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Recap: Correlated Variables

A

Penguin population

Burger consumption

Expected value of Y given X varies with X

— And vice versa
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Uncorrelatedness
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Burger consumption

 Knowing X does not tell you what the average
value of Y is

— And vice versa
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Recap: Uncorrelatedness

N 3;81161;1:113’ . E[Xl] = constant
0 » E|X,]| = constant
- * E|X,|X ] = constant

* E[X1X;| = E[X41]E[X,]
e All will be O for centered

>
X, data
E[<X1> (X, Xz)] E B A = E[X7] 0 = diagonal matrix
X1 X, X3 0  E[XZ]

* If X is a matrix of vectors, XX! = diagonal
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Recap: Decorrelation

X1) (X
(Xz =T <Xé) A

>

e So how does one transform the correlated
variables (X4, X,) to the uncorrelated (X4, X5)
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Recap: PCA

e Let X be the matrix of correlated data vectors

— Each component of X informs us of the mean
trend of other components

* Need a transform T such that if Y = TX, the
covariance of Y is diagonal

—YY!is diagonal

 PCA: T is the (transposed) matrix of
Eigenvectors of the covariance matrix XX!



Recap: Decorrelating by PCA

N

* PCA finds the principal axes of the scatter of the data

— The Eigen vectors of the covariance matrix

 The PCA transformation transforms the principal axes
of the data scatter to the main axes of the space

* This also has the side effect of decorrelating the data
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PCA decorrelates data

For centered (zero-mean) data X

The Eigenvectors of the covariance matrix are identical to
the left singular vectors

SVD: X=USV'!
We can write Y = SVT and
X=UY (and Y=U'X)
— i.e. we're setting the transform T=UT and Y = TX
Y is the representation of X in terms of the columns of U
But
YY!'= (SVIVST) =SS! = Diagonal
l.e. the new representations Y are uncorrelated
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Recap: The statistical concept of
Independence

 Two variables X and Y are dependent if If
knowing X gives you any information about Y

e Xand Y are independent if knowing X tells you
nothing at all of Y
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Recap: Independence

* Independence: Two random variables X and Y
are independent iff:

— Their joint probability equals the product of their
individual probabilities

* P(X,Y)= P(X)P(Y)
* |Independence implies uncorrelatedness

— The average value of X is the same regardless of the
value of Y

 E[X|Y]=E[X]
— But uncorrelatedness does not imply independence

11755/18797
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Recap: Independence

* Independence: Two random variables X and

Y are independent iff:

* The average value of any function of X is the
same regardless of the value of Y

— Or any function of Y

 E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all (), g()

11755/18797
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Poll 1

* The objective of PCA is to decorrelate the data

— True

— False

* |f two random values x and y are independent,
then which of the following is true of E[x%y?]?
— E[x?y?] = E[x]*E[y]’
— E[x?y?] = E[x?]E[y’]




Poll 1

* The objective of PCA is to decorrelate the data

— True

— False

* |f two random values x and y are independent,
then which of the following is true of E[x?y?]?
— E[x?y?] = E[x]*E[y]’
— E[x?y*] = E[x*]E[y’]




Moving on: Finding bases...
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Recap: Finding bases, aka building blocks..

— -
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we ? v- P

* Find the bases W that best explain the data in
a meaningful way ..., 15



Recap: Finding bases, aka building blocks..
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* Meaningful —tryl: The bases are orthogonal
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A least squares solution

W.H =argming ; | M- WH 17 +A(W'W =)

Constraint: W is orthogonal
- WIW =1
The solution:

— W are the Eigen vectors of MM
— PCA!l

M ~ WH is an approximation
Also, the rows of H are decorrelated



PCA
M = WH

* The orthogonal columns of W are the bases we
have learned

— The linear “building blocks” that compose the music

* They represent “learned” notes

— w;h; is the contribution of the ith note to the music

* w; is the ith column of W
* h; is the ith row of H



So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does that work?

