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A note on bits..

• You flip a coin.  You must inform your friend in 
the next room about whether the outcome 
was heads or tails

• How many bits will you have to send?
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A note on bits..

• You roll a four-side dice.  You must inform your 
friend in the next room about the outcome

• How many bits will you have to send?
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A note on bits..

• You roll an eight-sided octahedral dice.  You 
must inform your friend in the next room 
about the outcome

• How many bits will you have to send?
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A note on bits..

• You roll a six-sided dice.  You must inform your 
friend in the next room about the outcome

• How many bits will you have to send?

11755/18797 5

Digital 
channel



Batching up 6-sided dice rolls

• Instead of sending 
individual rolls, you roll 
the dice twice
– And send the pair to your 

friend

• How many bits do you 
send per roll?
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Batching up 6-sided dice rolls

• Instead of sending individual 
rolls, you roll the dice twice
– And send the pair to your friend

• How many bits do you send per 
roll?

• 36 combinations: 6 bits per pair 
of numbers
– Still 3 bits per roll
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Batching up 6-sided dice rolls

• Instead of sending individual rolls, 
you roll the dice three times
– And send the triple to your friend

• How many bits do you send per 
roll?

• 216 combinations: 8 bits per triple
– Still 2.666 bits per roll
– Now we’re talking!
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Batching up 6-sided dice rolls
• Batching four rolls

– 1296 combinations

– 11 bits per outcome (4 rolls)

– 2.75 bit per roll

• Batching five rolls
– 7776 combinations

– 13 bits per outcome (5 rolls)

– 2.6 bits per roll
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Batching up 6-sided dice rolls

• Where will it end?
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Batching up 6-sided dice rolls

• Where will it end?

• bits per roll in the limit

– This is the absolute minimum – no simple batching will give you 
less than these many bits per outcome with this scheme

11755/18797 11

No. of rolls batched together

B
it

s 
pe

r 
ro

ll

2.585



Poll 1

• The number of bits needed to send an individual 
outcome of the roll of an N-sided dice is log2(N)
– True
– False

• If we batch many outcomes (of the roll of an N-sided 
dice) together and transmit them, the average number 
of bits needed to  per outcome tends to log2(N) as the 
size of the batch increases to infinity
– True
– False
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Poll 1

• The number of bits needed to send an individual 
outcome of the roll of an N-sided dice is log2(N)
– True
– False

• If we batch many outcomes (of the roll of an N-sided 
dice) together and transmit them, the average number 
of bits needed to  per outcome tends to log2(N) as the 
size of the batch increases to infinity
– True
– False

11755/18797 13



Can we do better?
• A four-sided die needs 2 bits

per roll
• But then you find not all

sides are equally likely

• P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125
• Can you do better than 2 bits per outcome
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Can we do better?
• You have
P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:

– Note receiver is never in any doubt as to what 
they received

• What is the average number of bits per 
outcome
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Can we do better?
• You have
P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:

– Note receiver is never in any doubt as to what 
they received

• How did we know to use three bits here for 
rows 3 and 4, 2 for row 2 and 1 for row 1?
–
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In a loooong sequence of trials…

• What fraction of these trials will be “4”?
– P(4) = 0.125

• From how many alternatives (on average
– From the local perspective of 4e) do we choose the 4

• How many bits to code each instance of 4 (on 
average)

• How many overall bits on average to code an 
instance of 4?
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In a loooong sequence of trials…

• What fraction of these trials will be “4”?
– P(4) = 0.125

• From how many alternatives (on average) do 
we choose the 4
– From the local perspective of 4

– From the perspective of 4, you might as well 
have been rolling an eight-sided dice
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In a loooong sequence of trials…

• What fraction of these trials will be “4”?
– P(4) = 0.125

• From how many alternatives (on average) do 
we choose the 4
– From the perspective of 4, you might as well 

have been rolling an eight-sided dice
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In a loooong sequence of trials…

• What fraction of these trials will be “4”?
– P(4) = 0.125

• From how many alternatives (on average) do we 
choose the 4
– From the perspective of 4 you might as well have 

been rolling an eight-sided dice

• How many bits to code each instance of 4?
– When 4 is the outcome of rolls of an 8-sided dice

