

Why Dictionary-based Representations? • Dictionary based representations are semantically more

meaningful

• Enable content-based description – Bases can capture entire structures in data

-
- Finds an atom in the dictionary that best matches the input signal
- Remove the weighted value of this atom from the signal
- Again, find an atom in the dictionary that best matches the remaining signal.
- Continue till a defined stop condition is satisfied.

Sparse and Overcomplete Representations and the control of the control o

 L_1 vs L_0 and L_1 and L_2 • L_1 minimization – Two-sparse solution – All else being equal, the two closest bases are $s.t. \underline{X} = \mathbf{D}\underline{\alpha}$ $Min|\alpha|$ $\underline{\alpha}$

- Dictionary entries must be structurally "meaningful"
	- Represent true compositional units of data
- Have already encountered two ways of building dictionaries
	- NMF for non-negative data
	- K-means ..

Sparse and Overcomplete Representations and the space of the space

SVD K-Means

squared projection error of the training vectors from the closest codeword

Formalizing

Given training data

$$
\{X_1, X_2, ..., X_T\}
$$

We want to find a dictionary D, such that

$$
D\alpha_i = X_i
$$

With α_i sparse

An iterative method • Given D, estimate α_i to get sparse solution – We can use any method • Given α_i , estimate D **Example 10**
 2. For each vector x that
 $\sum_{n=1}^{\infty} |X_i - D\alpha_i|^2 + ||\alpha_i||_1$

 2. For each vector x that
 $\sum_{n=1}^{\infty} |X_i - D\alpha_i|^2$

 2. For each vector x that
 $\sum_{n=1}^{\infty} |X_i - D\alpha_i|^2$

 2. For each vector x that

So how does that work

• In case you forgot this music… • 975 vectors (1025 dimensions)

• N=12, K=5

- -
- Another popular use – Denoising

 I Identity matrix Translation of a Gaussian pulse

Image Denoising

- Now, update the dictionary D.
- Update D one column at a time, following the
- K-SVD maintains the sparsity structure
- Iteratively update α and D

Sparse and Overcomplete Representations and the state of the state

159