200 400 s00 800 1000 1200 1400

200 400 S00 800 1000 1200 1400

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

e Results are not good



Recap: Decorrelating by PCA

* PCA decorrelates the data incidentally

 The focus is on the orthogonality of the axes,
decorrelated representations is a side effect

 What if we focus, instead, on decorrelating the
data directly?

11755/18797
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PCA through decorrelation of

notes
W,H =argminy  |[M-H]|; +A(HH' - D)

[ L1 1
[ N
n__ L i

e Different constraint: Constraint H to be
decorrelated

~HH"=D



Decorrelation

 Alternate view: Find a matrix B such that the
rows of H=BM are uncorrelated

 PCA is one solution already

 Are there others?



Decorrelating the data

Sy
Pt L AN

* Are there other decorrelating axes?

[ Ir .}.
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Decorrelating the data

Sy
Pt L AN

[ Ir .}.
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%D\ » K

 But PCA will find only one of them, why?

11755/18797



Decorrelating the data

AN

. . 0'0‘0
° o T o.:..

A decorrelation-based decomposition can find either of them.

The solution is non-unique

11755/18797
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Decorrelating the data

S\ %e o ®e | o

. W° : o« °.
LN » N
What is special about the blue axes,
and how can we modify our decomposition to find them instead

A decorrelation-based decomposition can find either of them.
The solution is non-unique
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Decorrelating the data

* Are there other decorrelating axes?

11755/18797
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Decorrelating the data

 The decorrelation-based decomposition has multiple
solutions, but PCA will find only one of them

11755/18797 29



Decorrelating the data

~ What is special about the blue axes,
and how can we modify our decomposition to find them instead

 The decorrelation-based decomposition has multiple
solutions, but PCA will find only one of them

11755/18797
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What else can we look for?

[ L]l 1
[ [T
ML M

* Assume: The “transcription” of one note does
not depend on what else is playing

— Or, in a multi-instrument piece, instruments are
playing independently of one another

* Not strictly true, but still..



What else can we look for?

[ L]l 1
[ [T
ML M

Assume: The “transcription” of one note does not depend on what
else is playing

— Or, in a multi-instrument piece, instruments are playing independently
of one another

Attempting to find statistically independent components of the
mixed signal

— Independent Component Analysis

11755/18797 32



Formulating it with Independence

W.H =argming ; | M- WH |7 +A(rows of H are independent)

* I[mpose statistical independence constraints
on decomposition



Independent Component Analysis

* Independent Component Analysis searches

through all possible combinations of bases to
find the set that makes the representations in
terms of these bases maximally independent

11/55/18/9/
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Poll 2

* |f there are multiple decorrelating axes, the solution to PCA
will always be indeterminate

— True
— False

* Independent Component Analysis attempts to decompose
a data matrix into the product of a bases matrix and a
weights matrix, such that the components of the weights

vectors are statistically independent

— True
— False



Poll 2

* |f there are multiple decorrelating axes, the solution to PCA
will always be indeterminate

— True
— False

* Independent Component Analysis attempts to decompose
a data matrix into the product of a bases matrix and a
weights matrix, such that the components of the weights

vectors are statistically independent

— True
— False



Changing problems for a bit

my(t) = wi1hy(t) + wizhy ()

p\; >> ....... - O

h(t)
>

my(t) = wa1hy(t) + wyahy(t) ((( a h,(t)

* Two people speak simultaneously
 Recorded by two microphones
* Each recorded signal is a mixture of both signals
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A Separation Problem

M \W4 H

ANANANY NN Wi Wi | | AN ANV
MY (N s UMNWW\

\

\
Signal from speaker 1
- M=WH

— M = “mixed” signal

— W = “notes”

Signal at mic 1 Signal from speaker 2

Signal at mic 2

— H = “transcription”

e Separation challenge: Given only M estimate H

* |dentical to the problem of “finding scores (and notes)”
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A Separation Problem

W
S VAN N
Wii Wi

War Woo \/\/\/W \l\/\/\/v\/\/\J

e Separation challenge: Given only M estimate H

* |dentical to the problem of “finding scores”