11-761 20

1 2 1 1 3 4 1 2 2 3 1 1 2 1 4 1 4 1 1 1 2 3 2 1



In a loooong sequence of trials…

• What fraction of these trials will be “4”?
– P(4) = 0.125

• From how many alternatives (on average) do we choose the 4
– From the perspective of 4 you might as well have been rolling an eight-

sided dice

• How many bits to code each instance of 4?
– When 4 is the outcome of rolls of an 8-sided dice

• What is the average (expected) number of bits to transmit all 
instances of 4 in N rolls of the dice?
– Average per roll?
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In a loooong sequence of trials…

• What fraction of these trials will be “4”?
– P(4) = 0.125

• From how many alternatives (on average) do we choose the 4
– From the perspective of 4 you might as well have been rolling an eight-

sided dice

• How many bits to code each instance of 4?
– When 4 is the outcome of rolls of an 8-sided dice

• What is the average (expected) number of bits to transmit all 
instances of 4 in N rolls of the dice?
– Average per roll?
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In a loooong sequence of trials…

• What fraction of these trials will be “1”?
– P(1) = 0. 5

• From how many alternatives (on average
– From the local perspective of 4e) do we choose the 4

• How many bits to code each instance of 4 (on 
average)

• How many overall bits on average to code an 
instance of 4?
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In a loooong sequence of trials…

• What fraction of these trials will be “1”?
– P(1) = 0.5

• From how many alternatives (on average) do 
we choose the 1
– From the local perspective of 1

– From the perspective of 4, you might as well 
have been rolling an eight-sided dice
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In a loooong sequence of trials…

• What fraction of these trials will be “1”?
– P(1) = 0.5

• From how many alternatives (on average) do 
we choose the 1
– From the perspective of 1, you might as well 

have been flipping a coin
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In a loooong sequence of trials…

• What fraction of these trials will be “1”?
– P(1) = 0.5

• From how many alternatives (on average) do we 
choose the 1
– From the perspective of 1 you might as well have 

been flipping a coin

• How many bits to code each instance of 1?
– When 1 is the outcome of a coin toss
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In a loooong sequence of trials…

• What fraction of these trials will be “1”?
– P(1) = 0.5

• From how many alternatives (on average) do we choose the 1
– From the perspective of 1 you might as well have been flipping a 

coin

• How many bits to code each instance of 1?
– When 1 is the outcome of rolls of a coin toss

• What is the average (expected) number of bits to transmit all 
instances of 1 in N rolls of the dice?
– Average per roll?
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In a loooong sequence of trials…

• What fraction of these trials will be “1”?
– P(1) = 0.5

• From how many alternatives (on average) do we choose the 1
– From the perspective of 1 you might as well have been flipping a 

coin

• How many bits to code each instance of 1?
– When 1 is the outcome of rolls of a coin toss

• What is the average (expected) number of bits to transmit all 
instances of 1 in N rolls of the dice?
– Average per roll?

11-761 28

1 2 1 1 3 4 1 2 2 3 1 1 2 1 4 1 4 1 1 1 2 3 2 1



In a loooong sequence of trials…

• An outcome x has probability P(x)
• From the perspective of x, how many-sided dice is it an 

outcome of?
• How many bits to code an instance of x?
• What is the average (expected) number of bits to 

transmit instances of x in N rolls of the dice?
• Expected number of bits per outcome for any outcome?
• Average per trial?
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In a loooong sequence of trials…

• An outcome x has probability P(x)
• From the perspective of x, how many-sided dice is it an 

outcome of?
• How many bits to code an instance of x?
• What is the average (expected) number of bits to 

transmit instances of x in N rolls of the dice?
• Expected number of bits per outcome for any outcome?
• Average per trial?
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In a loooong sequence of trials…

• An outcome x has probability P(x)
• From the perspective of x, how many-sided dice is it an 

outcome of?
• How many bits to code an instance of x?
• What is the average (expected) number of bits to 

transmit instances of x in N rolls of the dice?
• Expected number of bits per outcome for any outcome?
• Average per trial?
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In a loooong sequence of trials…

• An outcome x has probability P(x)
• From the perspective of x, how many-sided dice is it an 

outcome of?
• How many bits to code an instance of x?
• What is the average (expected) number of bits to 

transmit instances of x in N rolls of the dice?
• Expected number of bits per outcome for any outcome?
• Average per trial?
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In a loooong sequence of trials…

• An outcome x has probability P(x)
• From the perspective of x, how many-sided dice is it an 

outcome of?
• How many bits to code an instance of x?
• What is the average (expected) number of bits to 

transmit instances of x in N rolls of the dice?
• Expected number of bits per outcome for any outcome?
• Average per trial?
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How we do better…
• You have
P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

