Machine Learning for Signal
Processing
Non-negative Matrix Factorization

Instructor: Bhiksha Raj

With examples and
slides from

Paris Smaragdis
11755/18797 |



A Quick Recap
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* Problem: Given a collection of data X, find a
set of “bases” B, such that each vector x; can
be expressed as a weighted combination of

the bases
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A Quick Recap Subproblem 1

B

* Problem 1: Finding bases
— Finding typical faces
— Finding “notes” like structures
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A Quick Recap: Subproblem 2
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* Problem 2: Expressing instances in terms of
these bases

— Finding weights of typical faces

— Finding weights of notes

11755/18797



A Quick Recap: WHY? 1.
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* Better Representation: The weights {w;}
represent the vectors in a meaningful way

— Better suited to semantically motivated operation
— Better suited for specific statistical models
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A Qumk Recap WHY? 2.

10000

* Dimensionality Reduction: The number of Bases may be fewer than
the dimensions of the vectors

— Represent each Vector using fewer numbers

— Expresses each vector within a subspace
* Loses information / energy
* Objective: Lose least information / energy
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A Quick Recap: WHY? 3.

3D Scatter Groups

NOISE

* Denoising: Reduced dimensional representation
eliminates dimensions
e (Can often eliminate noise dimensions

— Signal-to-Noise ratio worst in dimensions where the signal
has least energy/information

— Removing them eliminates noise
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A Quick Recap: HOW? KLT/PCA

IR Rl

* Find Eigenvectors of Correlation matrix

— These are our “Eigen” bases

— Capture information compactly and satisfy most of
our requirements

* MOST??
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 What is a negative face?

— And what does it mean to subtract one face from the
other?

* Problem more obvious when applied to music
— You would like bases to be notes
— Weights to be scores

— What is a negative note? What is a negative score?
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Poll 1

* Representing a face in terms of the weights of
a set of principal Eigen faces has which of the
following advantages?

— It is best suited to semantically represent the
contents of the image

— Reduces dimensionality, but leaves essential
components in it with least loss of “energy”

— Eliminates noise by omitting larger SNR
components



Poll 1

* Representing a face in terms of the weights of
a set of principal Eigen faces has which of the
following advantages?

— It is best suited to semantically represent the
contents of the image

— Reduces dimensionality, but leaves essential
components in it with least loss of “energy”

— Eliminates noise by omitting larger SNR
components

11755/18797 11



Summary

* Orthogonality and energy maximization are
statistically meaningful operations

* But may not be physically meaningful

* Next: A physically meaningful constraint
— Non-negativity



The Engineer and the Musician

Once upon a time a rich potentate
discovered a previously unknown
recording of a beautiful piece of
music. Unfortunately it was badly
damaged.

He greatly wanted to find out what it would sound
like if it were not.

So he hired an engineer and a %%,
musician to solve the S
problem..




The Engineer and the Musician

The engineer worked for many
years. He spent much money and
published many papers.

Finally he had a somewhat scratchy g\W.
restoration of the music.. @

The musician listened to the music\g
carefully for a day, transcribed it,
broke out his trusty keyboard and
replicated the music.




The Prize

Who do you think won the princess?

15



The search for building blocks

= What composes an audio signal?

0 E.g. notes compose music
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The properties of building blocks

= Constructive composition
o A second note does not diminish a first note

= Linearity of composition
o Notes do not distort one another
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Looking for building blocks in sound

= Can we compute the building blocks from sound itself

a Can we learn the notes from the music?
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A property of power spectra

= When two or more independent signals are
added, their power spectra (approximately) add

= Their power spectrograms add as well

19



Building Blocks of Sound
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The building blocks of sound are (power) spectral structures

E.g. notes build music

The spectra are entirely non-negative
The complete sound is composed by constructive combination of the
building blocks scaled to different non-negative gains