Sources
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Imposing Statistical Constraints

M W H
AV ANNVANIVA SR B IVAVANNVAVVAVIVIENAVA'
NI | T | AW
M = WH

Given only M estimate H

H=WIM = AM

Only known constraint: The rows of H are
independent

Estimate A such that the components of AM are
statistically independent

— A is the unmixing matrix

11755/18797 42



Statistical Independence

* M=WH
T Remember this form

In order to recover the original unmixed signals H from the mixed signal M

11755/18797
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An ugly algebraic solution

decorrelate

M =WH > H=AM

Solution 1: “Recover” H by decorrelating M
— We know uncorrelated signals have diagonal correlation matrix

Find a transform A such that the rows of H=AM are decorrelated
— i.e. HH' = Diagonal (assuming 0 mean signals)

— A was obtained by eigen decomposition of the correlation matrix of M
* |.e. by Eigen decomposition of MMT

We know this does not work, however
Can we do the same for independence

— Is there a linear transform that will enforce independence?



An ugly algebraic solution

 We decorrelated signals by diagonalizing the
covariance matrix through Eigen decomposition

* |s there a simple matrix we could just similarly
diagonalize to make them independent?

— Some matrix whose Eigenvector matrix gives us the
transform A such that the rows of AM are
independent

11755/18797 45



Actual question

e |sthere alinear transform that can transform
a scatter like this

11755/18797
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Actual question

e |sthere alinear transform that can transform
a scatter like this

WILL NOT WORK FOR
GAUSSIAN DATA

WHY??

11755/18797 47



Will not work for Gaussian data

Mixing ICA

r.-.-"- ; » 'JW » r.-.."- by

* Concept behind ICA:
— Original sources had some independent distribution

 Assume all had identical variance
— “Mixing” rotated the joint distribution

— |ICA finds the axes that “unmixes” the distribution

* In principle, searches through all rotations such that the distribution is axis
parallel again

— This should give us back the original independent distribution

11755/18797



Will not work for Gaussian data

* Forindependent Gaussian RVs of equal variance, a
mixing rotation results in an effectively unchanged
distribution

— The unmixing rotation cannot be determined through
inspection of the distribution

11755/18797
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Returning to our problem

e |sthere alinear transform that can transform
a scatter like this

11755/18797
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Zero Mean

e Usual to assume zero mean Processes
— Otherwise, some of the math doesn’t work well

* M=WH H=AM

* If mean(M) =0 => mean(H) =0
— E[H]| =A.E[M]=A0=0
— First step of ICA: Set the meanof M to 0

|
= > m,
Sl (M) ’

I

mi:mi_lum VZ

— m. are the columns of M



Actual process

* To simplify the process, we will first decorrelate the data and whiten
it

— So that the variance is the same along all dimensions
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Actual process

* To simplify the process, we will first decorrelate the data and whiten
it

— So that the variance is the same along all dimensions

 Then we search for the axes that make the data independent
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Decorrelating and Whitening

X Diagonal |

Eigen decomposition MM!= EAET
C = A-I/ZET

X=CM

Not merely decorrelated but whitened
— XXT=CMM'CT = A-"2ETEAETEA-12 = |

C is the whitening matrix
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Uncorrelated != Independent

Whitening merely ensures that the resulting signals are
uncorrelated, i.e.

E[xx]=01f1!=]

This does not ensure higher order moments are also
decoupled, e.g. it does not ensure that

E[Xizsz] = E[x;’]E [ij]

This is one of the signatures of independent RVs
Lets explicitly decouple the fourth order moments



Decorrelating

H=BX
H Diagonal
H=BCM
| \ A=BC
H=AM
- X=CM

o XxXT=1 >

Our objective: Find the matrix B that makes the rows of BX independent
— H=BX
Will multiplying X by B re-correlate the components?

