
Machine Learning for Signal 
Processing

Independent Component Analysis

Instructor: Adnan Yunus
Slides (the good ones) are by Patrick Conrey
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Recap: Correlated Variables

• Expected value of given varies with 
– And vice versa
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Uncorrelatedness

• Knowing does not tell you what the average 
value of is
– And vice versa

11755/18797 3

A
ve

ra
ge

 I
n

co
m

e

Burger consumption

b1 b2



Recap: Uncorrelatedness

• If X is a matrix of vectors, XXT = diagonal
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Recap:  Decorrelation

• So how does one transform the correlated 
variables to the uncorrelated 
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Recap: PCA
• Let X be the matrix of correlated data vectors

– Each component of X informs us of the mean 
trend of other components

• Need a transform T such that if Y = TX, the 
covariance of Y is diagonal
– YYT is diagonal

• PCA: T is the (transposed) matrix of 
Eigenvectors of the covariance matrix XXT
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Recap: Decorrelating by PCA

• PCA finds the principal axes of the scatter of the data
– The Eigen vectors of the covariance matrix

• The PCA transformation transforms the principal axes 
of the data scatter to the main axes of the space

• This also has the side effect of decorrelating the data
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PCA decorrelates data

• For centered (zero-mean) data X
• The Eigenvectors of the covariance matrix are identical to 

the left singular vectors
SVD: X=USVT 

• We can write Y = SVT and
X = UY    (and Y = UTX)

– i.e. we’re setting the transform T=UT and Y = TX

• Y is the representation of X in terms of the columns of U
• But

YYT = (SVTVST) = SST = Diagonal

• I.e.  the new representations Y are uncorrelated
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Recap: The statistical concept of 
Independence

• Two variables X and Y are dependent if If 
knowing X gives you any information about Y

• X and Y are independent if knowing X tells you 
nothing at all of Y
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Recap: Independence
• Independence:  Two random variables X and Y

are independent iff:
– Their joint probability equals the product of their 

individual probabilities

• P(X,Y) =  P(X)P(Y)

• Independence implies uncorrelatedness
– The average value of X is the same regardless of the 

value of Y
• E[X|Y] = E[X]

– But uncorrelatedness does not imply independence
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Recap: Independence

• Independence:  Two random variables X and 
Y are independent iff:

• The average value of any function of X is the 
same regardless of the value of Y
– Or any function of Y

• E[f(X)g(Y)]  =  E[f(X)] E[g(Y)]   for all f(), g()
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Poll 1

• The objective of PCA is to decorrelate the data
– True

– False

• If two random values x and y are independent, 
then which of the following is true of E[x2y2]?
– E[x2y2] = E[x]2E[y]2

– E[x2y2] = E[x2]E[y2]
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Poll 1

• The objective of PCA is to decorrelate the data
– True

– False

• If two random values x and y are independent, 
then which of the following is true of E[x2y2]?
– E[x2y2] = E[x]2E[y]2

– E[x2y2] = E[x2]E[y2]
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Moving on: Finding bases…
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Recap: Finding bases, aka building blocks..
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Recap: Finding bases, aka building blocks..
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A least squares solution

• Constraint: W is orthogonal
– WTW = I

• The solution:  
– W are the  Eigen vectors of MMT

– PCA!!

• M ~ WH is an approximation
• Also, the rows of H are decorrelated

)(||||minarg, 2
, IWWHWMHW HW  T

F
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PCA

• The orthogonal columns of are the bases we 
have learned
– The linear “building blocks” that compose the music

• They represent “learned” notes
– is the contribution of the ith note to the music

• is the ith column of 
• is the ith row of 
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..

