Machine Learning for Signal Processing Independent Component Analysis

Instructor: Adnan Yunus Slides (the good ones) are by Patrick Conrey **Example 11 Control Andrysis**
11755/18797
11755/18797

Recap: Correlated Variables

• Expected value of Y given X varies with X – And vice versa Examples on X varies with X

Uncorrelatedness

- Knowing X does not tell you what the average value of Y is
	- And vice versa

Recap: Uncorrelatedness

- $E[X_1] = constant$
- $E[X_2] = constant$
- $E[X_2|X_1] = constant$
- $E[X_1X_2] = E[X_1]E[X_2]$
- All will be 0 for centered data

EXAMPLE 4
\n
$$
E\left[\binom{X_1}{X_2}(X_1 \ X_2)\right] = E\left(\frac{X_1^2}{X_1X_2} \ \frac{X_2X_1}{X_2^2}\right) = \left(\frac{E[X_1^2]}{0} \ \frac{0}{E[X_2^2]}\right) = diagonal matrix
$$
\n**Example 4**
\n**Example 5**
\n**Example 6**
\n**Example 11**
\n**Example 11**
\n**Example 13**
\n**Example 13**
\n**Example 14**
\n**Example 14**
\n**Example 15**
\n**Example 16**
\n**Example 18**
\n**Example 18**
\n**Example 19**
\n**Example 19**
\n**Example 18**
\n**Example 19**
\n**Example 18**
\n**Example 19**
\n**Example 19**
\n**Example 10**
\n**Example 10**
\n**Example 11**
\n**Example 11**
\n**Example 11**
\n**Example 13**
\n**Example 14**
\n**Example 15**
\n**Example 16**
\n**Example 18**
\n**Example 19**
\n**Example 18**
\n**Example 19**
\n**Example 19**
\n**Example 10**
\n**Example 10**
\n**Example 11**
\n**Example 11**
\n**Example 11**
\n**Example 13**
\n**Example 18**
\n**Example 18**
\n**Example 19**
\n**Example 11**
\n**Example 11**
\n**Example 11**
\n**Example 13**
\n**Example 14**
\n**Example 15**
\n**Example 18**
\n**Example 19**
\n**Example 19**
\n**Example 11**
\n**Example 11**
\n

• If X is a matrix of vectors, XX^T = diagonal

Recap: Decorrelation

• So how does one transform the correlated variables (X_1, X_2) to the uncorrelated (X'_1, X'_2)

Recap: PCA

- Let X be the matrix of correlated data vectors
	- Each component of X informs us of the mean trend of other components
- Need a transform T such that if $Y = TX$, the covariance of Y is diagonal
	- $-$ YY^T is diagonal
- **PCA:** T is the (transposed) matrix of Eigenvectors of the covariance matrix $\mathbf{X} \mathbf{X}^{\mathrm{T}}$ iagonal
posed) matrix of
covariance matrix $\mathbf{X}\mathbf{X}^\text{T}$

- PCA finds the principal axes of the scatter of the data – The Eigen vectors of the covariance matrix axes of the scatter of the data

e covariance matrix

i transforms the principal axes

e main axes of the space

fect of decorrelating the data

Fact of decorrelating the data
- The PCA transformation transforms the principal axes of the data scatter to the main axes of the space
- This also has the *side effect* of decorrelating the data

PCA decorrelates data

- For centered (zero-mean) data X
- The Eigenvectors of the covariance matrix are identical to the left singular vectors

SVD: X=USVT

• We can write $Y = SV^T$ and

 $X = UV$ (and $Y = U^TX$)

– i.e. we're setting the transform $T=U^T$ and $Y=TX$

- Y is the representation of X in terms of the columns of U $Y = U^{T}X$
sform T=U^T and **Y** = **TX**
f **X** in terms of the columns of **U**
: $SS^{T} =$ Diagonal
ons **Y** are uncorrelated
- But

 $YY^T = (SV^TVS^T) = SS^T = Diagonal$

• I.e. the new representations Y are uncorrelated

Recap: The statistical concept of Independence

• Two variables X and Y are *dependent* if If knowing X gives you any information about Y

• X and Y are *independent* if knowing X tells you nothing at all of Y $\frac{11755}{11755}{18797}$

Recap: Independence

- Independence: Two random variables X and Y are independent iff:
	- Their joint probability equals the product of their individual probabilities
- $P(X,Y) = P(X)P(Y)$
- Independence implies uncorrelatedness
- $-$ The average value of X is the same regardless of the value of Y $P(X,Y) = P(X)P(Y)$

independence implies uncorrelatedness
 $P(X,Y) = P(X)P(Y)$
 $\cdot E[X|Y] = E[X]$
 $-$ But uncorrelatedness does not imply independence S uncorrelatedness
X is the same regardless of the
does not imply independence
11755/18797
	- $E[X|Y] = E[X]$
	-

Recap: Independence

- Independence: Two random variables X and Y are independent iff:
- The average value of **any function** of X is the same regardless of the value of Y

 $-$ Or any function of Y

• $E[f(X)g(Y)] = E[f(X)] E[g(Y)]$ for all f(), g() 7
] E[g(Y)] for all f(), g()
11755/18797

Poll 1

- The objective of PCA is to decorrelate the data
	- True
	- False
- If two random values x and y are independent, then which of the following is true of $E[x^2y^2]$? Example of eindependent,
Internal is true of E[x²y²]?
11755/18797
	- $E[x^2y^2] = E[x]^2E[y]^2$
	- $E[x^2y^2] = E[x^2]E[y^2]$]

Poll 1

- The objective of PCA is to decorrelate the data
	- True

– False

- If two random values x and y are independent, then which of the following is true of $E[x^2y^2]$? Example of eindependent,
Internal is true of E[x²y²]?
11755/18797
	- $E[x^2y^2] = E[x]^2E[y]^2$
	- $E[x^2y^2] = E[x^2]E[y^2]$]

Moving on: Finding bases…

Recap: Finding bases, aka building blocks..

• Find the bases W that best explain the data in a meaningful way

Recap: Finding bases, aka building blocks..

