Machine Learning for Signal
Processing
Independent Component Analysis
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A note on bits..

* You flip a coin. You must inform your friend in

the next room about whether the outcome
was heads or tails

Digital @
channel ~ "\~ N

* How many bits will you have to send?
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A note on bits..

* You roll a four-side dice. You must inform your
friend in the next room about the outcome

Digital .~\\//\\,J¥§!i§§E

channel

* How many bits will you have to send?
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A note on bits..

* You roll an eight-sided octahedral dice. You
must inform your friend in the next room
about the outcome

Digital _~\\//\\J'¥§!i§§E

channel

* How many bits will you have to send?
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A note on bits..

* You roll a six-sided dice. You must inform your
friend in the next room about the outcome

By
Ve U U Digital _~\\//\\Jf¥%§!55s

channel

* How many bits will you have to send?
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Batching up 6-sided dice rolls

(o,
\)

Digital E
~- IR

Roll1 Roll2

«m - U@@u

* Instead of sending 1 |1
individual rolls, you roll 1|2
the dice twice -

— And send the pair to your .
. 2 |1
friend . .

* How many bits do you N
send per roll? 6 |6
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Batching up 6-sided dice rolls

N Digital — '@

channel

Roll1 Roll2

Instead of sending individual 1 1
rolls, you roll the dice twice 1 )

— And send the pair to your friend 1 3
How many bits do you send per B B
roll? ) 1
36 combinations: 6 bits per pair 2 2
of numbers

— Still 3 bits per roll 6 6
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Batching up 6-sided dice rolls

Roll 1 Roll2 Roll 3

1 (1 |1
* |nstead of sending individual rolls, P P
you roll the dice three times
— And send the triple to your friend
: 1 6 3
* How many bits do you send per
roll?
. : . : 2 1 1
216 combinations: 8 bits per triple > -
— Still 2.666 bits per roll
— Now we’re talking!
6 6 6
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Batching up 6-sided dice rolls

e Batching four rolls

— 1296 combinations

— 11 bits per outcome (4 rolls)

— 2.75 bit per roll

* Batching five rolls

— 7776 combinations

— 13 bits per outcome (5 rolls)

— 2.6 bits per roll
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Batching up 6-sided dice rolls

4
?

\\/\/\J\/\/\/\l

No. of rolls batched together

Bits per roll

e Where will it end?

11755/18797
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Batching up 6-sided dice rolls

2.585

|

Bits per roll

No. of rolls batched together

e Where will it end?
|k log2(6)]

e ]im
k— oo
— This is the absolute minimum — no simple batching will give you

less than these many bits per outcome with this scheme
11755/18797 11

= log2(6) bits per roll in the limit



Poll 1

* The number of bits needed to send an individual
outcome of the roll of an N-sided dice is log2(N)
— True
— False

* |f we batch many outcomes (of the roll of an N-sided
dice) together and transmit them, the average number
of bits needed to per outcome tends to log2(N) as the
size of the batch increases to infinity

— True
— False



Poll 1

* The number of bits needed to send an individual
outcome of the roll of an N-sided dice is log2(N)
— True
— False

* |f we batch many outcomes (of the roll of an N-sided
dice) together and transmit them, the average number
of bits needed to per outcome tends to log2(N) as the
size of the batch increases to infinity

— True
— False



Can we do better?

A four-sided die needs 2 bits
per roll

But then you find not all
sides are equally likely

P(1) =0.5, P(2) =0.25, P(3) 0.125, P(4) =0.125
Can you do better than 2 bits per outcome
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Can we do better?

* You have
P(1) =0.5, P(2) =0.25, P(3) 0.125, P(4) = 0.125

0

1

2 (10
* You use: > 110

4

111

— Note receiver is never in any doubt as to what
they received

 What is the average number of bits per
outcome

11755/18797



Can we do better?

* You have
P(1) =0.5, P(2) =0.25, P(3) 0.125, P(4) = 0.125

0

1

2 |10
* You use: B

4

111

— Note receiver is never in any doubt as to what
they received

e How did we know to use three bits here for
rows 3 and 4, 2 forrow 2 and 1 for row 17



In a loooong sequence of trials...

e What fraction of these trials will be “4”7?
— P(4) = 0.125

11-761 17



In a loooong sequence of trials...