• Results are not good
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Recap: Decorrelating by PCA

• PCA decorrelates the data incidentally
• The focus is on the orthogonality of the axes, 

decorrelated representations is a side effect
• What if we focus, instead, on decorrelating the 

data directly?
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PCA through decorrelation of 
notes

• Different constraint: Constraint H to be 
decorrelated
– HHT = D
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Decorrelation

• Alternate view: Find a matrix B such that the 
rows of H=BM are uncorrelated

• PCA is one solution already

• Are there others?
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Decorrelating the data

• Are there other decorrelating axes?
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• But PCA will find only one of them, why?
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• But PCA will find only one of them, why?
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• But PCA will find only one of them, why?
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Decorrelating the data

• Are there other decorrelating axes?
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Decorrelating the data

• The decorrelation-based decomposition has multiple 
solutions, but PCA will find only one of them
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Decorrelating the data
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• The decorrelation-based decomposition has multiple 
solutions, but PCA will find only one of them



What else can we look for?

• Assume: The “transcription” of one note does 
not depend on what else is playing
– Or, in a multi-instrument piece, instruments are 

playing independently of one another

• Not strictly true, but still..
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What else can we look for?

• Assume: The “transcription” of one note does not depend on what 
else is playing
– Or, in a multi-instrument piece, instruments are playing independently 

of one another

• Attempting to find statistically independent components of the 
mixed signal
– Independent Component Analysis
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Formulating it with Independence

• Impose statistical independence constraints 
on decomposition
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Independent Component Analysis
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• Independent Component Analysis searches 
through all possible combinations of bases to 
find the set that makes the representations in 
terms of these bases maximally independent



Poll 2

• If there are multiple decorrelating axes, the solution to PCA 
will always be indeterminate
– True
– False

• Independent Component Analysis attempts to decompose 
a data matrix into the product of a bases matrix and a 
weights matrix, such that the components of the weights 
vectors are statistically independent 
– True
– False
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Poll 2

• If there are multiple decorrelating axes, the solution to PCA 
will always be indeterminate
– True
– False

• Independent Component Analysis attempts to decompose 
a data matrix into the product of a bases matrix and a 
weights matrix, such that the components of the weights 
vectors are statistically independent 
– True
– False
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Changing problems for a bit

• Two people speak simultaneously
• Recorded by two microphones
• Each recorded signal is a mixture of both signals
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A Separation Problem

• M = WH

– M = “mixed” signal

– W = “notes”

– H = “transcription”

• Separation challenge: Given only M estimate H

• Identical to the problem of “finding scores (and notes)”

11755/18797 38

=
M HW

w11 w12

w21 w22

Signal at mic 1

Signal at mic 2

Signal from speaker 1

Signal from speaker 2



A Separation Problem

• Separation challenge: Given only M estimate H

• Identical to the problem of “finding scores”
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Example: Sources & Mixing

40



Problem Statement

Given:

41

Recover:



Imposing Statistical Constraints

• M = WH

• Given only M estimate H
• H = W-1M =   AM

• Only known constraint:  The rows of H are 
independent

• Estimate A such that the components of AM are 
statistically independent
– A is the unmixing matrix
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Statistical Independence

• M = WH      H = AM
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Remember this form

In order to recover the original unmixed signals H from the mixed signal M



An ugly algebraic solution

• Solution 1:  “Recover” H by decorrelating M
– We know uncorrelated signals have diagonal correlation matrix

• Find a transform A such that the rows of H=AM are decorrelated
– i.e. HHT = Diagonal (assuming 0 mean signals)
– A was obtained by eigen decomposition of the correlation matrix of M

• I.e. by Eigen decomposition of MMT

• We know this does not work, however
• Can we do the same for independence

– Is there a linear transform that will enforce independence?
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H = AMM = WH
decorrelate



An ugly algebraic solution

• We decorrelated signals by diagonalizing the 
covariance matrix through Eigen decomposition

• Is there a simple matrix we could just similarly 
diagonalize to make them independent?
– Some matrix whose Eigenvector matrix gives us the 

transform A such that the rows of AM are 
independent
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Actual question
• Is there a linear transform that can transform 

a scatter like this

• To something like this:
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Actual question
• Is there a linear transform that can transform 

a scatter like this

• To something like this:
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Will not work for Gaussian data