E.g. notes are played with varying energies through the music

The sound from the individual notes combines to form the final spectrogram

The final spectrogram is also non-negative 20



Building Blocks of Sound
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Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the building
blocks to different degrees

E.g. notes are strummed with different energies to

compose the frame -



Composing the Sound
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Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the building
blocks to different degrees

E.g. notes are strummed with different energies to
compose the frame -



Building Blocks of Sound
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Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the building
blocks to different degrees

E.g. notes are strummed with different energies to

compose the frame -



Building Blocks of Sound
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Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the building
blocks to different degrees

E.g. notes are strummed with different energies to

compose the frame o



Building Blocks of Sound

A
Each frame of sound is composed by activating each
spectral building block by a frame-specific amount

Individual frames are composed by activating the building
blocks to different degrees

E.g. notes are strummed with different energies to

compose the frame -



The Problem of Learning
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Given only the final sound, determine its building
blocks

From only listening to music, learn all about musical

notes!



In Math

Eac
Eac

Eac

Vi=w,B, +w,,B, +w,B, +...

N frame is a non-negative power spectral vector

h note is a non-negative power spectral vector

h frame is a non-negative combination of the notes
27



Non-negative matrix factorization: Basics

NMF is used in a compositional model

Data are assumed to be non-negative

o E.g. power spectra

Every data vector is explained as a purely constructive
linear composition of a set of bases

o V=X wB

0 The bases B, are in the same domain as the data

l.e. they are power spectra

Constructive composition: no subtraction allowed

Weights w, must all be non-negative

All components of bases B, must also be non-negative
28



Understanding non-negative combination

V =aB, +bB,

Non-negative combination: a and b are strictly non-negative
Implies V must lie inside the cone of B, and B,

oV can be composed without reversing the directions of B, and B,
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Understanding non-negative combination

V =aB, +bB,

If V lies outside the cone, at least one B, or B,
must be reversed in direction to compose it

o At least one of g and b must be negative
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Learning building blocks: Restating the

problem

Given a collection of spectral vectors (from
the composed sound) ...

Find a set of “basic” sound spectral vectors
such that ...

All of the spectral vectors can be
composed through constructive addition
of the bases

o We never have to flip the direction of any basis

31




Learning building blocks: Restating the
problem

V =BW

Each column of V is one “composed”
spectral vector

Each column of B is one building block
0 One spectral basis

Each column of W has the scaling factors
for the building blocks to compose the

corresponding column of V
All columns of V are non-negative

All entries of B and W must also be non-
negative

32




Interpreting non-negative factorization

Bases are non-negative, lie in the positive quadrant
Blue lines represent bases, blue dots represent vectors

Any vector that lies between the bases (highlighted region) can
be expressed as a non-negative combination of bases

o E.g.the black dot 33



Interpreting non-negative factorization
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Vectors outside the shaded enclosed area can only be expressed
as a linear combination of the bases by reversing a basis

o l.e. assigning a negative weight to the basis
o E.g.thered dot

Alpha and beta are scaling factors for bases

Beta weighting is negative 34



Interpreting non-negative factorization

If we approximate the red dot as a non-negative
combination of the bases, the approximation will lie in
the shaded region

2 On or close to the boundary

0 The approximation has error s



The NMF representation

The representation characterizes all data as lying within
a compact convex region (a cone)
o “Compact” = enclosing only a small fraction of the entire space

o The more compact the enclosed region, the more it localizes the
data within it

Represents the boundaries of the distribution of the data better

0 Conventional statistical models represent the mode of the distribution

The bases must be chosen to

0 Enclose the data as compactly as possible

o And also enclose as much of the data as possible

Data that are not enclosed are not represented correctly

36



Poll 2

Select all that are true of NMF

a

It is a linear decomposition method that can be used
to decompose any real matrix

It decomposes matrices into a product of matrices

One of these component matrix represents the bases
for the data and the other represents their modulations

All data are required to be non-negative

It represents a semantically meaningful way of
deriving bases for data that only combine
constructively

37



Poll 2

Select all that are true of NMF

d

It is a linear decomposition method that can be used
to decompose any real matrix

It decomposes matrices into a product of matrices

One of these component matrix represents the
bases for the data and the other represents their
modulations

All data are required to be non-negative

It represents a semantically meaningful way of
deriving bases for data that only combine
constructively
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Data need not be non-negative

The general principle of enclosing data applies to any one-sided data
0 Whose distribution does not cross the origin.