00000-00000000-0-0000000

e What fraction of these trials will be “4”7?
— P(4) =0.125

* From how many alternatives (on average) do
we choose the 4

— From the local perspective of 4
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In a loooong sequence of trials...

00000-00000000-0-0000000

e What fraction of these trials will be “4”7?
— P(4) = 0.125

* From how many alternatives (on average) do
we choose the 4

— From the perspective of 4, you might as well
have been rolling an eight-sided dice
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In a loooong sequence of trials...

00000-00000000-0-0000000

 What fraction of these trials will be “4”?
— P(4) = 0.125

 From how many alternatives (on average) do we
choose the 4

— From the perspective of 4 you might as well have
been rolling an eight-sided dice

* How many bits to code each instance of 47

— When 4 is the outcome of rolls of an 8-sided dice
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In a loooong sequence of trials...

00000-00000000-0-0000000

* What fraction of these trials will be “4”?
— P(4)=0.125
 From how many alternatives (on average) do we choose the 4

— From the perspective of 4 you might as well have been rolling an eight-
sided dice

* How many bits to code each instance of 4?

— When 4 is the outcome of rolls of an 8-sided dice

 Whatis the average (expected) number of bits to transmit all
instances of 4 in N rolls of the dice?
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In a loooong sequence of trials...

00000-00000000-0-0000000

* What fraction of these trials will be “4”?
— P(4)=0.125
 From how many alternatives (on average) do we choose the 4

— From the perspective of 4 you might as well have been rolling an eight-
sided dice

* How many bits to code each instance of 4?
— When 4 is the outcome of rolls of an 8-sided dice

 Whatis the average (expected) number of bits to transmit all
instances of 4 in N rolls of the dice?

— Average per roll?
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In a loooong sequence of trials...

e What fraction of these trials will be “1”7?
—P(1)=0.5
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In a loooong sequence of trials...

el 00 | 10 | [ 00 0 0 000 | |0

e What fraction of these trials will be “1”7?
—P(1) =0.5

* From how many alternatives (on average) do
we choose the 1

— From the local perspective of 1

11-761 24



In a loooong sequence of trials...

el 00 | 10 | [ 00 0 0 000 | |0

e What fraction of these trials will be “1”7?
—P(1) =0.5

* From how many alternatives (on average) do
we choose the 1

— From the perspective of 1, you might as well
have been flipping a coin

11-761 25



In a loooong sequence of trials...

el 00 | 10 | [ 00 0 0 000 | |0

 What fraction of these trials will be “1”?
— P(1)=0.5

 From how many alternatives (on average) do we
choose the 1

— From the perspective of 1 you might as well have
been flipping a coin

* How many bits to code each instance of 17
— When 1 is the outcome of a coin toss

11-761 26



In a loooong sequence of trials...

el 00 | 10 | [ 00 0 0 000 | |0

 What fraction of these trials will be “1”7?
— P(1)=0.5
* From how many alternatives (on average) do we choose the 1

— From the perspective of 1 you might as well have been flipping a
coin

* How many bits to code each instance of 17

— When 1 is the outcome of rolls of a coin toss

 What is the average (expected) number of bits to transmit all
instances of 1 in N rolls of the dice?

11-761 27



In a loooong sequence of trials...

el 00 | 10 | [ 00 0 0 000 | |0

 What fraction of these trials will be “1”7?
— P(1)=0.5
* From how many alternatives (on average) do we choose the 1
— From the perspective of 1 you might as well have been flipping a
coin
* How many bits to code each instance of 17
— When 1 is the outcome of rolls of a coin toss
 What is the average (expected) number of bits to transmit all
instances of 1 in N rolls of the dice?

_ ?
Average per roll: e .



In a loooong sequence of trials...

00000-00000000-0-0000000

* An outcome x has probability P(x)

* From the perspective of x, how many-sided dice is it an
outcome of?

11-761 29



In a loooong sequence of trials...

1 1 1
P(x) P(x) P(x)

00000-00000000-0-0000000

* An outcome x has probability P(x)

* From the perspective of x, how many-sided dice is it an
outcome of?

* How many bits to code an instance of x?
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In a loooong sequence of trials...

1 1 1
P(x) P(x) P(x)

00000-00000000-0-0000000

* An outcome x has probability P(x)

* From the perspective of x, how many-sided dice is it an
outcome of?