• Concept behind ICA:
– Original sources had some independent distribution

• Assume all had identical variance

– “Mixing” rotated the joint distribution
– ICA finds the axes that “unmixes” the distribution

• In principle, searches through all rotations such that the distribution is axis 
parallel again

– This should give us back the original independent distribution
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Will not work for Gaussian data

• For independent Gaussian RVs of equal variance, a 
mixing rotation results in an effectively unchanged 
distribution
– The unmixing rotation cannot be determined through 

inspection of the distribution
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Returning to our problem
• Is there a linear transform that can transform 

a scatter like this

• To something like this:
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Zero Mean
• Usual to assume zero mean processes

– Otherwise, some of the math doesn’t work well

• M = WH      H = AM

• If mean(M) = 0  =>  mean(H) = 0
– E[H] = A.E[M] = A0 = 0
– First step of ICA:  Set  the mean of M to 0

– mi are the columns of M
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Actual process

• To simplify the process, we will first decorrelate the data and whiten 
it
– So that the variance is the same along all dimensions

• Then we search for the axes that make the data independent
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Actual process

• To simplify the process, we will first decorrelate the data and whiten 
it
– So that the variance is the same along all dimensions

• Then we search for the axes that make the data independent
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Decorrelating and Whitening

• Eigen decomposition MMT= EET

• C = -1/2ET

• X = CM

• Not merely decorrelated but whitened
– XXT = CMMTCT = -1/2ET EETE-1/2 = I

• C is the whitening matrix
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Uncorrelated != Independent

• Whitening merely ensures that the resulting signals are 
uncorrelated, i.e.

E[xixj] = 0 if i != j

• This does not ensure higher order moments are also 
decoupled, e.g. it does not ensure that

E[xi
2xj

2] = E[xi
2]E [xj

2]

• This is one of the signatures of independent RVs
• Lets explicitly decouple the fourth order moments
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Decorrelating

• X = CM

• XXT = I

• Our objective: Find the matrix B that makes the rows of BX independent
– H = BX

• Will multiplying X by B re-correlate the components?
• Not if B is unitary

– BBT = BTB = I

• HHT = BXXTBT = BBT = I
– Because XXT = I

• So we want to find a unitary matrix
– Since the rows of H are uncorrelated

• Because they are independent
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An ugly algebraic solution

• We decorrelated signals by diagonalizing the 
covariance matrix through Eigen decomposition

• Is there a simple matrix we could just similarly 
diagonalize to make them independent?
– Some matrix whose Eigenvector matrix gives us the 

transform A such that the rows of AM are 
independent
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An ugly algebraic solution

• We decorrelated signals by diagonalizing the 
covariance matrix through Eigen decomposition

• Is there a simple matrix we could just similarly 
diagonalize to make them independent?
– Not really, but there is a matrix we can diagonalize

to make fourth-order moments independent
• Just as decorrelation made second-order moments 

independent
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Emulating Independence

• The rows of H are uncorrelated
– E[hihj] = E[hi]E[hj]
– hi and hj are the ith and jth components of any vector in H

• The fourth order moments are independent
– E[hihjhkhl] = E[hi]E[hj]E[hk]E[hl]
– E[hi

2hjhk] = E[hi
2]E[hj]E[hk]

– E[hi
2hj

2] = E[hi
2]E[hj

2]
– Etc.
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FOBI: Freeing Fourth Moments
• Find B such that the rows of H = BX are independent

• The fourth moments of H have the form:
E[hi hj hk hl] 

• If the  rows of H were independent
E[hi hj hk hl]  = E[hi] E[hj] E[hk] E[hl]

• Solution:  Compute B such that the fourth moments of H = BX 
are decoupled
– While ensuring that B is Unitary

• FOBI:  Fourth Order Blind Identification
6011755/18797



ICA: Freeing Fourth Moments

• Create a matrix of fourth moment terms that would be diagonal 
if the rows of H were independent, and diagonalize it