The only part of the model that must be non-negative are the weights.
Examples

o Blue bases enclose blue region in negative quadrant
o Red bases enclose red region in positive-negative quadrant
Notions of compactness and enclosure still apply

o This is a generalization of NMF
o We won’t discuss it further
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NMF: Learning Bases

Given a collection of data vectors (blue dots)

Goal: find a set of bases (blue arrows) such that they enclose the
data.
|deally, they must simultaneously enclose the smallest volume

0 This “enclosure” constraint is usually not explicitly imposed in the
standard NMF formulation

40



NMF: Learning Bases

Express every training vector as non-negative combination of bases

In linear algebraic notation, represent:

o Set of all training vectors as a data matrix V

A DxN matrix, D = dimensionality of vectors, N = No. of vectors

o All basis vectors as a matrix B

A DxK matrix , K is the number of bases

o The K weights for any vector V as a Kx1 column vector W
o The weight vectors for all N training data vectors as a matrix W

KxN matrix

ldeally V = BW
o All components of V, B and W are non-negative A1



NMF: Learning Bases

V = BW will only hold true if all training vectorsin V lie
inside the region enclosed by the bases

Learning bases is an iterative algorithm
Intermediate estimates of B do not satisfy V= BW

Algorithm updates B until V = BW is satisfied as closely
as possible

42



NMF: Minimizing Divergence

Define a Divergence between data V and approximation BW
o Divergence(V, BW) is the total error in approximating all vectors in V as BW
0 Must estimate non-negative B and W so that this error is minimized

Divergence(V, BW) can be defined in different ways
o L2: Divergence = XX (V; — (BW);)?
Minimizing the L2 divergence gives us an algorithm to learn Band W

0 KL: Divergence(V,BW) = X3, V; log(V; / (BW),)+ Z.Z; V; — 2%, (BW),

This is a generalized KL divergence that is minimum when V= BW
Minimizing the KL divergence gives us another algorithm to learn Band W

Other divergence forms (Bregman divergences) can also be used

43



NMF: Minimizing Divergence

Define a Divergence between data V and approximation BW
o Divergence(V, BW) is the total error in approximating all vectors in V as BW
0 Must estimate non-negative B and W so that this error is minimized

rgence(V, BW) can be defined in different ways
o L2: Divergence = XX (V; — (BW);)?
Minimizing the L2 divergence gives us an algorithm to learn Band W

o KL: Divergence(V,BW) = EZT-VU log(Vj /TBT/V)U)"' LY Vy — 2L (BW),

This is a generalized KL divergence that is minimum when V= BW
Minimizing the KL divergence gives us another algorithm to learn Band W

Other divergence forms (Bregman divergences) can also be used
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NMF: Minimizing L, Divergence

Divergence(V, BW) is defined as
2 E=||V-BW||2

Iterative solution: Minimize E such that B and
W are strictly non-negative

45



NMF: Minimizing L, Divergence

Learning both B and W with non-negativity

Divergence(V, BW) is defined as
1 E=||V-BW]|| 2
V ~ BW

Iterative solution:
0 B = |[VWT]
+

oW =|B'wW|,

o Subscript + indicates thresholding —ve values to O

46



NMF: Minimizing Divergence

Define a Divergence between data V and approximation BW
o Divergence(V, BW) is the total error in approximating all vectors in V as BW
0 Must estimate B and W so that this error is minimized