A least squares solution

 $\mathbf{H} = \arg \min_{\overline{\mathbf{W}} \mid \overline{\mathbf{H}}} ||\mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} ||_F^2 + \Lambda (\overline{\mathbf{W}}^T \overline{\mathbf{W}} - \mathbf{I})$ $\mathbf{W}, \mathbf{H} = \arg \min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \|\mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}}\|_F^2 + \Lambda (\overline{\mathbf{W}}^T \overline{\mathbf{W}} - \mathbf{I})$ \overline{F}

- Constraint: W is orthogonal $-$ W^TW = I
- The solution:
	- $-$ W are the Eigen vectors of MMT

 $-$ PCA!!

- $M \sim WH$ is an approximation
- Also, the rows of H are *decorrelated*

PCA

$M = WH$

- The orthogonal columns of W are the bases we have learned The orthogonal columns of **W** are the bases we

have learned

— The linear "building blocks" that compose the music

They represent "learned" notes

— $\mathbf{w}_i \mathbf{h}_i$ is the contribution of the ith note to the music

• e orthogonal columns of **W** are the

e learned

he linear "building blocks" that compo

ey represent "learned" notes
 $\mathbf{v}_i \mathbf{h}_i$ is the contribution of the ith note

• \mathbf{w}_i is the ith column of **W**

• $\mathbf{h$ e learned

he linear "building blocks" that compo

ey represent "learned" notes
 $v_i h_i$ is the contribution of the ith note

• w_i is the ith column of W

• h_i is the ith row of H
	- The linear "building blocks" that compose the music
- They represent "learned" notes
- rned" notes
tion of the ith note to the music
of W
H
	-
	-

So how does that work?

• There are 12 notes in the segment, hence we try to estimate 12 notes.. 1000 1000 1200 1400

11755/18797

11755/18797 11755/18797

So how does that work?

- There are 12 notes in the segment, hence we try to estimate 12 notes.. The segment, hence we
otes..
d
 $11755/18797$
- Results are not good

- PCA decorrelates the data incidentally
- The focus is on the orthogonality of the axes, decorrelated representations is a side effect
- What if we focus, instead, on *decorrelating* the data directly? data *Incidentally*
thogonality of the axes,
ntations is a side effect
tead, on *decorrelating* the

PCA through decorrelation of notes

 $\mathbf{W}, \mathbf{H} = \arg \min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} ||\mathbf{M} - \overline{\mathbf{H}}||_F^2 + \Lambda(\overline{\mathbf{H}} \overline{\mathbf{H}}^T - \mathbf{D})$ F

• Different constraint: Constraint H to be decorrelated $- H H^{T} = D$ 11755/18797

11755/18797

11755/18797

Decorrelation

- Alternate view: Find a matrix **B** such that the rows of H=BM are uncorrelated 1
 1 a matrix B such that the
 uncorrelated
 already
 already
- PCA is one solution already
- Are there others?

• Are there other decorrelating axes? orrelating axes ?
 $\begin{array}{l} \text{3.1755/18797} \end{array}$

• But PCA will find only one of them, why?

A decorrelation-based decomposition can find either of them.
The colution is non-unique The solution is non-unique

 $\int_{0}^{\pi} \frac{1}{\tan x} dx$ What is special about the blue axes, and how can we modify our decomposition to find them instead

A decorrelation-based decomposition can find either of them.
The colution is non-unique The solution is non-unique

• Are there other decorrelating axes? orrelating axes ?
 $\begin{array}{l} \text{3.1755/18797} \end{array}$

• The decorrelation-based decomposition has multiple solutions, but PCA will find only one of them

 $\begin{array}{|c|c|c|}\hline \text{\textcolor{blue}{\bullet}} & \text{\textcolor{blue}{\bullet}} & \text{\textcolor{blue}{\bullet}} \\ \hline \text{\textcolor{blue}{\bullet}} & \text{\textcolor{blue}{\bullet}} & \text{\textcolor{blue}{\bullet}} & \text{\textcolor{blue}{\bullet}} \\ \hline \end{array}$. What is special about the blue axes, and how can we modify our decomposition to find them instead

• The decorrelation-based decomposition has multiple solutions, but PCA will find only one of them

What else can we look for?

- Assume: The "transcription" of one note does not depend on what else is playing cription" of one note does
t else is playing
ment piece, instruments are
tly of one another
t still..
11755/18797
	- Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still..

What else can we look for?

- Assume: The "transcription" of one note does not depend on what else is playing
	- Or, in a multi-instrument piece, instruments are playing independently of one another
- Attempting to find statistically independent components of the mixed signal or one note does not depend on wnat
ece, instruments are playing independently
Il**y independent components of the**
nalysis
	- Independent Component Analysis

Formulating it with Independence

 $\mathbf{H} = \arg \min_{\overline{\mathbf{w}} \in \mathbb{H}} ||\mathbf{M} - \overline{\mathbf{W}} \mathbf{H}||^2_F + \Lambda$ (rows of **H** are independent) $\mathbf{W}, \mathbf{H} = \arg \min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{WH}} \|_{F}^{2} + \Lambda (rows \text{ of } \mathbf{H} \text{ are independent})$

• Impose statistical independence constraints on decomposition dependence constraints
 $\begin{aligned} & \underset{\footnotesize \text{11755/18797}}{\text{11755/18797}} \end{aligned}$

Independent Component Analysis

Onent Analysis searches

combinations of bases to

kes the representations in

s maximally independent • Independent Component Analysis searches through all possible combinations of bases to find the set that makes the representations in terms of these bases maximally independent

Poll 2

- If there are multiple decorrelating axes, the solution to PCA will always be indeterminate
	- True
	- False
- Independent Component Analysis attempts to decompose a data matrix into the product of a bases matrix and a weights matrix, such that the components of the weights vectors are statistically independent Analysis attempts to decompose
duct of a bases matrix and a
the components of the weights
dependent
 $\frac{11755/18797}{35}$
	- True
	- False

Poll 2

- If there are multiple decorrelating axes, the solution to PCA will always be indeterminate
	- True
	- False
- Independent Component Analysis attempts to decompose a data matrix into the product of a bases matrix and a weights matrix, such that the components of the weights vectors are statistically independent Analysis attempts to decompose
duct of a bases matrix and a
the components of the weights
dependent
 $\frac{11755/18797}{36}$
	- True
	- False
Changing problems for a bit

- Two people speak simultaneously
- Recorded by two microphones
- Each recorded signal is a mixture of both signals