* How many bits to code an instance of x?

 What is the average (expected) number of bits to
transmit instances of x in N rolls of the dice?



In a loooong sequence of trials...

1 1 1
P(x) P(x) P(x)

00000-00000000-0-0000000

* An outcome x has probability P(x)

* From the perspective of x, how many-sided dice is it an
outcome of?

* How many bits to code an instance of x?

 What is the average (expected) number of bits to
transmit instances of x in N rolls of the dice?

* Expected number of bits per outcome for any outcome?



In a loooong sequence of trials...

1 1 1
P(x) P(x) P(x)

00000-00000000-0-0000000

* An outcome x has probability P(x)

* From the perspective of x, how many-sided dice is it an
outcome of?

* How many bits to code an instance of x?

 What is the average (expected) number of bits to
transmit instances of x in N rolls of the dice?

* Expected number of bits per outcome for any outcome?
* Average per trial?



How we do better...

* You have

P(1) = 0.5, P(2) = 0.25, P(3) 0.125, P(4) = 0.125

0

* You use:

10

1
2
3

110

4

111

— Note receiver is never in any doubt as to what they

received

* An outcome with probability p is equivalent to
obtaining one of 1/p equally likely choices

(—

— Requires log2 (%) bits on average

34



Entropy

N Digital —~T '@

channel

The average number of bits per symbol required to communicate a
random variable over a digitial channel using an optimal code is

H(p) = Z Di log— Zpl logp;

You can’t do better

— Any other code will require more bits

This is the entropy of the random variable

11755/18797 35



Poll 2

 Mark the true statements about transmitting
the outcomes of draws from a distribution

— The entropy of the distribution is the number of
bits needed to transmit the outcome of a single
draw

— The entropy of the distribution is the average
number of bits needed to transmit an outcome,
when we batch infinite outcomes together



Poll 2

 Mark the true statements about transmitting
the outcomes of draws from a distribution

— The entropy of the distribution is the number of
bits needed to transmit the outcome of a single
draw

— The entropy of the distribution is the average
number of bits needed to transmit an outcome,
when we batch infinite outcomes together

11755/18797

37



A brief review of basic info. theory

cee®  T(all), M(ed), S(hort)...

H(X)=) P(X)[~log P(X)]

* Entropy: The minimum average number of bits
to transmit to convey a symbol

Y H(X,Y)=Y P(X,Y)[~log P(X,Y)]

* Joint entropy: The minimum averagé number of
bits to convey sets (pairs here) of symbols

11755/18797 38



A brief review of basic info. theory

H(X|Y)=) PXY)) P(X|Y)[-logP(X |V)]= D P(X,Y)[-log P(X|Y)]

* Conditional Entropy: The minimum average
number of bits to transmit to convey a symbol
X, after symbol Y has already been conveyed

— Averaged over all values of Xand Y

11755/18797 39



And now

for something
completely different...

11755/18797
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The statistical concept of
correlatedness

 Two variables X and Y are correlated if If
knowing X gives you an expected value of Y

« X andY are uncorrelated if knowing X tells
you nothing about the expected value of Y

— Although it could give you other information
— How?

11755/18797
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Correlation vs. Causation

* The consumption of burgers has gone up

steadily in the past decade

e f’;ﬁ“ﬁ_

In the same period,t penguin population of

Antarctica has gone down

Correlation, not Causation
(unless McDonalds has a
ﬂ GQ T top-secret Antarctica division)

11755/18797 42



The concept of correlation

 Two variables are correlated if knowing the
value of one gives you information about the
expected value of the other

Penguin population

. >
Time

11755/18797 43



A brief review of basic probability

Uncorrelated: Two random variables X and Y are
uncorrelated iff:

— The average value of the product of the variables equals the
product of their individual averages

Setup: Each draw produces one instance of X and one
instance of Y

— lL.e oneinstance of (X,Y)

E[XY] = E[X]E[Y]

The average value of Y is the same regardless of the value
of X

11755/18797 44



Correlated Variables

A

Penguin population

Burger consumption

Expected value of Y given X:

— Find average of Y values of all samples at (or
close) to the given X

— If this is a function of X, X and Y are correlated

11755/18797 45



Uncorrelatedness

A
<P
£
=
)
= o © o
o o 37'—‘ 5
T
<
b, b,
Burger consumption

 Knowing X does not tell you what the average
value of Y is

— And vice versa

11755/18797 46



Uncorrelated Variables

A X as a function of Y
o Y as a function of X
g
o]
&
= ® ®
S0 ° °
= oo o
S
<

>

Burger consumption

 The average value of Y is the same regardless
of the value of X and vice versa

11755/18797 47



Uncorrelatedness in Random
Variables

 Which of the above represent uncorrelated RVs?