• A good candidate: the weighted correlation matrix of H
𝟐 ୘

௞
ଶ

௞ ௞
୘

௞

– h are the columns of H
– Assuming h is real,  else replace transposition with Hermitian

61

H = hk

Objective: Find a matrix B 
such that the  rows of  H=BX 
are statistically independent

Define a matrix D that would 
be diagonal if the rows of BX 
are independent

Compute B such that this 
matrix becomes diagonal



ICA: The D matrix
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of all components
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ICA: The D matrix

• If the hi terms were independent and zero mean
• For i != j (off-diagional elements)

௜ ௝ ௟
ଶ

௟

௜
ଷ

௝ ௜ ௝
ଷ

௜ ௝ ௟
ଶ

௟ஷ௜,௟ஷ௝

• For i = j (diagonal elements)

– ௜ ௝ ௟
ଶ

௟ ௜
ସ

௜
ଶ

௟
ଶ

௟ஷ௜

• i.e., if hi were independent, D would be a diagonal matrix
– Let us diagonalize D
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Diagonalizing D
• Recall:  H = BX

– B is what we’re trying to learn to 
make H independent

– Assumption: B is unitary, i.e. BTB = I

• Note:    if H = BX ,  then each vector h = Bx

• The fourth moment matrix of H is
• D =  E[hT h h hT] =  E[xTBTBx Bx xT BT]

=  E[xTx Bx xT BT]
=  B E[xTx xxT]BT

= B E[||x||2 xxT]BT

64

Objective: Find a matrix B 
such that the  rows of  H=BX 
are statistically independent

Define a matrix D that would 
be diagonal if the rows of BX 
are independent

Compute B such that this 
matrix becomes diagonal



Diagonalizing D

• Objective: Estimate B such that the fourth 
moment of H = BX is diagonal

• Compose 

• Diagonalize Dx via Eigen decomposition
Dx = UHUT

• B = UT

– That’s it!!!!
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B frees the fourth moment
Dx = UUT ;   B = UT

• U is a unitary matrix, i.e. UTU = UUT = I (identity)
• H = BX = UTX

– h = UTx

• The fourth moment matrix of H is
D =  E[||h||2 hT]

D =  UT E[||x||2 xxT]U
= UT Dx U
= UT U H U T U = H

• The fourth moment matrix of H = UTX is Diagonal!!
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Overall Solution

• Objective:  Estimate A such that the rows of H = 
AM are independent

• Step 1:  Whiten M
– C = -1/2ET where  and E are the eigen value and 

eigen vector matrices of MMT

– X = CM

• Step 2:  Free up fourth moments on X
– B is the (transpose of the) matrix of Eigenvectors of  

X.diag(XTX).XT

– A = BC
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FOBI for ICA
• Goal: to derive a matrix A such that the rows of AM are 

independent
• Procedure:

1. “Center” M
2. Compute the autocorrelation matrix RMM of M
3. Compute whitening matrix C via Eigen decomposition

RMM = EET,    C = -1/2ET

4. Compute X = CM

5. Compute the fourth moment matrix D’ = E[||x||2xxT] 

6. Diagonalize D’ via Eigen decomposition
7. D’ = UHUT

8. Compute A = UTC

• The fourth moment matrix of H=AM is diagonal
– Note that the autocorrelation matrix of H will also be diagonal
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ICA by diagonalizing moment 
matrices

• FOBI is not perfect
– Only a subset of fourth order moments are considered

• Diagonalizing the particular fourth-order moment matrix we 
have chosen is not guaranteed to diagonalize every other 
fourth-order moment matrix

• JADE: (Joint Approximate Diagonalization of 
Eigenmatrices), J.F. Cardoso
– Jointly diagonalizes multiple fourth-order cumulant

matrices
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Poll 3

• Which of the following statements are true of FOBI
– It computes a transform that makes all fourth-order 

moments independent

– It requires a first pre-whitening step

– The transform is the Eigenvector matrix of the fourth-order 
moment matrix

– The transform is the product of the Eigenvector matrix of 
the fourth-order moment matrix of the whitened data, and 
the whitening matrix obtained through PCA
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Poll 3

