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# basis <= dim X

A limitation we saw earlier

Mathematical restrictions on the number of bases have no
connection to reality

— Universe does not respect your mathematical representations of
the data

— In reality: number of building blocks that compose any kind of
data is unlimited

* One solution we saw earlier: picking one “closest” building
block to represent any input

So far

Can we use linear composition to identify
basic units that compose the signal?

parse and Overcomplete Representations

Just in case you missed it..

* Remember, #(Basis Vectors)= #unknowns

D -a=X

Basis

Input data
Vectors

Weights

Standard representations: number of bases <= dimension of data
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Poll 1

Mark all true statements about the vector quantization model
— It represents data as v = Dw where D is a dictionary

The w vector in vector-quantization is required to be one hot

K-means clustering is one way of computing the Dictionary for the VQ model

The Dictionary is assumed to represent semantically meaningful “bases” that can be used to
compose the data

The Dictionary may be viewed as a collection of exemplars that all data instances are mapped
onto

What is the difference or similarity between VQ (Kmeans) based representations
and KLT/PCA?

They are completely different concepts and cannot be compared

They are similar in that both of them minimize the L2 divergence between v and Dw
They differ in that in VQ w must be one-hot and the bases (dictionary) are unrestricted,
whereas in KLT/PCA the bases (dictionary) must be orthogonal while w is unrestricted
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* Mark all true statements about the vector quantization model
— Itrepresentsdataas v = Dw where D is a dictionary
— The w vector in vector-quantizationis required to be one hot
—  K-means clustering is one way of computing the Dictionary for the VQ model
— The Dictionary is assumed to i
compose the data

“bases” that can be used to

The Dictionary may be viewed as a collection of exemplars that all data instances are
mapped onto

*  What is the difference or similarity between VQ (Kmeans) based representations
and KLT/PCA?
— They are completely different concepts and cannot be compared
— Theyare similar in that both of them minimize the L2 divergence betweenv and Dw

~ They differ in that in VQ w must be one-hot and the bases (dictionary) are unrestricted,
whereas in KLT/PCA the bases (dictionary) must be orthogonal while w is

Key Topics in this Lecture

* Basics — Component-based representations
— Overcomplete and Sparse Representations,
— Dictionaries

¢ Pursuit Algorithms
* How to learn a dictionary

* Why is an
powerful?

overcomplete representation
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A limitation we saw earlier

* Mathematical restrictions on the number of bases have no
connection to reality

— Universe does not respect your mathematical representations of
the data

— In reality: number of building blocks that compose any kind of
data is unlimited

* One solution we saw earlier: picking one “closest” building
block to represent any input

* Today: Learning linear compositional representations
without restrictions on the number of basic units
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Representing Data
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Atoms

Ilmnllllllllllll

Sparse and Overcomplete Representations 1

11

Representing Data

Dictionary (codebook)
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Representing Data

Dictionary

Atoms
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Aa Each atom is a basic unit that can
P be used to “compose” larger units.
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Representing Data

Representing Data
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Representing Data
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Representing Data

Representing Data

Linear
combination of
elements in the
Dictionary
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Representing Data

Sparse and Overcomplete Representations
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MLSH
Representing Data
Linear
combination of —
elements in the
Dictionary
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VLS
Quick Linear Algebra Refresher
* Remember, #(Basis Vectors)= #unknowns
D-a=X
Basis Input data
Vectors ioh
(from Weights
Dictionary)
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s
Overcomplete Representations

* What is the dimensionality of the input
image? (say 64x64 image)
» 4096

* What is the dimensionality of the dictionary?
(each image = 64x64 pixels)

> 4096 x N
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TaLSH
Overcomplete Representations

* What is the dimensionality of the input
image? (say 64x64 image)

> 4096

* What is the dimensionality of the dictionary?
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MLSH
Overcomplete Representations

* What is the dimensionality of the input
image? (cav RAVYAA imago)

More generally:

If #(dictionary units) > dimensions of input

we have an overcomplete representation

P,

> 4096@

VERY LARGE!!!
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s
Overcomplete Representations

* What is the dimensionality of the input
image? (say 64x64 image)
> 4096

* What is the dimensionality of the dictionary?
(each image, X64 pIRQ!s)

> 4096 ?7?7?
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Overcomplete Representations

* What is the dimensionality of the input

imaan?d [cav EAVEA imaaa)

If N > 4096 (as it likely is)
we have an overcomplete representation

* What is the dimensionality of the dictionary?
(each imag 4x64 p )

> 4096 VERY LARGE!!!
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MLSP)
Quick Linear Algebra Refresher