Divergence(V, BW) can be defined in different ways
o L2: Divergence = %L (V; — (BW),)?
Minimizing the L2 divergence givesiisanalgarithm to learn B and W

o KL: Divergence(V,BW) = X3 V; log(V; / (BW),)+ Z%; V; — ZZ; (BW),

This is a generalized KL divergence that is minimum when V = BW
Minimizing the KL divergence gives us another algorithm to learn B and W

For many kinds of signals, e.g. sound, NMF-based representations work
best when we minimize the KL divergence

47




NMF: Minimizing KL Divergence

Divergence(V, BW) defined as

Iterative update rules

Number of iterative update rules have been
proposed

The most popular one is the multiplicative update
rule..

48



NMF Estimation: Learning bases

The algorithm to estimate B and W to minimize the
KL divergence between V and BW:

Initialize B and W (randomly)

Iteratively update B and W using the following
formulae

4 ¥ )
B=Ba 2"/ w=we BV
1174 B'1

Iterations continue until divergence converges

0 In practice, continue for a fixed no. of iterations

49



Reiterating
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NMF learns the optimal set of basis vectors B, to approximate the data
in terms of the bases

It also learns how to compose the data in terms of these bases

o  Compositions can be inexact

The columns of B are the
B, bases

The columns of V are the

data

50




Learning building blocks of sound

From Bach’s Fugue in Gm

ZERETEO V =BW

= :;: — ' Each column of V is one spectral vector
bases Each column of B is one building
1 block/basis
g é % Each column of W has the scaling
é = factors for the bases to compose the
¢ ¢ ¢- ¢ .
corresponding column of V
P
| o~ All terms are non-negative
W . T .
A p—— | Learn B (and W) by applying NMF to V

Time —
51



Learning Building Blocks

Bo

bases i

a0

w0

o

0

.

-~

|

Basis-specific spectrograms
— e . B, - :ﬁ{.
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What about other data

R R T e
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Faces

o Trained 49 multinomial components on 2500 faces
Each face unwrapped into a 361-dimensional vector

o Discovers parts of faces
53



There is no “compactness” constraint

e No explicit “compactness” constraint on
bases

e Thered lines would be perfect bases:

N

e Enclose all training data without B
error .

e Algorithm can end up with these
bases

e If no. of bases K >= dimensionality
D, can get uninformative bases B,

v

e |f K< D, we usually learn compact representations
e NMF becomes a dimensionality reducing representation

e Representing D-dimensional data in terms of K weights,
where K< D

54



Representing Data using Known Bases

If we already have bases B, and are given a vector
that must be expressed in terms of the bases: V=) wB,
k

Estimate weights as:
o Initialize weights
0 lteratively update them using

W= @2
Bl
55



What can we do knowing the building blocks

Signal Representation
Signal Separation
Signhal Completion
Denoising

Signal recovery
Music Transcription
Etc.

56



Signal Separation
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= Can we separate mixed signals?

57



Undoing a Jigsaw Puzzle

From green
blocks
E From red

blocks

Composition

Building
blocks

Given two distinct sets of building blocks, can we
find which parts of a composition were
composed from which blocks 58



Separating Sounds

V estimate
1

given estimate

= From example of A, learn blocks A (NMF)

59



Separating Sounds

VB

given estilnate

From example of A, learn blocks A (NMF)
From example of B, learn B (NMF)

60



Separating Sounds

From mixture, separate out (NMF)
o Use known “bases” of both sources

0 Estimate the weights with which they combine in the
mixed signal 01



Separating Sounds

estimate ’B‘l“wl - -

B B |y

' estimate

estimate B , W2

Separated signals are estimated as the
contributions of the source-specific bases to the

mixed signal
62



Separating Sounds

T vem

B B, |y

|——— e given estimate L- —
o estimate

estimate B , W2

It is sometimes sufficient to know the bases for
only one source

0 The bases for the other can be estimated from the
mixed signal itself 63



Separating Sounds

5
z

“Raise my rent” by David Gilmour

Background music “bases” learnt
from 5-seconds of music-only
segments within the song