A Separation Problem

- $H =$ "transcription"
- Separation challenge: Given only M estimate H
- Identical to the problem of "finding scores (and notes)"

A Separation Problem

- Separation challenge: Given only M estimate H
- Identical to the problem of "finding scores"

Example: Sources & Mixing

Problem Statement

41

Imposing Statistical Constraints

- $M = WH$
- Given only M estimate H
- $H = W^{-1}M = AM$
- Only known constraint: The rows of H are independent
- Estimate A such that the components of AM are statistically independent The rows of **H** are

e components of **AM** are

x
 $\frac{x}{11755/18797}$
	- $-$ A is the *unmixing* matrix

**n inited signals H from the mixed signal M
11755/18797
11755/18797** In order to recover the original unmixed signals H from the mixed signal M

- Solution 1: "Recover" H by decorrelating M
	- We know uncorrelated signals have diagonal correlation matrix
- Find a transform A such that the rows of H=AM are decorrelated
	- $-$ i.e. HH^T = Diagonal (assuming 0 mean signals)
	- $-$ A was obtained by eigen decomposition of the correlation matrix of M ing 0 mean signals)

	ecomposition of the correlation matrix of **M**

	of **MM^T**

	, however

	pendence

	hat will enforce independence?

	11755/18797

	11755/18797
		- I.e. by Eigen decomposition of MM^T
- We know this does not work, however
- Can we do the same for independence
	- Is there a linear transform that will enforce independence?

An ugly algebraic solution

- We *decorrelated* signals by diagonalizing the covariance matrix through Eigen decomposition
- Is there a simple matrix we could just similarly diagonalize to make them independent?
	- Some matrix whose Eigenvector matrix gives us the transform A such that the rows of AM are independent \bullet them independent?
Eigenvector matrix gives us the
nat the rows of AM are
 \bullet

Actual question

• Is there a linear transform that can transform a scatter like this

• To something like this:

Actual question

• Is there a linear transform that can transform a scatter like this

Will not work for Gaussian data

- Concept behind ICA:
	- Original sources had some independent distribution
		- Assume all had identical variance
	- "Mixing" rotated the joint distribution
	- ICA finds the axes that "unmixes" the distribution
- In principle, searches through all rotations such that the distribution is axis parallel again ndependent distribution

iance

istribution

ixes" the distribution

th all rotations such that the distribution is axis

original independent distribution

11755/18797

48
	- This should give us back the original independent distribution

Will not work for Gaussian data

- For independent Gaussian RVs of equal variance, a mixing rotation results in an effectively unchanged distribution 11755/18797
11755/18797
11755/18797
11755/18797
11755/18797
	- The unmixing rotation cannot be determined through inspection of the distribution

Returning to our problem

• Is there a linear transform that can transform a scatter like this

• To something like this:

Zero Mean

- Usual to assume zero mean processes
	- Otherwise, some of the math doesn't work well
- $M = WH$ $H = AM$
- If mean(M) = 0 => mean(H) = 0

$$
-\mathrm{E}[\mathbf{H}] = \mathbf{A}.\mathrm{E}[\mathbf{M}] = \mathbf{A}\mathbf{0} = \mathbf{0}
$$

 $-$ First step of ICA: Set the mean of M to 0

CA: Set the mean of M to 0
\n
$$
\mu_{m} = \frac{1}{cols (M)} \sum_{i} m_{i}
$$
\n
$$
\mathbf{m}_{i} = \mathbf{m}_{i} - \mu_{m} \qquad \forall i
$$
\n
\nlumps of M

$$
\mathbf{m}_{i} = \mathbf{m}_{i} - \mu_{\mathbf{m}} \qquad \forall i
$$

 $-$ m_i are the columns of M

Actual process

- To simplify the process, we will first *decorrelate* the data and whiten itFill first *decorrelate* the data and whiten

ame along all dimensions
 $\frac{11755/18797}{52}$
	- So that the variance is the same along all dimensions

Actual process

- To simplify the process, we will first *decorrelate* the data and whiten it
	- So that the variance is the same along all dimensions
- Then we search for the axes that make the data independent

Decorrelating and Whitening

- Eigen decomposition $MM^T = E\Lambda E^T$
- $C = \Lambda^{-1/2}E^{T}$
- $X = CM$
- ted but *whitened*

₁-1/2 $E^T E\Lambda E^T E\Lambda$ ^{-1/2} = I
 atrix

11755/18797
- C is the *whitening matrix*

Uncorrelated != Independent

• Whitening merely ensures that the resulting signals are uncorrelated, i.e. **Correlated != Independen**
ng merely ensures that the resulting signa
lated, i.e.
E[x_ix_j] = 0 if i != j

• This does not ensure higher order moments are also decoupled, e.g. it does not ensure that

$$
E[\mathbf{x}_i^2 \mathbf{x}_j^2] = E[\mathbf{x}_i^2] E[\mathbf{x}_j^2]
$$

- This is one of the signatures of independent RVs
- Lets explicitly decouple the fourth order moments

• Our objective: Find the matrix B that makes the rows of BX independent

 $- H = BX$

- Will multiplying X by B re-correlate the components? the components?

11755/18797

11755/18797

56
- Not if **B** is unitary
	- $-$ BB^T = B^TB = I
- $H H^T = BXX^T B^T = BB^T = I$
	- $-$ Because $XX^T = I$
- So we want to find a *unitary* matrix
	- Since the rows of H are uncorrelated
		- Because they are independent

An ugly algebraic solution

• We *decorrelated* signals by diagonalizing the covariance matrix through Eigen decomposition

- Is there a simple matrix we could just similarly diagonalize to make them independent?
	- Some matrix whose Eigenvector matrix gives us the transform A such that the rows of AM are independent The *independent?*

	The *independent?*

	Eigenvector matrix gives us the

	hat the rows of **AM** are

	Eigenvector matrix gives us the

An ugly algebraic solution

- We *decorrelated* signals by diagonalizing the covariance matrix through Eigen decomposition We *decorrelated* signals by diagonalizing the
covariance matrix through Eigen decomposition
Is there a simple matrix we could just similarly
diagonalize to make them independent?
- Not really, but there is a matrix we can
- Is there a simple matrix we could just similarly
	- to make fourth-order moments independent The *independent?*