Not if B is unitary
— BBT=B™B=1
HH' = BXX™B'=BB' =1
— Because XXT=1
 So we want to find a unitary matrix

— Since the rows of H are uncorrelated
Because they are independent
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An ugly algebraic solution

 We decorrelated signals by diagonalizing the
covariance matrix through Eigen decomposition

* |s there a simple matrix we could just similarly
diagonalize to make them independent?

— Some matrix whose Eigenvector matrix gives us the
transform A such that the rows of AM are
independent

11755/18797 57



An ugly algebraic solution

 We decorrelated signals by diagonalizing the
covariance matrix through Eigen decomposition

* |s there a simple matrix we could just similarly
diagonalize to make them independent?

— Not really, but there is a matrix we can diagonalize
to make fourth-order moments independent

e Just as decorrelation made second-order moments
independent

11755/18797 58



Emulating Independence

H

Ve SN AR VACI A VA
NIAVA NS AVAVAYA VAN 2N

* The rows of H are uncorrelated
— E[hihj] - E[hi]E[hj]
— h; and h; are the i and j*" components of any vector in H

 The fourth order moments are independent
— E:hihjhkhl] — E[hi]E[hj]E[hk]E[hl]
— E:hizhjhk] — E[hiz]E[hj]E[hk]
— E[h°h*] = E[h*]E[h;’]

11755/18797



FOBI: Freeing Fourth Moments

Find B such that the rows of H = BX are independent

The fourth moments of H have the form:
E[h, hj h, hj]

If the rows of H were independent
E[h; h, h, h] =E[h] E[h] E[h,] E[h]

Solution: Compute B such that the fourth moments of H = BX
are decoupled
— While ensuring that B is Unitary

FOBI: Fourth Order Blind Identification

11755/18797 60



ICA: Freeing Fourth Moments

Objective: Find a matrix B
such that the rows of H=BX
are statistically independent

H= h Define a matrix D that would
k be diagonal if the rows of BX
are independent

Compute B such that this
matrix becomes diagonal

* Create a matrix of fourth moment terms that would be diagonal
if the rows of H were independent, and diagonalize it

* A good candidate: the weighted correlation matrix of H

D = E[IRI2hR"] =) [Ihel2heh
k

— h are the columns of H
— Assuming h is real, else replace transposition with Hermitian



Sum of squares

ofall ¢

R
l

On the actual matrix

ICA: The D matrix

D = E[||h||*hhT] d:: =

0%

i component

1

b= cols(H)

D Nl Ry
k

11755/18797
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ICA: The D matrix

du dlz d13 .o | :
d21 dzz d23 X dlj:COlS(H)Z(Zthhhhkj

k [

If the 4. terms were independent and zero mean

For i !=j (off-diagional elements)

E|hihy ) b

l

= E[n3]E[w] + ElRE[R] + ElRi]E[h] ) E[h?] = 0

L#1,1# ]

For i = (diagonal elements)

— E|hhi X hf| = E|hf| + E|h}| X2 E|Rh] # 0

i.e., if 7, were independent, D would be a diagonal matrix

— Let us diagonalize D
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(] [ [
Diagonalizing D
Objective: Find a matrix B
such that the rows of H=BX

Reca”: H = BX are statistically independent

— i ¢ i Define a matrix D that would
Bis whajc we’re trying to learn to be diagonal if the rowe of B
make H independent are independent

— Assumption: B is unitary, i.e. BIB=1  Compute B such that this
matrix becomes diagonal

Note: if H=BX, then each vector h = Bx
The fourth moment matrix of H is
D= E[h' h hh']= E[x"B'Bx Bx x' B']
= E[x'x Bx x' B']
= B E[x'x xx'|B"
= B E[[|x|]* xx"]B'



Diagonalizing D

Objective: Estimate B such that the fourth
moment of H = BX is diagonal

Compose Dy = Xyl [, X

Diagonalize D, via Eigen decomposition
D, = UA,UT

B=UT
— That’s it!!!!