11755/18797 48



Benefits of uncorrelatedness..

* Uncorrelatedness of variables is generally considered
desirable for modelling and analyses

— For Euclidean error based regression models and
probabilistic models, uncorrelated variables can be
separately handled

e Since the value of one doesn’t affect the average value of others
* Greatly reduces the number of model parameters

— Otherwise their interactions must be considered

* We will frequently transform correlated variables to
make them uncorrelated

— “Decorrelating” variables

11755/18797
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The notion of decorrelation

V)

>

e So how does one transform the correlated
variables (X, Y) to the uncorrelated (X', Y")

11755/18797 50



What does “uncorrelated” mean

N 3:181161;1;1113’ . E[X'] = constant
0 o E|Y'] = constant
|- . « E|Y'|X'] = constant

« E|X'Y'| = E|X']|E[Y]
e All will be O for centered

>
X’ data
' 12 RV 12
E - (X' Y') =F X AT = BT 0 = diagonal matrix
Y' X'y' y»” 0 E[Y"]

* If Y is a matrix of vectors, YY! = diagonal

11755/18797 51



Decorrelation

e Let X be the matrix of correlated data vectors

— Each component of X informs us of the mean
trend of other components

* Need a transform M such that if Y = MX such
that the covariance of Y is diagonal

—YY'is the covariance if Y is zero mean

— For uncorrelated components, YY! = Diagonal
—=MXX'M'" = Diagonal

—=M.Cov(X).M! = Diagonal



Decorrelation

Easy solution:

— Eigen decomposition of Cov(X):
Cov(X)=EAE!

— EET=1

let M=E!

MCov(X)M! = ETEAE'E = A = diagonal

PCA: Y =E'X

— Projects the data onto the Eigen vectors of the covariance matrix
— Diagonalizes the covariance matrix

— “Decorrelates” the data

11755/18797 53



PCA

A A
‘Q
(] “
S~ ~
= °
>
Wi

e PCA:Y=ETX
— Projects the data onto the Eigen vectors of the covariance matrix
* Changes the coordinate system to the Eigen vectors of the covariance matrix
— Diagonalizes the covariance matrix
— “Decorrelates” the data

11755/18797 54



Decorrelating the data

* Are there other decorrelating axes?

11755/18797
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Decorrelating the data

* Are there other decorrelating axes?

11755/18797
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Decorrelating the data

* Are there other decorrelating axes?
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Decorrelating the data

* Are there other decorrelating axes?

 What about if we don’t require them to be
orthogonal?

11755/18797
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Decorrelating the data

o o
° o o

Y 7’

o~z

* Are there other decorrelating axes?

 What about if we don’t require them to be
orthogonal?

 What is special about these axes?

11755/18797



Poll 3

e Mark all true statements about decorrelation
of the components of a vector

— There is a unique set of orthogonal bases along
which the components of a data are decorrelated

— There may be many different sets of orthogonal
bases along which the components of the data are
decorrelated

— The bases along which the components of the
data are decorrelated are always orthogonal



Poll 3

e Mark all true statements about decorrelation
of the components of a vector

— There is a unique set of orthogonal bases along
which the components of a data are decorrelated

— There may be many different sets of orthogonal
bases along which the components of the data
are decorrelated

— The bases along which the components of the
data are decorrelated are always orthogonal
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The statistical concept of
Independence

 Two variables X and Y are dependent if If
knowing X gives you any information about Y

e Xand Y are independent if knowing X tells you
nothing at all of Y

11755/18797
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A brief review of basic probability

* Independence: Two random variables X and Y
are independent iff:

— Their joint probability equals the product of their
individual probabilities

* P(X,Y)= P(X)P(Y)
* |Independence implies uncorrelatedness

— The average value of X is the same regardless of the
value of Y

 E[X|Y]=E[X]
— But uncorrelatedness does not imply independence

11755/18797 63



A brief review of basic probability

* Independence: Two random variables X and

Y are independent iff:

* The average value of any function of X is the
same regardless of the value of Y

— Or any function of Y

 E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all (), g()

11755/18797 64



Independence

 Which of the above represent independent RVs?