Lead guitar “bases” bases learnt
from the rest of the song

[

el 41— 4
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Norah Jones singing “Sunrise”

Background music bases learnt
from 5 seconds of music-only
segments
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Predicting Missing Data

= Use the building blocks to fill in “holes”

65



Filling in

Some frequency components are missing (left panel)
We know the bases
o But not the mixture weights for any particular spectral frame

We must “fill in” the holes in the spectrogram

o To obtain the one to the right
66



Learn building blocks

/,® @w sstimate

given rnate

Learn the building blocks from other examples of
similar sounds

o E.g. music by same singer

o E.g. from undamaged regions of same recording

67



Predict data

V = ?W estimate | 4 V = I%W

Modified bases (given) Full bases

“Modify” bases to look like damaged spectra
2 Remove appropriate spectral components

Learn how to compose damaged data with modified
bases

Reconstruct missing regions with complete bases

68



Filling in : An example

Madonna...

Bases learned from other Madonna songs

69



A more fun example

Reduced BW data

*Bases learned from this

Bandwidth expanded version

70



Poll 3

How is NMF useful for signal separation?

o It can be used to learn the compositional building
blocks (bases) of the sources

o It can be used to determine how the full set of
building blocks of all sources can be combined to
construct the signal spectrum

o It can be used to determine the optimal
contribution of the building blocks of individual
sources to the spectrum of the mixed signal

71



Poll 3

= How is NMF useful for signal separation?

a

It can be used to learn the compositional
building blocks (bases) of the sources

It can be used to determine how the full set of
building blocks of all sources can be
combined to construct the signal spectrum

It can be used to determine the optimal
contribution of the building blocks of
individual sources to the spectrum of the
mixed signal
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A Natural Restriction

b
7

B,

For K-dimensional data, can learn no more than
K-1 bases meaningufully

o At K bases, simply select the axes as bases

a2 The bases will represent all data exactly

73



Its an unnatural restriction

For K-dimensional spectra, can learn no more than K-1 bases
Nature does not respect the dimensionality of your spectrogram

E.g. Music: There are tens of instruments

0 Each can produce dozens of unique notes

o Amounting to a total of many thousands of notes

o Many more than the dimensionality of the spectrum

E.g. images: a 1024 pixel image can show millions of
recognizable pictures!

o Many more than the number of pixels in the image
74



Fixing the restriction: Updated model

-—

Can have a very large number of building blocks (bases)
o E.g. notes

But any particular frame is composed of only a small
subset of bases

o E.g. any single frame only has a small set of notes
75



The Modified Model

V = BW /' = B ¥/ Foronevector

Modification 1: \

a2 In any column of W, only a small number of entries have non-
zero value

0 l.e. the columns of W are sparse
0 These are sparse representations

Modification 2:

o B may have more columns than rows
0 These are called overcomplete representations

Sparse representations need not be overcomplete, but
overcomplete representations need sparsity to provide
useful decompositions




Imposing Sparsity

V =BW
E =Div(V,BW)

O=Div(V,BW)+ A |W|

Minimize a modified objective function
Combines divergence and ell-O norm of W

0 The number of non-zero elements in W

Minimize Q instead of E

2 Simultaneously minimizes both divergence and

number of active bases at any time
77



Imposing Sparsity

V =BW

0 = Div(V,BW) + I
O = Div(V,BW)+ 1| W|

Minimize the ell-O norm is hard
0 Combinatorial optimization
Minimize ell-1 norm instead

2 The sum of all the entries in W

0 Relaxation

Is equivalent to minimize ell-0

o We cover this equivalence later

Will also result in sparse solutions

78



Update Rules

Modified Iterative solutions

o In gradient based solutions, gradient w.r.t any W term now
includes A

o le.if dQ/AW=dE/AW + A

For KL Divergence, results in following modified
update rules

VjWT BT(BI;VJ
14 W=W®&

B=B®(
wr B'1+ 2

Increasing A makes the weights increasingly sparse .