	The *independent?*

	It is a matrix we can diagonalize

	It moments independent

	In made second-order moments

	In made second-order moments
		- Just as decorrelation made second-order moments independent

Emulating Independence

H

- The rows of H are uncorrelated
	- $-$ E[h_ih_i] = E[h_i]E[h_i]
	- $-$ h_i and h_i are the ith and jth components of any vector in H
- The fourth order moments are independent $J⁴¹$ components of any vector in **H**
nts are independent
 $E[\mathbf{h}_k]E[\mathbf{h}_l]$
 $E[\mathbf{h}_k]$
 \cdots
 $E[\mathbf{h}_k]$
	- $-$ E[h_ih_jh_kh₁] = E[h_i]E[h_j]E[h_k]E[h₁]
	- $-$ E[$\mathbf{h}_i^2 \mathbf{h}_j \mathbf{h}_k$] = E[\mathbf{h}_i^2]E[\mathbf{h}_j]E[\mathbf{h}_k] \mathbf{I}
	- $-$ E[**h**_i²]²] = E[**h**_i²]E[**h**_j²] \mathbf{I}
	- Etc.

FOBI: Freeing Fourth Moments

- Find **B** such that the rows of $H = BX$ are independent
- The fourth moments of H have the form: $E[\mathbf{h}_i \; \mathbf{h}_j \; \mathbf{h}_k \; \mathbf{h}_l]$
- If the rows of H were independent $E[\mathbf{h}_i \; \mathbf{h}_j \; \mathbf{h}_k \; \mathbf{h}_l] = E[\mathbf{h}_i] E[\mathbf{h}_j] E[\mathbf{h}_k] E[\mathbf{h}_l]$
- Solution: Compute **B** such that the fourth moments of $H = BX$ are decoupled
	- $-$ While ensuring that **B** is Unitary
- FOBI: Fourth Order Blind Identification

ICA: Freeing Fourth Moments

$$
\mathbf{H} = \begin{bmatrix} \boldsymbol{h}_{k} & \boldsymbol{h}_{k} & \boldsymbol{h}_{k} \end{bmatrix}
$$

Objective: Find a matrix B such that the rows of H=BX are statistically independent

Define a matrix D that would be diagonal if the rows of BX are independent

Compute B such that this matrix becomes diagonal

- Create a matrix of fourth moment terms that would be diagonal if the rows of H were independent, and diagonalize it
- A good candidate: the weighted correlation matrix of H

$$
\boldsymbol{D} = E\big[\|\boldsymbol{h}\|^2 \boldsymbol{h}\boldsymbol{h}^{\mathrm{T}}\big] = \sum_k \|\boldsymbol{h}_k\|^2 \boldsymbol{h}_k \boldsymbol{h}_k^{\mathrm{T}}
$$

- h are the columns of H
- $-$ Assuming h is real, else replace transposition with Hermitian

ICA: The D matrix

ICA: The D matrix

ICA: The D matrix
\n
$$
D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \cdots \\ d_{21} & d_{22} & d_{23} & \cdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}
$$
\n
$$
d_{ij} = \frac{1}{\cosh(\mathbf{H})} \sum_{k} \left(\sum_{l} h_{kl}^{2} \right) h_{kl} h_{kj}
$$
\n• If the h_i terms were independent and zero mean
\n• For $i! = j$ (off-diagonal elements)

- If the h_i terms were independent and zero mean
-

$$
E\left[h_i h_j \sum_l h_l^2\right] = E\left[h_i^3\right] E\left[h_j\right] + E\left[h_i\right] E\left[h_j^3\right] + E\left[h_i\right] E\left[h_j\right] \sum_{l \neq i, l \neq j} E\left[h_l^2\right] = \mathbf{0}
$$

• For $i = j$ (diagonal elements)

 $- E[h_i h_j \sum_l h_l^2] = E[h_i^4] + E[h_i^2] \sum_{l=1}$ $\lfloor l \cdot l \rfloor - L \lfloor l \cdot l \rfloor + L \lfloor l \cdot l \rfloor \rfloor L$ \mathcal{L} \mathcal{L} $\mathcal{L}[h^2]$ \mathcal{L} $\mathcal{L}[h^2]$ i] Δ l \neq i α [n_l] $2[\nabla$ $F[h^2] + 0$ $l \rfloor + \mathbf{U}$ $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ + 0 $l \neq i$ $\begin{bmatrix} l \\ l \end{bmatrix}$ $\begin{bmatrix} l \\ l \end{bmatrix}$ $\begin{bmatrix} l \\ l \end{bmatrix}$

• i.e., if h_i were independent, D would be a diagonal matrix $-$ Let us diagonalize D

Diagonalizing D

- Recall: $H = BX$
	- $-$ **B** is what we're trying to learn to make H independent
	- $-$ Assumption: **B** is unitary, i.e. $\mathbf{B}^T \mathbf{B} = \mathbf{I}$

Objective: Find a matrix B such that the rows of H=BX are statistically independent

Define a matrix D that would be diagonal if the rows of BX are independent

Compute B such that this matrix becomes diagonal

- Note: if $H = BX$, then each vector $h = Bx$
- The fourth moment matrix of H is
- **B** is what we're trying to learn to

make **H** independent

 Assumption: **B** is unitary, i.e. $B^{T}B = I$

 Note: if $H = BX$, then each vector $h = Bx$

 The fourth moment matrix of **H** is

 $D = E[h^{T} h h h^{T}] = E[x^{T}B^{T}Bx Bx x^{$ be diagonal if the rows of

unitary, i.e. $\mathbf{B}^T \mathbf{B} = \mathbf{I}$

compute B such that this

matrix becomes diagonal

compute B such that this

matrix of \mathbf{H} is
 $= \mathbf{E}[\mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} \mathbf{B} \mathbf{x} \mathbf{x}^T \math$ unitary, i.e. $\mathbf{B}^T \mathbf{B} = \mathbf{I}$
 $\frac{\text{Compute B such that this
matrix becomes diagonal}}{\text{matrix becomes diagonal}}$

Then each vector $\mathbf{h} = \mathbf{B} \mathbf{x}$
 $= \mathbf{E}[\mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} \mathbf{x}^T \mathbf{B}^T]$
 $= \mathbf{E}[\mathbf{x}^T \mathbf{x} \mathbf{x} \mathbf{x}^T] \mathbf{B}^T$
 $= \mathbf{B} \mathbf{E}[\math$ $=$ **B** E[||**x**||² **xx**^T]**B**^T

Diagonalizing D

- Objective: Estimate **B** such that the fourth moment of $H = BX$ is diagonal
- Compose $\mathbf{D}_{\mathbf{x}} = \sum_{k} ||\mathbf{x}_{k}||^{2} \mathbf{x}_{k} \mathbf{x}_{k}^{T}$
- Diagonalize D_x via Eigen decomposition $D_x = U \Lambda_H U^T$ gen decomposition $_{\scriptscriptstyle 11755/18797}$
- $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$
	- $-$ That's it!!!!