B frees the fourth moment

) = UAU! ; B=U!
U is a unitary matrix, i.e. U'U = UU! =1 (identity)
H=BX=UX

— h=U'x

The fourth moment matrix of H is

D = E[|/h|]* h']
D = UTE[|x||> xx']U
-U'D_ U

=UTUA;UTU= A,
The fourth moment matrix of H = U'X is Diagonal!!

11755/18797
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Overall Solution

* Objective: Estimate A such that the rows of H =
AM are independent

 Step 1: Whiten M

— C=A""2ET where A and E are the eigen value and
eigen vector matrices of MM!

- X=CM

e Step 2: Free up fourth moments on X
— B is the (transpose of the) matrix of Eigenvectors of
X.diag(XX).XT
— A=BC



FOBI for ICA

Goal: to derive a matrix A such that the rows of AM are
independent

Procedure:

1.
2.
3.

© N9 U0 s

“Center” M

Compute the autocorrelation matrix R,,,, of M

Compute whitening matrix C via Eigen decomposition
Ry =EAET, C=A12ET

Compute X=CM

Compute the fourth moment matrix D’ = E[||x||*xx"]

Diagonalize D’ via Eigen decomposition

D’ = UA,U!

Compute A = UTC

The fourth moment matrix of H=AM is diagonal

Note that the autocorrelation matrix of H will also be diagonal



ICA by diagonalizing moment

matrices
 FOBI is not perfect

— Only a subset of fourth order moments are considered

* Diagonalizing the particular fourth-order moment matrix we
have chosen is not guaranteed to diagonalize every other
fourth-order moment matrix

* JADE: (Joint Approximate Diagonalization of
Eigenmatrices), J.F. Cardoso

— Jointly diagonalizes multiple fourth-order cumulant
matrices



Poll 3

* Which of the following statements are true of FOBI

— It computes a transform that makes all fourth-order
moments independent

— It requires a first pre-whitening step

— The transform is the Eigenvector matrix of the fourth-order
moment matrix

— The transform is the product of the Eigenvector matrix of
the fourth-order moment matrix of the whitened data, and
the whitening matrix obtained through PCA



Poll 3

Which of the following statements are true of FOBI

— It computes a transform that makes all fourth-order
moments independent

— It requires a first pre-whitening step

— The transform is the Eigenvector matrix of the fourth-order
moment matrix

— The transform is the product of the Eigenvector matrix of
the fourth-order moment matrix of the whitened data,
and the whitening matrix obtained through PCA
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Lets try a different tack

e Use the statistical properties of mixing...

11755/18797
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The Central Limit Theorem

 Sum of independent random variables will
tend toward a Gaussian distribution

* Even if the independent random variables
don’t have a Gaussian distribution!

 The sum will almost always be “more”
Gaussian than the component signhals

— Even if the independent RVs are not Gaussian
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Changing notation for a bit

x1(t) = a1151(t) + aq252(1)

S =
X2(t) = az151(t) + az,s2(t) %

\

 Two people speak simultaneously are recorded by two microphones
— Each recorded signal is a mixture of both signals

* Find a linear transform that unmixes them
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Problem setting and notation

* Independent signals R
S ...Sy (arranged as a e (O, T
vector §) have been 0 q

: .. . 11 Q12

mixed by mixing matrix [ ] [azz aZZH ]
A to generate mixed s
output x
We need to find a y=W'x sty=x

matrix W that will
unmix X to recover s

11755/18797
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The Central Limit Theorem & ICA

Let each s; be identically distributed
Let’s obtain one of the sources

y =wlx

Here, wis a column of W
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The Central Limit Theorem & ICA

y=wlx

Suppose, w' is a row of the mixing matrix’s

inverse (W' = A~1) . Then y would be one of
the independent sources:

x=A4s > s =A1x
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The Central Limit Theorem & ICA

Useful Relations: x=A4s y=W'x
y =wlx
Let’s define a convenient variable:
z= ATw
And let’s do some substitutions:

y=wix sy=wlds sy=W'A)s->y=UA"W)!'s>y=2"s

78



The Central Limit Theorem & ICA

Useful Relations: x = As
y=wlx
y=1zls

What does this last relation mean? We want y to be ONE OF
the independent sources

79



The Central Limit Theorem & ICA

Useful Relations: x = As
y=wlx
y=1zls

1. y is a linear combination of sources

What does this do for us?
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The Central Limit Theorem & ICA

Useful Relations: x = As
y=wlx
y=1zls

1. yisalinear combination of sources

2. If y1s one of the sources, then z =10, ... , 1, ..

., 0].

