overlapping 24x24 rectangles are found to have faces, merge them

11755/18979 65

Picture size solution
• We already have a

classifier
– That uses weak learners

• Scale the Picture
– Scale the picture down

by a factor a

– Keep decrementing
down to a minimum
reasonable size

11755/18979 66

Poll 3

• Mark the true statements

1. Bases like checkboards can be computed efficiently, which enables
real-time face detection through ensemble learning, even if we take
a series of scale parameters into consideration.

2. Viola Jones method and SVM methods are now unpopular or even
abandoned by OpenCV, as everyone uses CNN or self-attention for
face detection

3. Checkerboard Patterns are not suitable to represent facial features
as it is not specially designed for them, and are also not faster
compared to data-driven representation or DCT.

4. Every image like the photo of Bhiksha’s sword can be detected
better with DCT compared to checkboard wavelet.

11755/18979 67

Poll 3

• Mark the true statements

1. Bases like checkboards can be computed efficiently, which enables
real-time face detection through ensemble learning, even if we
take a series of scale parameters into consideration.

2. Viola Jones method and SVM methods are now unpopular or even
abandoned by OpenCV, as everyone uses CNN or self-attention for
face detection

3. Checkerboard Patterns are not suitable to represent facial features
as it is not specially designed for them, and are also not faster
compared to data-driven representation or DCT.

4. Every image like the photo of Bhiksha’s sword can be detected
better with DCT compared to checkboard wavelet.

11755/18979 68

False Rejection vs. False Detection
• False Rejection: There’s a face in the image, but the classifier misses it

– Rejects the hypothesis that there’s a face
• False detection: Recognizes a face when there is none.

• Classifier:
– Standard boosted classifier: H(x) = sign(St at ht(x))
– Modified classifier H(x) = sign(St at ht(x) + Y)

• St at ht(x) is a measure of certainty
– The higher it is, the more certain we are that we found a face

• If Y is large, then we assume the presence of a face even when we are not
sure

– By increasing Y, we can reduce false rejection, while increasing false
detection

11755/18979 69

ROC

• Ideally false rejection will be 0%, false detection will also
be 0%

• As Y increaases, we reject faces less and less
– But accept increasing amounts of garbage as faces

• Can set Y so that we rarely miss a face

11755/18979 70

vsfalse neg determined by

% False detection

%
Fa

ls
e

R
ej

ec
ti

n

0 100

0

10
0

As Y increases

Problem: Not accurate enough, too slow

• If we set Y high enough, we will never miss a face
– But will classify a lot of junk as faces

• Solution: Classify the output of the first classifier
with a second classifier
– And so on.

11755/18979 71

Classifier 1

Not a face

Classifier 2

Not a face

Problem: Not accurate enough, too slow

• If we set Y high enough, we will never miss a face
– But will classify a lot of junk as faces

• Solution: Classify the output of the first classifier
with a second classifier
– And so on.

11755/18979 72

Useful Features Learned by Boosting

11755/18979 73

A Cascade of Classifiers

11755/18979 74

Poll 4

• Mark the true statements

1. By increasing the constant term in the sign function Y, we decrease
the threshold of acceptance, which reduces false rejection, while increasing
false detection

– T
– F

2. We can use a series of classifiers which have lower false rejection
rate to increase the correctness and reduce the false rejection at the same
time.

– T
– F

11755/18979 75

Poll 4

• Mark the true statements

1. By increasing the constant term in the sign function Y, we decrease
the threshold of acceptance, which reduces false rejection, while increasing
false detection

– T
– F

2. We can use a series of classifiers which have lower false rejection
rate to increase the correctness and reduce the false rejection at the same
time.

– T
– F

11755/18979 76

Detection in Real Images

• Basic classifier operates on 24 x 24 subwindows

• Scaling:
– Scale the detector (rather than the images)
– Features can easily be evaluated at any scale
– Scale by factors of 1.25

• Location:
– Move detector around the image (e.g., 1 pixel increments)

• Final Detections
– A real face may result in multiple nearby detections
– Postprocess detected subwindows to combine overlapping detections into

a single detection

11755/18979 77

Training
• In paper, 24x24 images of faces and non faces (positive and negative

examples).

11755/18979 78

Sample results using the Viola-Jones Detector

• Notice detection at multiple scales

11755/18979 79

More Detection Examples

11755/18979 80

Practical implementation

• Details discussed in Viola-Jones paper

• Training time = weeks (with 5k faces and 9.5k non-faces)

• Final detector has 38 layers in the cascade, 6060 features

• 700 Mhz processor:
– Can process a 384 x 288 image in 0.067 seconds (in 2003 when

paper was written)

11755/18979 81

Best Window/Background Issues

11755/18979 82

Best Window/Background Issues

11755/18979 83

Best Window/Background Issues

11755/18979 84

Key Ideas

• EigenFace feature
• Sliding windows & scale-space pyramid
• Boosting an ensemble of weak classifiers
• Integral Image / Haar Features
• Cascaded Strong Classifiers

11755/18979 85