B frees the fourth moment

 $D_x = U \Lambda U^T$; $B = U^T$

- U is a unitary matrix, i.e. $U^{T}U = UU^{T} = I$ (identity)
- $H = BX = U^TX$
	- $\mathbf{h} = \mathbf{U}^T \mathbf{x}$
- The fourth moment matrix of H is $$

$$
\mathbf{D} = \mathbf{U}^{\mathrm{T}} \mathbf{E}[\|\mathbf{x}\|^2 \mathbf{x} \mathbf{x}^{\mathrm{T}}] \mathbf{U}
$$

$$
= \mathbf{U}^{\mathrm{T}} \mathbf{D}_{\mathbf{x}} \mathbf{U}
$$

$$
= \mathbf{U}^{\mathrm{T}} \mathbf{U} \Lambda_{\mathrm{H}} \mathbf{U}^{\mathrm{T}} \mathbf{U} = \Lambda_{\mathrm{H}}
$$

• The fourth moment matrix of $H = U^TX$ is Diagonal!!

Overall Solution

- Objective: Estimate A such that the rows of $H =$ AM are independent **Overall Solution**

Dbjective: Estimate A such that the rows of H =
 AM are independent

itep 1: *Whiten M*
 $-C = \Lambda^{-1/2}E^{T}$ where Λ and E are the eigen value and

eigen vector matrices of MM^{T}
 $-X = CM$ jective: Estimate A such that the rows of
 M are independent
 \therefore p 1: *Whiten M*
 $\mathbf{C} = \Lambda^{-1/2} \mathbf{E}^T$ where Λ and \mathbf{E} are the eigen value a

eigen vector matrices of $\mathbf{M} \mathbf{M}^T$
 $\mathbf{X} = \mathbf{C} \mathbf{M$
- Step 1: Whiten M
	-

 $- X = CM$

- Step 2: Free up fourth moments on X
	- B is the (transpose of the) matrix of Eigenvectors of X.diag(X^TX).X^T

 $- A = BC$

FOBI for ICA

- Goal: to derive a matrix \bf{A} such that the rows of \bf{A} \bf{M} are independent **FOBI for ICA**

Goal: to derive a matrix **A** such that the

independent

Procedure:

1. "Center" **M**

2. Compute the autocorrelation matrix R_{MM} of

3. Compute whitening matrix **C** via Eigen decc **FOBI for ICA**

Goal: to derive a matrix **A** such that the rows of **AM** are

independent

Procedure:

1. "Center" **M**

2. Compute the autocorrelation matrix R_{MM} of **M**

3. Compute whitening matrix **C** via Eigen decompo **Solution FOBI for ICA**
 Solution: Consider the compute white matrix **A** such that the rows of **AM** are

independent

2. Compute the autocorrelation matrix R_{MM} of **M**

3. Compute whitening matrix **C** via Eigen decomp Goal: to derive a matrix **A** such that the rows
independent
Procedure:
1. "Center" **M**
2. Compute the autocorrelation matrix R_{MM} of **M**
3. Compute whitening matrix **C** via Eigen decomposi
 $R_{MM} = E\Lambda E^{T}$, $C = \Lambda^{-1/2}E^{T}$
- Procedure:
	-
	-
- $R_{\text{MM}} = \text{E}\Lambda\text{E}^{\text{T}}, \quad C = \Lambda^{-1/2}\text{E}^{\text{T}}$ independent

Procedure:

1. "Center" **M**

2. Compute the autocorrelation matrix R_{MM} of **M**

3. Compute whitening matrix **C** via Eigen decomposi
 $R_{MM} = EAE^{T}$, $C = \Lambda^{-1/2}E^{T}$

4. Compute $X = CM$

5. Compute the fourth mo Procedure:

1. "Center" **M**

2. Compute the autocorrelation matrix R_{MM} of **M**

3. Compute whitening matrix C via Eigen decomposition
 $R_{MM} = EAE^{T}$, $C = \Lambda^{-1/2}E^{T}$

4. Compute $X = CM$

5. Compute the fourth moment matrix **Procedure:**

1. "Center" **M**

2. Compute the autocorrelation matrix

3. Compute whitening matrix **C** via Eig
 $R_{MM} = E\Lambda E^{T}$, $C = \Lambda^{-1/2}E^{T}$

4. Compute $X = CM$

5. Compute the fourth moment matrix

6. Diagonalize **D'** vi 2. Compute the autocorrelation matrix R_{MM}

3. Compute whitening matrix C via Eigen d
 $R_{MM} = EAE^{T}$, $C = A^{-1/2}E^{T}$

4. Compute $X = CM$

5. Compute the fourth moment matrix D'=

6. Diagonalize D' via Eigen decomposition

	-
	- $= E[||\mathbf{x}||^2 \mathbf{x} \mathbf{x}^{\mathrm{T}}]$
	-
	- 7. $\mathbf{D}' = \mathbf{U} \Lambda_{\mathrm{H}} \mathbf{U}^{\mathrm{T}}$
	-
- The fourth moment matrix of $H=A\mathbf{M}$ is diagonal
	- Note that the autocorrelation matrix of H will also be diagonal

ICA by diagonalizing moment
matrices matrices

- FOBI is not perfect
	- Only a subset of fourth order moments are considered
- **CA by diagonalizing moment

matrices**

I is not perfect

I is not perfect

I is not perfect
 ourth-order moment sate considered
 ourth-order moment matrix

fourth-order moment matrix

fourth-order moment matrix **have chose chosen is not perfect**
have chosen is not perfect
by a subset of fourth order moments are considered
Diagonalizing the particular fourth-order moment matrix we
have chosen is not guaranteed to diagonalize eve fourth-order moment matrix • FOBI is not perfect