• Which of the following statements are true of FOBI
– It computes a transform that makes all fourth-order 

moments independent

– It requires a first pre-whitening step

– The transform is the Eigenvector matrix of the fourth-order 
moment matrix

– The transform is the product of the Eigenvector matrix of 
the fourth-order moment matrix of the whitened data, 
and the whitening matrix obtained through PCA

11755/18797 71



Lets try a different tack

• Use the statistical properties of mixing…
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The Central Limit Theorem

• Sum of independent random variables will 
tend toward a Gaussian distribution

• Even if the independent random variables 
don’t have a Gaussian distribution!

• The sum will almost always be “more” 
Gaussian than the component signals
– Even if the independent RVs are not Gaussian
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Changing notation for a bit

• Two people speak simultaneously are recorded by two microphones
– Each recorded signal is a mixture of both signals

• Find a linear transform that unmixes them
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Problem setting and notation

• Independent signals 
(arranged as a 

vector ) have been 
mixed by mixing matrix 

to generate mixed 
output 

• We need to find a 
matrix that will 
unmix to recover 
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The Central Limit Theorem & ICA

Let each si be identically distributed
Let’s obtain one of the sources

Here, w is a column of W
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The Central Limit Theorem & ICA

Suppose, is a row of the mixing matrix’s 
inverse ( ) . Then would be one of 
the independent sources:
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The Central Limit Theorem & ICA

Useful Relations:      

Let’s define a convenient variable:

்

And let’s do some substitutions:

் ் ் ் ் ்
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The Central Limit Theorem & ICA

Useful Relations:      

What does this last relation mean?

79

We want y to be ONE OF 
the independent sources



The Central Limit Theorem & ICA

What does this do for us?
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1. y is a linear combination of sources

Useful Relations:      



The Central Limit Theorem & ICA

What does this do for us?
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1. y is a linear combination of sources
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Useful Relations:      



The Central Limit Theorem & ICA

What does this do for us?
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1. y is a linear combination of sources
2. If y is one of the sources, then z = [0, … , 1, …, 0].
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The Central Limit Theorem & ICA

What does this do for us?
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1. y is a linear combination of sources
2. If y is one of the sources, then z = [0, … , 1, …, 0].
3. Since the sources are independent R.V.’s, any mixed y is 

“more Gaussian” than any of the sources

Useful Relations:      



The Central Limit Theorem & ICA
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1. y is a linear combination of sources
2. If y is one of the sources, then z = [0, … , 1, …, 0].
3. Since the sources are independent R.V.’s, any mixed y is 

“more Gaussian” than any of the sources
4. If y is one of the sources, y is the least Gaussian!

What does this do for us?

Useful Relations:      



The Central Limit Theorem & ICA

Useful Relations:            

Recall: we are given x.

Recall: we are not given s.

Recall: z is a variable we defined for convenience

Let’s pick a w that maximizes the non-Gaussianity of y.

This should force z to have just one non-zero component

y will then be one of the independent sources.
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CONTRAST FUNCTIONS
What they are and what they proxy
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“more Gaussian” & “least 
Gaussian”

• How can we measure Gaussianity

• If we can measure Gaussianity, can we produce a way 
to optimize over that?

• If we can optimize non-Gaussianity, can we solve ICA?

Fortunately, there are lots of ways to measure non-
Gaussianity!
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Kurtosis

A very clear formula:
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Kurtosis

Note: For a multivariate normal distribution with 
unit variance, .

Note: for a multivariate normal distribution with 
unit variance, .

So, if , .
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Kurtosis

• A measure of how heavy the tails of a distribution are
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Kurtosis

Generated with 1,000,000 samples. 

Ground Truth Kurt[X] = 0.0 Ground Truth Kurt[X] = 3.0 Ground Truth Kurt[X] = -1.2
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Kurtosis

Generated with 1,000,000 samples. 