• You use:

– Note receiver is never in any doubt as to what they 
received

• An outcome with probability is equivalent to 
obtaining one of equally likely choices

– Requires bits on average
34
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Entropy

• The average number of bits per symbol required to communicate a 
random variable over a digitial channel using an optimal code is

• You can’t do better
– Any other code will require more bits

• This is the entropy of the random variable
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Poll 2

• Mark the true statements about transmitting 
the outcomes of draws from a distribution
– The entropy of the distribution is the number of 

bits needed to transmit the outcome of a single 
draw

– The entropy of the distribution is the average 
number of bits needed to transmit an outcome, 
when we batch infinite outcomes together
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Poll 2

• Mark the true statements about transmitting 
the outcomes of draws from a distribution
– The entropy of the distribution is the number of 

bits needed to transmit the outcome of a single 
draw

– The entropy of the distribution is the average 
number of bits needed to transmit an outcome, 
when we batch infinite outcomes together
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A brief review of basic info. theory

• Entropy:  The minimum average number of bits 
to transmit to convey a symbol

• Joint entropy:  The minimum average number of 
bits to convey sets (pairs here) of symbols
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A brief review of basic info. theory

• Conditional Entropy:  The minimum average 
number of bits to transmit to convey a symbol 
X, after symbol Y has already been conveyed
– Averaged over all values of X and Y
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The statistical concept of 
correlatedness

• Two variables and are correlated if If
knowing gives you an expected value of 

• and are uncorrelated if knowing tells 
you nothing about the expected value of 
– Although it could give you other information
– How? 
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Correlation vs. Causation

• The consumption of burgers has gone up 
steadily in the past decade

• In the same period, the penguin population of 
Antarctica has gone down
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Correlation, not Causation
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The concept of correlation

• Two variables are correlated if knowing the 
value of one gives you information about the 
expected value of the other
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A brief review of basic probability
• Uncorrelated:  Two random variables and are 

uncorrelated iff:
– The average value of the product of the variables equals the 

product of their individual averages

• Setup:  Each draw produces one instance of and one 
instance of 
– I.e one instance of 

•

• The average value of is the same regardless of the value 
of 
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Correlated Variables

• Expected value of given :
– Find average of values of all samples at (or 

close) to the given 
– If this is a function of , and are correlated
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Uncorrelatedness

• Knowing does not tell you what the average 
value of is
– And vice versa
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Uncorrelated Variables

• The average value of is the same regardless 
of the value of and vice versa
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Uncorrelatedness in Random 
Variables

• Which of the above represent uncorrelated RVs?
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Benefits of uncorrelatedness..

• Uncorrelatedness of variables is generally considered 
desirable for modelling and analyses
– For Euclidean error based regression models and 

probabilistic models, uncorrelated variables can be 
separately handled
• Since the value of one doesn’t affect the average value of others
• Greatly reduces the number of model parameters

– Otherwise their interactions must be considered

• We will frequently transform correlated variables to 
make them uncorrelated  
– “Decorrelating” variables
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The notion of decorrelation

• So how does one transform the correlated 
variables to the uncorrelated 
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What does “uncorrelated” mean

• If Y is a matrix of vectors, YYT = diagonal
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Decorrelation
• Let X be the matrix of correlated data vectors

– Each component of X informs us of the mean 
trend of other components

• Need a transform M such that if Y = MX such 
that the covariance of Y is diagonal
– YYT is the covariance if Y is zero mean 
– For uncorrelated components, YYT = Diagonal 

MXXTMT = Diagonal 

M.Cov(X).MT = Diagonal
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Decorrelation
• Easy solution:

– Eigen decomposition of Cov(X):  

Cov(X) = ELET

– EET = I

• Let M = ET

• MCov(X)MT = ETELETE = L = diagonal

• PCA: Y = ETX
– Projects the data onto the Eigen vectors of the covariance matrix
– Diagonalizes the covariance matrix
– “Decorrelates” the data
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PCA

• PCA: Y = ETX
– Projects the data onto the Eigen vectors of the covariance matrix

• Changes the coordinate system to the Eigen vectors of the covariance matrix

– Diagonalizes the covariance matrix
– “Decorrelates” the data
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• Are there other decorrelating axes?
• What about if we don’t require them to be 

orthogonal?
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Decorrelating the data