Update Rules

Modified Iterative solutions

2 In gradient based solutions, gradient w.r.t any ' term
now includes A

o le. if dO/dW = dE/AW + )

Both B and W can be made sparse

(VJWT BT(BVWJ
B=B® 14 W=W&—:
W'+, B 1+ 4,

80



What about Overcompleteness?

Use the same solutions
Simply make B wide!

2 W must be made sparse

A
B W=W®—
wr B 1+ A4,

B=B®(

81



Sparsity: What do we learn

Without Sparsity With Sparsity

N

B,
Without sparsity: The model has an implicit limit: can learn
no more than D-1 useful bases

o If K>=D, we can get uninformative bases

Sparsity: The bases are “pulled towards” the data
o Representing the distribution of the data much more effectively

82



Sparsity: What do we learn
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Top and middle panel: Compact (non-sparse) estimator

o As the number of bases increases, bases migrate towards corners of the
orthant

Bottom panel: Sparse estimator

o Cone formed by bases shrinks to fit the data
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The Vowels and Music Examples

Left panel, Compact learning: most bases have significant energy in all frames

Right panel, Sparse learning: Fewer bases active within any frame

o Decomposition into basic sounds is cleaner
11755/18797
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Sparse Overcomplete Bases: Separation

3000 bases for each of the speakers
o The speaker-to-speaker ratio typically doubles (in dB) w.r.t compact bases

Regular bases g s i
i PanelsZandB gularlearnmg
Sparse bases -

NobDoD
g 9 0 0
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Sparseness: what do we learn

As solutions get more sparse, bases become more
informative

o In the limit, each basis is a complete face by itself.

0 Mixture weights simply select face

Sparse bases “Dense” weights

e o )'

o .- .I-&-&u—ﬁ-
Jg‘v‘i&e' 'T';: .:-
RSk =% i o Slew
8 Tyl g oy Ty e

Dense s Sprse eights
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Filling in missing information

A Qccludad Faces E. Recorstructions C.Orignal Test images

Mean SNR

= 19x19 pixel images (361 pixels)
» 1000 bases trained from 2000 faces b of Bel Componort

= SNR of reconstruction from overcomplete basis set more than 10dB
better than reconstruction from corresponding “compact” (regular) basis
set

87



Sparse decomposition for

() (]
Basis Vectors Mixture Weights Basis Vectors Mixture Weights
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4 b . ’ . " Sparsity Parameter
-

Given a number of examples of handwritten instances of numbers “2” and “3”
o Find bases for “2” and “3”

For any test instance, attempt to construct it using the bases for 2 and
(separately) the bases for 3

The set whose bases result in the better reconstruction is selected

Accuracy improves with increasing sparsity



Poll 4

Mark all that is true of sparse representations

o They can only be used when the number of
building blocks (bases/frames) is less than the
dimensionality of the data

o They attempt to estimate weights with the fewest
non-zero elements

o They model the data as the combination of the
fewest number of bases

o The solutions will be similar to that with regular
(non-sparse) decomposition if the number of
bases is less than the dimensionality of the data

89



Poll 4

Mark all that is true of sparse representations

o They can only be used when the number of
building blocks (bases/frames) is less than the
dimensionality of the data

o They attempt to estimate weights with the
fewest non-zero elements

o They model the data as the combination of the
fewest number of bases

o The solutions will be similar to that with regular
(non-sparse) decomposition if the number of
bases is less than the dimensionality of the data
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Extending the model

= In reality our building blocks are not spectra

= They are spectral patterns!
o Which change with time

91



Convolutive NMF

—
The building blocks of sound are spectral

patches!
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Convolutive NMF
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The bﬁding blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add 03




Convolutive NMF
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The bﬁding blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add o4



Convolutive NMF
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The bﬁding blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add .