Ground Truth Kurt[X] = 0.0 Ground Truth Kurt[X] = 3.0 Ground Truth Kurt[X] = -1.2

Calculated Kurt[X] = 0.0 Calculated Kurt[X] = 3.023 Calculated Kurt[X] = -1.199
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Kurtosis

• How would we optimize?
• Use the absolute value of kurtosis
• For a Gaussian R.V., its kurtosis is 0
• Therefore, we want to maximize the kurtosis 

of the distribution
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Kurtosis

Generated with 100 samples. 

Ground Truth Kurt[X] = 0.0 Ground Truth Kurt[X] = 3.0 Ground Truth Kurt[X] = -1.2

Calculated Kurt[X] = -0.54 Calculated Kurt[X] = 0.121 Calculated Kurt[X] = 1.15
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Kurtosis

• Benefits
– computationally easy
– some nice linearity properties
– widely used!

• Disadvantages
– Susceptible to outliers
– Few data points leads to bad estimate

Not a robust measure of Gaussianity!
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Negentropy

• Entropy:

From last lecture: minimal number of bits sent 
for an optimal code
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Negentropy

• Entropy: a measure of surprise

• R.V. that is “more random” will have a larger entropy
– More bits needed to send

• R.V. that is “less random” will have a smaller entropy
– Fewer bits needed to send

– Spiky PDFs

What is the entropy of a Gaussian random variable?
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Negentropy

• Entropy of a Gaussian: depends but it’s the 
largest possible value of any distribution with 
equal variance

How does this help us?
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Negentropy

Define:

Xgauss is a Gaussian with the same covariance matrix as X.

With this definition: J(X) > 0 and J(X) = 0 if X is Gaussian

So, to minimize Gaussianity, we want to maximize 
negentropy!
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Negentropy

Generated with 1,000,000 samples. 

Ground Truth J[X] = 0.0 Ground Truth J[X] = 1.07
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Negentropy
Generated with 1,000,000 samples. 



Negentropy

Generated with 1,000,000 samples. 

Ground Truth J[X] = 0.0 Ground Truth J[X] = 1.07
Calculated J[X] = 0.08 Calculated J[X] = 0.717
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Negentropy

• Advantages:
– Very well justified measure of Gaussianity

– Optimal measure of Gaussianity

• Disadvantages
– Computationally hard

– Must estimate the PDF of a R.V.: always a fun thing to do :/

We will usually approximate negentropy and maximize over 
that 
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ALGORITHMS
When you’re tired of looking at math slides and want to build something
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FASTICA
Maximizing an approximation to negentropy.
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General principle

• Want to maximize 
– Where is a 0 mean unit variance Gaussian RV and the variance of 

is 1 (whitened)

• Taking expectations requires knowledge of 
– Which we do not know

• Instead we will  take a different approach to maximize the 
difference between and a Gaussian

• Ensure that the expected value of every moment of is maximally 
different from the corresponding moment of 
– ௡ ௡ for every 
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Maximizing the gap
௡ ௡

ଵ ଶ
ଶ ଶ

ଷ
ଷ ଷ

• Not tractable: will require explicit computation or estimation of all inifinite
moments
– Or at least a whole lot of high-order moments
– Which are verrrrrrrrrrrrry noisy to estimate

• Instead do the following

ଵ ଶ
ଶ

ଷ
ଷ

ଵ ଶ
ଶ

ଷ
ଷ  

• Or alternately
 

• Where is any function that has a fast convergent Power series expansion:  

଴
௡

ஶ

௡ୀ଴

– The power series must include at least four terms to be meaningful

• Using the squared L2 divergence we get 

– max 𝐽(𝑋)   𝑤ℎ𝑒𝑟𝑒   𝐽 𝑋 ∝ 𝐸 𝐺 𝑋 − 𝐸 𝐺 𝜈
ଶ
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FastICA

• Hyvärinen 2000
• Uses an approximation of negentropy:

is a Gaussian variable with zero-mean and 
unit-variance
G are nonquadratic functions
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FastICA: the G function
• G just needs to be non-quadratic