What does this do for us?
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The Central Limit Theorem & ICA

Useful Relations: x = As
y=wlx
Y = ZTS o

1. yisalinear combination of sources
2. If y 1s one of the sources, then z = [0,

ey 1, ..., 0.

S1 S1
S3 = zT 1Sz - ss=[0 0 1] [52]
S3 S3

What does this do for us?
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The Central Limit Theorem & ICA

Useful Relations: x = As
y=wlx
y=1zls

1. yisalinear combination of sources
2. If y1s one of the sources, then z =10, ..., 1, ..., 0].

3. Since the sources are independent R.\V.'s, any mixed y is
“more Gaussian” than any of the sources

What does this do for us?
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The Central Limit Theorem & ICA

Useful Relations: x = As
y=wlx
y=1zls

1. yisalinear combination of sources

2. If y1s one of the sources, then z =10, ..., 1, ..., 0].

3. Since the sources are independent R\V.'s, any mixed y is
“more Gaussian” than any of the sources

4. If yis one of the sources, y is the least Gaussian!

What does this do for us?



The Central Limit Theorem & ICA

Useful Relations:

X = As

y=wlx y=2z's
Recall: we are given x.

Recall: we are not given s.

Recall: z is a variable we defined for convenience

Let’s pick a w that maximizes the non-Gaussianity of y.
This should force z to have just one non-zero component

y will then be one of the independent sources.
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BIG

TM —
: Corporate needs you to find the differences

between this picture and this picture.

MAXIMIZE THE NON-
GAUSSIANITY OF y = wlx

| They're the same picture.



CONTRAST FUNCTIONS



“more Gaussian” & “least
Gaussian”

* How can we measure Gaussianity

* |f we can measure Gaussianity, can we produce a way
to optimize over that?

* |f we can optimize non-Gaussianity, can we solve ICA?

Fortunately, there are lots of ways to measure non-
Gaussianity!
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Kurtosis

A very clear formula:

B[ =

Kurt|X| =E

)

Kurt[X] = E[X*] — 3(E[X?])?)

(El(X —w)?]%)



Kurtosis

Kurt[X] = E[X*] = 3(E[X*])?)

Note: For a multivariate normal distribution with
unit variance, E[X*] = 3(E[X?])? = 3.

Note: for a multivariate normal distribution with
unit variance, 3(E[X?])? = 3(1)% = 3.

So,if X ~N(0,1), Kurt|X] = 0.
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Kurtosis

A measure of how heavy the tails of a distribution are
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Kurtosis

How would we optimize?

Use the absolute value of kurtosis
For a Gaussian R.V., its kurtosis is O

Therefore, we want to maximize the kurtosis
of the distribution
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Kurtosis

* Benefits
— computationally easy
— some nice linearity properties
— widely used!
* Disadvantages
— Susceptible to outliers
— Few data points leads to bad estimate

Not a robust measure of Gaussianity!
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Negentropy

* Entropy:

HOXO) = = ) P(x)log P(x:)
=1

From last lecture: minimal number of bits sent
for an optimal code
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Negentropy

* Entropy: a measure of surprise
 R..thatis “more random” will have a larger entropy
— More bits needed to send

* R.\V.thatis “less random” will have a smaller entropy

— Fewer bits needed to send
— Spiky PDFs

What is the entropy of a Gaussian random variable?