Convolutive NMF
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The bﬁding blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add o6




Convolutive NMF
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The bﬁding blocks of sound are spectral
patches!

At each time, they combine to compose a patch
starting from that time

Overlapping patches add -



In Math

=
S =Y w(0)B()+> w,(DB,(t-D)+> w,(2)B,(t=2)+....= > > w,(7)B,(t—7)

S(t)=2 B,(1)®w,(1)

Each spectral frame has contributions from
several previous shifts 08



An Alternate Repesentation

T

J —_—— — =
& = T e S o i B e ey A (I R e P S B L e
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e e — e R et [ s S —— — oo

= ‘ = = e R o e e =
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-SSR e SN - Y E = T L e e [ S
oo 400

N S0 =Y. Y w(DB(t-7)= Y, Y wt-1)B,()
S(t) = ZZBi(T)Wi(t_T)

o

S = ZB(JW

B(t) is a matrix composed of the t-th columns of all bases

The i-th column represents the i-th basis

W is a matrix whose i-th row is sequence of weights applied to the
i-th basis
The superscript =2 represents a right shift by ¢ 99



Convolutive NMF

S=>"B(r)W
T t
S Lr 7S]
gw 1 B(t){%}
B(1) = B(1) ®>—; W=_Ywe_ L5
1.W T4 B(t)'1

Simple learning rules for Band W

ldentical rules to estimate W given B
o Simply don’t update B
Sparsity can be imposed on W as before if desired
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The Convolutive Model

= An Example: Two distinct sounds occurring with
different repetition rates within a signal

o Each sound has a time-varying spectral structure
INPUT SPECTROGRAM

= - -

i

li

mdoefge

c o o 0
o N » 0 O

c o 0o 0
o N M D @

malized Frequency (xuradisample)  Nomalized Frequency (xradisample

Eiscovered “patch” Contribution of individual bases to the recording 101
ases



Example applications: Dereverberation

:Q)

From “Adrak ke Panje” by Babban Khan

Treat the reverberated spectrogram as a composition of
many shifted copies of a “clean” spectrogram

o “Shift-invariant” analysis

NMF to estimate clean spectrogram
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Pitch Tracking

Kernel distribution Input Kemel distibution -~ Input
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— i
Impulse distribution Impulse distribution
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S - — '
R i
'|_I-+
- - e

Left: A segment of a song
Right: Smoke on the water

”I

o “Impulse” distribution captures the “melody
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Pitch Tracking

Kemel 1 Kemsl 2 Input
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Simultaneous pitch tracking on multiple instruments

Can be used to find the velocity of cars on the
highway!!

o “Pitch track” of sound tracks Doppler shift (and velocity) 104



Example: 2-D shift invariance

Criginal Recons truction

diddl [ . [ | ! o s il
50 100 150 200 260 300 350 400 450 500

Basis Weights

I I . .
5 10 15 20 a0 100 150 200 250 300 350 400 450

Sparse decomposition employed in this example

o Otherwise locations of faces (bottom right panel) are not precisely determined
11755/18797 105



Example: 2-D shift invarince

The original figure has multiple handwritten
renderings of three characters

o In different colours

The algorithm learns the three characters and
identifies their locations in the figure

Input data

7

ko]

/

{

4

'

106



Example: Transform Invariance

Top left: Original figure
Bottom left — the two bases discovered
Bottom right —

0 Left panel, positions of “a”

o Right panel, positions of “I”

Top right: estimated distribution underlying original figure



Example: Higher dimensional data

Video example

Description of Input Kemal 1
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Lessons learned

Linear decomposition when constrained with
semantic constraints e.g. non-negativity can
result in semantically meaningful bases

NMF: Useful compositional model of data

Really effective when the data obey
compositional rules..
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