— Only a subset of fourth order moments are considered

• Diagonalizing the particular fourth-order moment matrix we

have chosen is not guaranteed to diagonalize every other

fourth-order moment mat • Diagonalizing the particular fourth-order moment matrix we
have chosen is not guaranteed to diagonalize every other
fourth-order moment matrix
ADE: (Joint Approximate Diagonalization of
Eigenmatrices), J.F. Cardoso
— Joi
- Eigenmatrices), J.F. Cardoso
	- matrices

Poll 3

- Which of the following statements are true of FOBI
	- It computes a transform that makes all fourth-order moments independent
	- It requires a first pre-whitening step
	- The transform is the Eigenvector matrix of the fourth-order moment matrix
	- The transform is the product of the Eigenvector matrix of the fourth-order moment matrix of the whitened data, and the whitening matrix obtained through PCA genvector matrix of the fourth-order
bduct of the Eigenvector matrix of
int matrix of the whitened data, and
btained through PCA
11755/18797

Poll 3

- Which of the following statements are true of FOBI
	- It computes a transform that makes all fourth-order moments independent
	- It requires a first pre-whitening step
	- The transform is the Eigenvector matrix of the fourth-order moment matrix
	- The transform is the product of the Eigenvector matrix of the fourth-order moment matrix of the whitened data, and the whitening matrix obtained through PCA genvector matrix of the fourth-order
**oduct of the Eigenvector matrix of
ent matrix of the whitened data,
rix obtained through PCA**
Al1755/18797

Lets try a different tack

• Use the statistical properties of mixing…
The Central Limit Theorem

- Sum of independent random variables will tend toward a Gaussian distribution
- Even if the independent random variables don't have a Gaussian distribution!

• The sum will almost always be "more" Gaussian than the component signals

– Even if the independent RVs are not Gaussian

- Two people speak simultaneously are recorded by two microphones
	- Each recorded signal is a mixture of both signals
- Find a linear transform that unmixes them

Problem setting and notation

- Independent signals S_1 ... S_N (arranged as a vector s) have been mixed by mixing matrix A to generate mixed output x
- We need to find a matrix W that will unmix x to recover s

a
\n
$$
\frac{x_1(0) = a_{21}s_1(0) + a_{22}s_2(0)}{a_{21}}
$$
\n
$$
\frac{x_2(0) = a_{21}s_1(0) + a_{22}s_2(0)}{a_{22}}
$$
\n
$$
\frac{x_1}{x_2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{22} & a_{22} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}
$$
\n
$$
\frac{x_1}{x_2} = \mathbf{A}s
$$
\n
$$
y = \mathbf{W}^T x
$$
\n
$$
s.t. y \approx x
$$

Let each s_i be identically distributed Let's obtain one of the sources

$$
y = w^T x
$$

Here, w is a column of W

$$
y = w^T x
$$

Suppose, w^T is a row of the mixing matrix's inverse $(W^T = A^{-1})$. Then y would be one of the independent sources:

$$
x = As \rightarrow s = A^{-1}x
$$

Useful Relations:

\n
$$
x = As \quad y = W^T x
$$
\n
$$
y = w^T x
$$

Let's define a convenient variable:

$$
z = A^T w
$$

And let's do some substitutions:

$$
y = w^T x \rightarrow y = w^T A s \rightarrow y = (w^T A) s \rightarrow y = (A^T w)^T s \rightarrow y = z^T s
$$

Useful Relations:

$$
x = As\n y = wT x\n y = zT s'
$$

What does this last relation mean?

We want y to be ONE OF the independent sources

Useful Relations:

$$
x = A\mathbf{s}
$$

$$
y = w^T \mathbf{x}
$$

$$
y = z^T \mathbf{s}
$$

1. y is a linear combination of sources

Useful Relations:

$$
x - A\mathbf{s}
$$

$$
y = w^T x
$$

$$
y = z^T \mathbf{s}
$$

1. y is a linear combination of sources Useful Relations: $x = As$
 $y = w^T x$
 $y = z^T s$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, ..., 1, ..., 0].$

The Central Limit Theorem & ICA **1.** *y* **is a linear combination of sources**
 1. *y* is a linear combination of sources
 2. If *y* is one of the sources, then $z = [0, ..., 1, ...$

Useful Relations:

$$
\begin{aligned}\n x - A S \\
 y &= W^T x \\
 y &= Z^T S\n\end{aligned}
$$

-
-

Useful Relations:
$$
x = As
$$

\n $y = w^T x$
\n $y = z^T s$
\n1. y is a linear combination of sources
\n2. If y is one of the sources, then $z = [0, ..., 1, ..., 0]$.
\n
$$
s_3 = z^T \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} \rightarrow s_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}
$$

The Central Limit Theorem & ICA **The Central Limit Theorem**

Useful Relations: $x = As$
 $y = w^Tx$
 $y = z^Ts$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, \ldots, 1, \ldots]$

3. Since the sources are independent R.V.'s, any n

Useful Relations:

$$
\begin{aligned}\n x - A S \\
 y &= W^T x \\
 y &= Z^T s\n \end{aligned}
$$

-
-
- Useful Relations: $x = A s$
 $y = w^T x$
 $y = z^T s$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, ..., 1, ..., 0]$.

3. Since the sources are independent R.V.'s, any *mixed* y is "more Gaussian" th Useful Relations: $x = As$
 $y = w^T x$
 $y = z^T s$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, ..., 1, ..., 0]$.

3. Since the sources are independent R.V.'s, any *mixed y* is

"more Gaussian" th "more Gaussian" than any of the sources

The Central Limit Theorem & ICA **1 he Central Limit Theorem**

Useful Relations: $x = As$
 $y = w^Tx$
 $y = z^Ts$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, ..., 1, ...$

3. Since the sources are independent R.V.'s, any n

Useful Relations:

$$
\begin{aligned}\n x - A\mathbf{S} \\
 y &= w^T x \\
 y &= z^T \mathbf{S}\n \end{aligned}
$$

-
-
- Useful Relations: $x = As$
 $y = w^T x$
 $y = z^T s$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, ..., 1, ..., 0]$.