98



Negentropy

* Entropy of a Gaussian: depends but it’s the
largest possible value of any distribution with
equal variance

How does this help us?
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Negentropy

Define:
JX) = H(Xgauss) — H(X)

Xjyauss 1S @ Gaussian with the same covariance matrix as X.
With this definition: J(X) > 0 and J(X) = 0 if X is Gaussian

So, to minimize Gaussianity, we want to maximize
negentropy!
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Negentropy

* Advantages:

— Very well justified measure of Gaussianity

— Optimal measure of Gaussianity
* Disadvantages
— Computationally hard

— Must estimate the PDF of a R.V.: always a fun thing to do :/

We will usually approximate negentropy and maximize over
that
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When you’re tired of looking at math slides and want to build something

ALGORITHMS
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Maximizing an approximation to negentropy.

FASTICA
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General principle

Want to maximize H(v) — H(X)

— Where v is a 0 mean unit variance Gaussian RV and the variance of X
is 1 (whitened)

max(E[—logP(v)] — E[—log P(X)])
= max(E[log P(X)] — E[log P(v)])
Taking expectations requires knowledge of log P(X)
— Which we do not know

Instead we will take a different approach to maximize the
difference between P(X) and a Gaussian

Ensure that the expected value of every moment of X is maximally
different from the corresponding moment of v

— max div(E[X™], E[v"]) for every n
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Maximizing the gap

max div(E[X™],E[v*])Vn =
max a,;div(E[X], E[v]) + a,div(E[X]?% E[v?]) + asdiv(E[X3], E[v3]) + -+

Not tractable: will require explicit computation or estimation of all inifinite
moments

— Or at least a whole lot of high-order moments

— Which are verrrrrrrrrrrrry noisy to estimate

Instead do the following
max div(E[a X + a,X? + a3 X3 + - |, E[ayv + ayv? + azv3 ... ])

Or alternately
max div(G(X),Gv))

Where G (X) is any function that has a fast convergent Power series expansion:

600 = ) (x—x)"
n=0

— The power series must include at least four terms to be meaningful

Using the squared L2 divergence we get

— maxJ(X) where J(X) x [E[G(X)] - E[¢W)]]’ 107



FastiCA

* Hyvarinen 2000
* Uses an approximation of negentropy:

J(X) « [E[GX)] — E[6W)]]

vV is a Gaussian variable with zero-mean and
unit-variance

G are nonquadratic functions



FastiCA: the G function

G just needs to be non-quadratic

— Ideally a function whose polynomial expansion includes all higher powers
of the argument

* Maximizing negentropy will “free” up the moments of those higher powers

e Some weird forms:

1
G(u) = —logcosh(a;u)
ai

1 ( a2u2>
G(u) = ——exp|—

a- 2

G(w) = ~ut
u—Zu
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FastiICA: comments

Maximize J(X) = [E[G(X)] — E[G)]]” while

ensuring var(X) =1
— Pre-whiten the data

Taking actual expectations is not possible

Instead use the empirical average over samples

Can be performed in online manner

110



FastiCA

1. Pre-whiten the data

2.Choose an initial w

3.Letwt = E[xG'(w'x)] — E[G"(WTx)]w
4. Normalize:w = w™/ |[|[wT||

5. Check convergence, head back to 3!

e Normalization of w maintains variance =1



FastiICA: Derivation

e Newton’s Method
* Maximize:
J) « [E[6)] - E[GW]]’

* Constrain:
lw]|* =1



FastICA: Industry Standard

* Basically the industry standard
implementation of ICA:
— https://github.com/scikit-learn/scikit-

earn/blob/0fb307bf3/sklearn/decomposition/ fa
stica.py#L304
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Poll 4

* Which of the following are true of FastICA

— |t derives a linear transform that frees up fourth
moments

— |t finds the independent directions along which
the distributions of the data are maximally non-
Gaussian

— It is a batch algorithm
— It is an online algorithm



Poll 4

* Which of the following are true of FastICA

— It derives a linear transform that frees up fourth
moments

— It finds the independent directions along which
the distributions of the data are maximally non-
Gaussian