– Ideally a function whose polynomial expansion includes all higher powers 
of the argument
• Maximizing negentropy will “free” up the moments of those higher powers

• Some weird forms:

ଵ
ଵ

ଶ

ଶ
ଶ

ସ
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FastICA: comments

• Maximize while 
ensuring 
– Pre-whiten the data

• Taking actual expectations is not possible
• Instead use the empirical average over samples
• Can be performed in online manner
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FastICA

1. Pre-whiten the data
2. Choose an initial w
3. Let 
4. Normalize: 
5. Check convergence, head back to 3!

• Normalization of maintains variance = 1
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FastICA: Derivation

• Newton’s Method
• Maximize:

• Constrain: 
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FastICA: Industry Standard

• Basically the industry standard 
implementation of ICA:
– https://github.com/scikit-learn/scikit-

learn/blob/0fb307bf3/sklearn/decomposition/_fa
stica.py#L304
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Poll 4

• Which of the following are true of FastICA
– It derives a linear transform that frees up fourth 

moments
– It finds the independent directions along which 

the distributions of the data are maximally non-
Gaussian

– It is a batch algorithm
– It is an online algorithm
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Poll 4

• Which of the following are true of FastICA
– It derives a linear transform that frees up fourth 

moments
– It finds the independent directions along which 

the distributions of the data are maximally non-
Gaussian

– It is a batch algorithm
– It is an online algorithm
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Speech-Music Example

• Te-Won Lee @ UCSD

Mixed Separated
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Another example!
Input Mix Output
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In Reality

• Mixed signals are not instantaneous mixtures
– The signals arrive with different delays at the two microphones

ଵ ଵଵ ଵ ଵଵ ଵଶ ଶ ଵଶ

ଶ ଶଵ ଵ ଶଵ ଶଶ ଶ ଶଶ

– The time-delay issue is hard for ICA to deal with

• You must do some clever things for it to work out
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Some Explicit Limitations

• ICA is identifiable up to:
– a sign change (plus or minus)
– a scaling factor
– This is just from the model: x = As

• ICA (unlike PCA) doesn’t have a notion of 
importance
– The order of the sources doesn’t matter.
– It’s unique up to permutation as well.
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Another Example

• Three instruments..
– M = NS,  
– S = WM (through ICA)
– N = W+
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The Notes

• Three instruments..
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ICA for data exploration

• The “bases” in PCA 
represent the “building 
blocks”
– Ideally notes

• Very successfully used
• So can ICA be used to 

do the same?
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ICA vs PCA bases
Non-Gaussian data

ICA
PCA

 Motivation for using ICA vs PCA

 PCA will indicate orthogonal directions of 
maximal variance

 May not align with the data!

 ICA finds directions that are independent

 More likely to “align” with the data 
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Finding useful transforms with ICA
• Audio preprocessing 

example
• Take a lot of audio snippets 

and concatenate them in a 
big matrix, do component 
analysis

• PCA results in the DCT bases
• ICA returns time/freq 

localized sinusoids which is a 
better way to analyze sounds

• Ditto for images
– ICA returns localizes edge 

filters
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Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces
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ICA for Signal Enhncement

• Very commonly used to enhance EEG signals
• EEG signals are frequently corrupted by 

heartbeats and biorhythm signals
• ICA can be used to separate them out
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So how does that work?

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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PCA solution

• There are 12 notes in the segment, hence we 
try to estimate 12 notes..
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So how does this work: ICA solution

• Better..
– But not much

• But the issues here?
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ICA Issues
• No sense of order

– Unlike PCA

• Get K independent directions, but does not have a notion 
of the “best” direction
– So the sources can come in any order
– Permutation invariance

• Does not have sense of scaling
– Scaling the signal does not affect independence

• Outputs are scaled versions of desired signals in permuted 
order
– In the best case
– In worse case, output are not desired signals at all..
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What else went wrong?

• Notes are not independent
– Only one note plays at a time

– If one note plays, other notes are not playing

• Will deal with these later in the course..
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