3. Since the sources are independent R.V.'s, any *mixed* y is "more Gaussian" tha Useful Relations: $x = As$
 $y = w^T x$
 $y = z^T s$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, ..., 1, ..., 0]$.

3. Since the sources are independent R.V.'s, any *mixed* y is

"more Gaussian" th "more Gaussian" than any of the sources $y = W^T \mathbf{x}$
 $y = z^T \mathbf{s}$

1. y is a linear combination of sources

2. If y is one of the sources, then $z = [0, ..., 1, ..., 0]$.

3. Since the sources are independent R.V.'s, any *mixed* y is

"more Gaussian" than any of the sou
-

Useful Relations:

$$
\begin{aligned}\n\mathbf{x} &= A\mathbf{s} \\
\mathbf{y} &= w^T \mathbf{x} \qquad \mathbf{y} = z^T \mathbf{s}\n\end{aligned}
$$

Recall: we are given x.

Recall: we are not given s.

Recall: z is a variable we defined for convenience

Let's pick a w that maximizes the non-Gaussianity of y. This should force z to have just one non-zero component y will then be one of the independent sources.

What they are and what they proxy

CONTRAST FUNCTIONS

"more Gaussian" & "least Gaussian"

- How can we measure Gaussianity
- If we can measure Gaussianity, can we produce a way to optimize over that?
- If we can optimize non-Gaussianity, can we solve ICA?

Fortunately, there are lots of ways to measure non-Gaussianity!

A very clear formula:

$$
Kurt[X] = E\left[\left(\frac{X-\mu}{\sigma}\right)^{4}\right] = \frac{E[(X-\mu)^{4}]}{(E[(X-\mu)^{2}]^{2})}
$$

$$
Kurt[X] = E[X^4] - 3(E[X^2])^2)
$$

$Kurt[X] = E[X^4] - 3(E[X^2])^2$

Note: For a multivariate normal distribution with unit variance, $E[X^4] = 3(E[X^2])^2 = 3$.

Note: for a multivariate normal distribution with unit variance, $3(E[X^2])^2 = 3(1)^2 = 3$.

So, if $X \sim N(0, 1)$, $Kurt[X] = 0$.

• A measure of how heavy the tails of a distribution are

Generated with 1,000,000 samples.

Generated with 1,000,000 samples.

- How would we optimize?
- Use the absolute value of kurtosis
- For a Gaussian R.V., its kurtosis is 0
- Therefore, we want to maximize the kurtosis of the distribution

Generated with 100 samples.

- Benefits
	- computationally easy
	- some nice linearity properties
	- widely used!
- Disadvantages
	- Susceptible to outliers
	- Few data points leads to bad estimate

Not a robust measure of Gaussianity!

• Entropy:

$$
H(X) = -\sum_{i=1}^{n} P(x_i) \log P(x_i)
$$

From last lecture: minimal number of bits sent for an optimal code

- Entropy: a measure of surprise
- R.V. that is "more random" will have a larger entropy – More bits needed to send
- R.V. that is "less random" will have a smaller entropy
	- Fewer bits needed to send
	- Spiky PDFs

What is the entropy of a Gaussian random variable?

• Entropy of a Gaussian: depends but it's the largest possible value of any distribution with equal variance

How does this help us?

Define:

$$
J(X) = H(X_{gauss}) - H(X)
$$

 X_{gauss} is a Gaussian with the same covariance matrix as X.

With this definition: $J(X) > 0$ and $J(X) = 0$ if X is Gaussian

So, to minimize Gaussianity, we want to maximize negentropy!

Generated with 1,000,000 samples.

Generated with 1,000,000 samples.

- Advantages:
	- Very well justified measure of Gaussianity
	- Optimal measure of Gaussianity
- Disadvantages
	- Computationally hard
	- Must estimate the PDF of a R.V.: always a fun thing to do :/

We will usually approximate negentropy and maximize over that

When you're tired of looking at math slides and want to build something

ALGORITHMS

Maximizing an approximation to negentropy.

FASTICA

General principle

- Want to maximize $H(\nu) H(X)$
	- Where y is a 0 mean unit variance Gaussian RV and the variance of X is 1 (whitened)

 $\max(E[-\log P(\nu)] - E[-\log P(X)])$ $= max(E[log P(X)] - E[log P(\nu)])$

- Taking expectations requires knowledge of $log P(X)$
	- Which we do not know
- Instead we will take a different approach to maximize the difference between $P(X)$ and a Gaussian
- Ensure that the expected value of every moment of X is maximally different from the corresponding moment of ν
	- $\max div(E[X^n],E[\nu^n])$ for every n

Maximizing the gap

 $\max div(E[X^n], E[\nu^n]) \forall n \approx$

 $_1$ ulv $(L[\Lambda], L[V])$ + d_2 ulv $(L[\Lambda], L[V])$ + d $\binom{2}{1} F[\nu^2] + 2 \cdot \dim(F[X^3], F[\nu])$ 3 *alv*(E [Λ], E [ν]) + · $B\left[\frac{1}{2}B\right] + \dots$

- Not tractable: will require explicit computation or estimation of all inifinite moments **Maximizing the gap**

max $div(E[X^n], E[v^n]) \forall n \approx$

max $div(E[X], E[v]) + a_2div(E[X]^2, E[v^2]) + a_3div(E[X^3], E[v^3])$

lot tractable: will require explicit computation or estimation of all

oments

– or at least a whole lot of high-order moments

– wh
	- Or at least a whole lot of high-order moments
	-
- Instead do the following

 $a_1A + a_2A + a_3A + \cdots$ J, E [a] $2 + a_s X^3 + \ldots$ F[a, y] a_3 λ + …], a_1 μ ₁ ν + a_2 ν $3 + \ldots$ $F[a, y + a, y^2]$. $a_1v + a_2v + a_3v$ J $(2 + a_2)^3$ 1 3^{V} J $3 \quad 1$

• Or alternately

max $div(G(X), G(v))$

• Where $G(X)$ is any function that has a fast convergent Power series expansion:

$$
G(X) = \sum_{n=0}^{\infty} (x - x_0)^n
$$

- The power series must include at least four terms to be meaningful
- Using the squared L2 divergence we get
	- $-$ max $J(X)$ where $J(X) \propto [E[G(X)] E[G(v)]]^2$ $2 \left(\frac{1}{2} \right)$