— It is a batch algorithm
— It is an online algorithm
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Speech-Music Example

e Te-Won Lee @ UCSD

Mixed Separated

) <)

/ & / N
o / &
I )R
. / " &
J & q
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Another example!
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In Reality

N D\
s LS
)

* Mixed signals are not instantaneous mixtures
— The signals arrive with different delays at the two microphones
x1 = ay181(t — t11) + aq252(t — t12),
Xy = A2151(t — t21) + azz8:(t — t22)

— The time-delay issue is hard for ICA to deal with

* You must do some clever things for it to work out
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Some Explicit Limitations

* |CA is identifiable up to:
— a sign change (plus or minus)
— a scaling factor
— This is just from the model: x = As

* |CA (unlike PCA) doesn’t have a notion of
Importance

— The order of the sources doesn’t matter.
— It’s unique up to permutation as well.
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Another Example

* Three instruments..
— M =NS§,
— S =WM (through ICA)
—N=W"
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ICA for data exploration

* The “bases” in PCA
represent the “building
blocks”

— |deally notes

TR
APFEFATAA

iullumuu'l.”
I

|
il
I
|
|
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M
|

|

I
|

|

2500

L

MHHnE g

* Very successfully used

|
|

(AT HOI

A

e So can ICA be used to
do the same?
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ICA vs PCA bases

= Motivation for using ICA vs PCA

= PCA will indicate orthogonal directions of
maximal variance

= May not align with the data!
= |CA finds directions that are independent

= More likely to “align” with the data

11755/18797

Non-Gaussian data
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Finding useful transforms with ICA

Audio preprocessing 7 J! . ‘ ; = ’ '
example N "‘”N e Mol Ko R s KR
Take a lot of audio snippets ;;,1,1]; ol bl ol !
and concatenate them in a LSS S N ‘~":"'fg:‘r""i4"
big matrix, do component \' —w'f‘,ﬁw —W’-nv'“,,lh'ﬁw— w.:-;""{» i —«W\,.; i A — | %[r
analysis |fli:|h'l\p¥\
PCA results in the DCT bases |~ b
ICA returns time/freq ['L | «ul’\"';ww w«uv,w - ‘{ i w.*]".‘w i ~-¢»3.’luj(wv- ” fA‘; (-
localized sinusoids which is a \. b | SR N A
better way to analyze sounds ““"'n""‘"‘ JV “‘“"\f’ f '.l‘j i 1 i ""'l —i/
Ditto for images \ it e
— ICA returns localizes edge Soop ooy R e R T o
filters '-/:r'-;l:‘g’fi-.."\'w’ﬁ | M“MW ’rvf'fw-m - i N i fi"l‘”““‘“” [‘fw ~1rkv-w
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Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces
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B L i
,{_ﬁ,.‘,_‘\_/\\,.gm;/\_/'\,.\_;

* Very commonly used to enhance EEG signals

 EEG signals are frequently corrupted by
heartbeats and biorhythm signals

* |[CA can be used to separate them out
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So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



PCA solution

200 400 s00 800 1000 1200 1400

200 400 S00 800 1000 1200 1400

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does this work: ICA solution

: J‘\F\Wwﬁwm

gk il
6L il
2 L .|

h 5‘0 1(‘)0 15‘)0 260 25‘)0 3(‘)0 )

jﬂjvjwﬂwﬂﬁﬁﬁﬁnijNﬂﬁakﬁ¥m,N$u

e Better..

— But not much

e But the issues here?
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ICA Issues

No sense of order

— Unlike PCA

Get K independent directions, but does not have a notion
of the “best” direction

— So the sources can come in any order

— Permutation invariance

Does not have sense of scaling

— Scaling the signal does not affect independence

Outputs are scaled versions of desired signals in permuted
order

— In the best case
— In worse case, output are not desired signals at all..



What else went wrong?

* Notes are not independent
— Only one note plays at a time

— If one note plays, other notes are not playing

 Will deal with these later in the course..