• Are there other decorrelating axes?
• What about if we don’t require them to be 

orthogonal?
• What is special about these axes?
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Poll 3

• Mark all true statements about decorrelation 
of the components of a vector
– There is a unique set of orthogonal bases along 

which the components of a data are decorrelated
– There may be many different sets of orthogonal 

bases along which the components of the data are 
decorrelated

– The bases along which the components of the 
data are decorrelated are always orthogonal
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Poll 3

• Mark all true statements about decorrelation 
of the components of a vector
– There is a unique set of orthogonal bases along 

which the components of a data are decorrelated
– There may be many different sets of orthogonal 

bases along which the components of the data 
are decorrelated

– The bases along which the components of the 
data are decorrelated are always orthogonal
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The statistical concept of 
Independence

• Two variables X and Y are dependent if If 
knowing X gives you any information about Y

• X and Y are independent if knowing X tells you 
nothing at all of Y
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A brief review of basic probability
• Independence:  Two random variables X and Y

are independent iff:
– Their joint probability equals the product of their 

individual probabilities

• P(X,Y) =  P(X)P(Y)

• Independence implies uncorrelatedness
– The average value of X is the same regardless of the 

value of Y
• E[X|Y] = E[X]

– But uncorrelatedness does not imply independence
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A brief review of basic probability

• Independence:  Two random variables X and 
Y are independent iff:

• The average value of any function of X is the 
same regardless of the value of Y
– Or any function of Y

• E[f(X)g(Y)]  =  E[f(X)] E[g(Y)]   for all f(), g()
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Independence

• Which of the above represent independent RVs?

• Which represent uncorrelated RVs?
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A brief review of basic probability

• The expected value of an odd function of an 
RV is 0 if
– The RV is 0 mean

– The PDF is of the RV is symmetric around 0

• E[f(X)]  =  0 if f(X) is odd symmetric
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A brief review of basic info. theory

• Conditional entropy of if is 
independent of 

• Joint entropy of and is the sum of the 
entropies of and if they are independent
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Onward..
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Projection: multiple notes
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 P = W (WTW)-1 WT

 Projected Spectrogram = PM

M = 

W = 



We’re actually computing a score
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 M ~  WH
 H = pinv(W)M

M = 

W = 

H = ? 



How about the other way?
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 M ~ WH              W = Mpinv(H)       U = WH

M = 

W = ??

H = 

U = 



When both parameters are unknown

• Must estimate both H and W to best 
approximate M

• Ideally, must learn both the notes and their 
transcription!

W =? 

H = ? 

approx(M) = ? 
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A least squares solution

• Constraint: W is orthogonal
– WTW = I

• The solution: W are the  Eigen vectors of 
MMT

– PCA!!

• M ~ WH is an approximation
• Also, the rows of H are decorrelated

– Trivial to prove that HHT is diagonal
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PCA

• The columns of are the bases we have learned
– The linear “building blocks” that compose the music

• They represent “learned” notes
– is the contribution of the ith note to the music

• is the ith column of 
• is the ith row of 

WHM

HWMHW HW



 2
, ||||minarg, F
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..

• Results are not good
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PCA through decorrelation of 
notes

• Different constraint: Constraint H to be decorrelated
– HHT = D

• This will result exactly in PCA too

• Decorrelation of H Interpretation: What does this 
mean?
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Decorrelation

• Alternate view: Find a matrix B such that the 
rows of H=BM are uncorrelated

• Will find B = WT

• B is the decorrelating matrix of M
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Poll 4

• Decorrelation is a sufficient criterion for 
determining semantically meaningful bases
– T
– F

• Non-negativity is a sufficient criterion for
determining semantically meaningful bases
– T
– F
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Poll 4

• Decorrelation is a sufficient criterion for 
determining semantically meaningful bases
– T
– F

• Non-negativity is a sufficient criterion for 
determining semantically meaningful bases
– T
– F
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What else can we look for?

• Assume: The “transcription” of one note does 
not depend on what else is playing
– Or, in a multi-instrument piece, instruments are 

playing independently of one another

• Not strictly true, but still..
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What else can we look for?

• Assume: The “transcription” of one note does not depend on what 
else is playing
– Or, in a multi-instrument piece, instruments are playing independently 

of one another

• Attempting to find statistically independent components of the 
mixed signal
– Independent Component Analysis
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Formulating it with Independence

• Impose statistical independence constraints 
on decomposition
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Next Class

• Independent Component Analysis

• By Adnan Yunus
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