FastICA

-
- FastICA
• Hyvärinen 2000
• Uses an approximation of negentr • Uses an approximation of negentropy:

$$
J(X) \propto \left[E\left[G(X) \right] - E\left[G(v) \right] \right]^2
$$

 ν is a Gaussian variable with zero-mean and unit-variance

G are nonquadratic functions
FastICA: the G function

- G just needs to be non-quadratic
	- Ideally a function whose polynomial expansion includes all higher powers of the argument
		- Maximizing negentropy will "free" up the moments of those higher powers
- Some weird forms:

$$
G(u) = \frac{1}{a_1} \log \cosh(a_1 u)
$$

$$
G(u) = -\frac{1}{a_2} \exp\left(-\frac{a_2 u^2}{2}\right)
$$

$$
G(u) = \frac{1}{4}u^4
$$

FastICA: comments

• Maximize $J(X) = [E[G(X)] - E[G(v)]]^2$ while ensuring $var(X) = 1$

– Pre-whiten the data

- Taking actual expectations is not possible
- Instead use the empirical average over samples
- Can be performed in online manner

FastICA

- **FastICA**
1. Pre-whiten the data
2. Choose an initial w
-
- **FastICA**

1. Pre-whiten the data

2. Choose an initial **w**

3. Let $w^+ = E[xG'(w^Tx)] E[G''(w^Tx)]$ **Fast**

1. Pre-whiten the data

2. Choose an initial **w**

3. Let $w^+ = E[xG'(w^Tx)]$

4. Normalize: $w = w^+ / ||$ 1. Pre-whiten the data
2. Choose an initial **w**
3. Let $w^+ = E[xG'(w^Tx)]$
4. Normalize: $w = w^+ / ||$
5. Check convergence, he 1. Pre-whiten the data

2. Choose an initial **w**

3. Let $w^+ = E[xG'(w^Tx)] - E[G''(w^Tx)]w$

4. Normalize: $w = w^+ / ||w^+||$

5. Check convergence, head back to 3!

• Normalization of w maintains variance – 1
-
-
- Normalization of w maintains variance $= 1$

FastICA: Derivation

- Newton's Method
- Maximize:

$$
J(y) \propto [E[G(y)] - E[G(v)]]^2
$$

• Constrain:

$$
||w||^2=1
$$

FastICA: Industry Standard

- Basically the industry standard implementation of ICA:
	- https://github.com/scikit-learn/scikitlearn/blob/0fb307bf3/sklearn/decomposition/_fa stica.py#L304

Poll 4

- Which of the following are true of FastICA
	- It derives a linear transform that frees up fourth moments
	- It finds the independent directions along which the distributions of the data are maximally non-Gaussian the data are maximally non-
m
thm
11755/18797 11755/18797
	- $-$ It is a *batch* algorithm
	- It is an online algorithm

Poll 4

- Which of the following are true of FastICA
	- It derives a linear transform that frees up fourth moments
	- It finds the independent directions along which the distributions of the data are maximally non-Gaussian **the data are maximally non-**
m
thm
 $\sum_{11755/18797}$
	- $-$ It is a *batch* algorithm
	- It is an online algorithm

Speech-Music Example

• Te-Won Lee @ UCSD

Another example!

In Reality

- Mixed signals are not instantaneous mixtures
	- The signals arrive with different delays at the two microphones

$$
x_1 = a_{11}s_1(t - t_{11}) + a_{12}s_2(t - t_{12}),
$$

\n
$$
x_2 = a_{21}s_1(t - t_{21}) + a_{22}s_2(t - t_{22})
$$

- The time-delay issue is hard for ICA to deal with
- You must do some clever things for it to work out

Some Explicit Limitations

- ICA is identifiable up to:
	- a sign change (plus or minus)
	- a scaling factor
	- This is just from the model: $x = As$
- ICA (unlike PCA) doesn't have a notion of importance
	- The order of the sources doesn't matter.
	- It's unique up to permutation as well.

Another Example

- Three instruments..
	- $-M = NS$,
	- $-S = WM$ (through ICA)
	- $N = W^+$

The Notes

• Three instruments..

ICA for data exploration

- The "bases" in PCA represent the "building blocks"
	- Ideally notes
- Very successfully used $\frac{3000}{3500}$
- So can ICA be used to $\frac{4000}{4500}$ do the same?

ICA vs PCA bases

-
- **ICA VS PCA bases**
• Motivation for using ICA vs PCA
• PCA will indicate orthogonal directions of
maximal variance **PCA will indicate orthogonal directions of** maximal variance
	- May not align with the data!
- ICA finds directions that are independent **ICA** finds directions that are independent
	- **More likely to "align" with the data**

Non-Gaussian data

Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
	- ICA returns localizes edge filters

Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces

11755/18797 125

ICA for Signal Enhncement

- Very commonly used to enhance EEG signals
- EEG signals are frequently corrupted by heartbeats and biorhythm signals d to enhance EEG signals
uently corrupted by
hythm signals
eparate them out
"11755/18797
- ICA can be used to separate them out

So how does that work?

• There are 12 notes in the segment, hence we try to estimate 12 notes.. 11755/18797

11755/18797

11755/18797

11755/18797

PCA solution

• There are 12 notes in the segment, hence we try to estimate 12 notes.. The segment, hence we also have a set of the segment, hence we also have a set of the segment of the segment $\frac{128}{128}$

So how does this work: ICA solution

- Better..
	- But not much
- But the issues here?

ICA Issues

• No sense of *order*

– Unlike PCA

- Get K independent directions, but does not have a notion of the "best" direction
	- So the sources can come in any order
	- Permutation invariance
- Does not have sense of scaling
	- Scaling the signal does not affect independence
- Outputs are scaled versions of desired signals in permuted order caling

Interact independence

Interact of desired signals in permuted

Interact of desired signals at all..

Interact of all..

Interact of all...

Interact of all...
	- In the best case
	- In worse case, output are not desired signals at all..

What else went wrong?

- Notes are not independent
	- Only one note plays at a time
	- $-$ If one note plays, other notes are not playing
- Will deal with these later in the course.. later in the course..
 $\begin{aligned} &\underset{\text{11755/18797}}{\text{11755/18797}} &\overset{\text{131}}{\text{131}} & \end{aligned}$