* Which represent uncorrelated RVs?
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A brief review of basic probability

y = f(x)

=Sy, T P S S S

RV is O if

—T
—T

ne RV is 0 mean

ne PDF is of the RV is symmetric around O

e E[f(X)] = Oif f(X) is odd symmetric
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A brief review of basic info. theory

* Conditional entropy of X|Y = H(X)if X is

independent of Y
H(X|Y)=) P(Y)) P(X|Y)[-logP(X |Y)]=D P(Y)) P(X)[-log P(X)]=H(X)

* Joint entropy of X and Y is the sum of the
entropies of X and Y if they are independent

H(X,Y)=) P(X,Y)[-log P(X,Y)]=> P(X,Y)[-log P(X)P(Y)]

=—> P(X,Y)log P(X)- Y P(X,Y)log P(Y)=H(X)+H(Y)
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Onward..

11755/18797
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Pro;ectlon mult |ple notes

— = — [ — S — — — e — — —_ ———
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bb | 4 ] —
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m Projected Spectrogram = PM
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We’re actually computing a score

8000 — - e = e e —— e —= = =
2T i = e e meee MRsS GRS T st - = e Cuge e ] = = ] — — ==
- = e - e = — o = > —
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00000

Sooo

= M~WH

bout the other way7

e e = Lo :, 5 : = =
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e e e e = g e s e b e oo
—= = — ————  — = - = ——— = ——— ——— — —
——— e & —— e m—————— % N W (== _—— = = s
= - 1= 13
i

WH

W = Mpinv(H) U
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When both parameters are unknown

H=?

approx(M) =?

* Must estimate both H and W to best
approximate M

* |deally, must learn both the notes and their
transcription!



A least squares solution

W,H =argming ; [|M-WH [, +A(W'W -I)

Constraint: W is orthogonal

- WIW =1

The solution: W are the Eigen vectors of
MM!

— PCAll

M ~ WH is an approximation

Also, the rows of H are decorrelated
— Trivial to prove that HH! is diagonal



PCA

W.H =argming | M- WH I
M~ WH
WWT = Diagonal OR HH! = Diagonal

The conditions are equivalent

e The columns of W are the bases we have learned

— The linear “building blocks” that compose the music

* They represent “learned” notes

— w;h; is the contribution of the ith note to the music

* w; is the ith column of W
* h; is the ith row of H



So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does that work?

200 400 s00 800 1000 1200 1400

200 400 S00 800 1000 1200 1400

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

e Results are not good



PCA through decorrelation of

notes
W,H =argminy  |[M-H]|; +A(HH' - D)

[ L1 1
[ N
n__ L i

 Different constraint: Constraint H to be decorrelated
— HH"=D
* This will result exactly in PCA too

* Decorrelation of H Interpretation: What does this
mean?



Decorrelation

 Alternate view: Find a matrix B such that the
rows of H=BM are uncorrelated

* Will find B=W!

 Bis the decorrelating matrix of M



Poll 4

* Decorrelation is a sufficient criterion for
determining semantically meaningful bases
—T
—F

* Non-negativity is a sufficient criterion for
determining semantically meaningful bases
—T
—F



Poll 4

* Decorrelation is a sufficient criterion for
determining semantically meaningful bases
—T
—F

* Non-negativity is a sufficient criterion for
determining semantically meaningful bases
—T
—F



What else can we look for?

[ L]l 1
[ [T
ML M

* Assume: The “transcription” of one note does
not depend on what else is playing

— Or, in a multi-instrument piece, instruments are
playing independently of one another

* Not strictly true, but still..



What else can we look for?

[ L]l 1
[ [T
ML M

Assume: The “transcription” of one note does not depend on what
else is playing

— Or, in a multi-instrument piece, instruments are playing independently
of one another

Attempting to find statistically independent components of the
mixed signal

— Independent Component Analysis
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Formulating it with Independence

W.H =argming ; | M- WH |7 +A(rows of H are independent)

* I[mpose statistical independence constraints
on decomposition



Next Class

* Independent Component Analysis

* By Adnan Yunus

11755/18797
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