* Remember, #(Basis Vectors)= #unknowns

D -a=X

Dictionary /

Units .
Weights

Input data
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MLSH
Dictionary based Representations

* Overcomplete “dictionary”-based representations
are linear-composition-based representations with
more “atomic building blocks” than the
dimensionality of the data
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Bases matrix is wide
(more bases than dimensions)
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Poll 2

« Dictionary-based representations are similar to vector-quantization
based representations, except that the weights vector w is no
longer required to be one-hot

— True
— False

 Dictionary based representations are similar to PCA/KLT, except that
the dictionary entries may exceed the dimensionality of the data in
number and are not restricted to being orthogonal
— True
— False

Sparse and Overcomplete Representation 33
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Problems
* How to obtain the dictionary
— Which will give us meaningful representations

* How to compute the weights?
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Why Dictionary-based =

Representations?

« Dictionary based representations are semantically more
meaningful

* Enable content-based description
— Bases can capture entire structures in data
— E.g. notes in music
— E.g. image structures (such as faces) in images

* Enable content-based processing

— Reconstructing, separating, denoising, manipulating speech/music
signals

— Coding, compression, etc.

* Statistical reasons: We will get to that shortly..

Sparse and Overcomplete Representations 32
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Poll 2

« Dictionary-based representations are similar to vector-quantization
based representations, except that the weights vector w is no
longer required to be one-hot

— True
— False

« Dictionary based representations are similar to PCA/KLT, except that
the dictionary entries may exceed the dimensionality of the data in
number and are not restricted to being orthogonal

— True
— False
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34

Problems
* How to obtain the dictionary
— Which will give us meaningful representations

[' How to compute the weights? ]
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Quick Linear Algebra Refresher Quick Linear Algebra Refresher
D-a=X
D: full rank|
* Remember, #(Basis Vectors)= #unknowns D =X . .
Unique solution
D -a=X
Dictionar -
entries y Input data We may have no
Weights exact solution
When can we solve for a? E - @ o .
- Infinite Solutions
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Quick Linear Algebra 5 r(:; er Using Pseudo-Inverse?
D: full rank ]RN
.D -_ X All points on the red line
Unique solution s tsalis‘fy
D-a=X
D H - X / y h‘\l’fim ;\’;I[l]l Ot:lllel smallest
We may have no
exact solution
E @ Our Case This is equivalent to
— |nﬁnite SO|uti0nS minimize |92 subject to Dev = X
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Alternate view: Recall e

quantization
V= ZWidi

V=Dw |w|=1
wlp =1

* d; are the “representative” vectors of each cluster
* Restriction: only one of the w; is 1, the rest are 0
- Ziw; =0
— wis unit length and one-sparse
¢ What if we let more than one entry of w to be non zero?
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Representing Data
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Overcompleteness and Sparsity

Atoms
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e
Overcompleteness and Sparsity

* To solve an overcomplete system of the type:

D.a=X

* Make assumptions about the data.

* Suppose, we say that X is composed of no
more than a fixed number (k) of “bases” from
D (k < dim(X))

— The term “bases” is an abuse of terminology..

* Now, we can find the set of k bases that best

fit the data point, X.

Sparse and Overcomplete Representations 4
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VLSH
Overcompleteness and Sparsity

Atoms
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But no more than k=4 bases
are “active”
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No more than 4 bases
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No more than 4 bases

E ey ..

ONLY THE o COMPONENTS
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Sparsity- Definition

* Sparse representations are representations
that account for most or all information of a
signal with a linear combination of a small
number of atoms.

(from: www.see.ed.ac.uk/~tblumens/Sparse/Sparse.html)

Sparse and Overcomplete Representation

51

The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this.

Min d],
st. X=D«a

53
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No more than 4 bases

ey ..

ONLY THE a COMPONENTS
CORRESPONDING
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The Sparsity Problem

* We don’t really know k
* You are given a signal X

* Assuming X was generated using the
dictionary, can we find a that generated it?

Sparse and Overcomplete Representations 52
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The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this.

Counts the number of non-
zero elements in a

54



The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this

— Ockham'’s razor: Choose the simplest explanation
invoking the fewest variables

Min e,
st. X=D«
55
Poll 3
* Overcomplete representations can be indeterminate
— True
— False

¢ |tis essential to impose sparsity to obtain a unique
representation in terms of an overcomplete dictionary
— True
— False
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Obtaining Sparse Solutions

* We will look at 2 algorithms:
— Matching Pursuit (MP)
— Basis Pursuit (BP)

10/10/2023

Poll 3

Overcomplete representations can be indeterminate
— True
— False

* Itis essential to impose sparsity to obtain a unique
representation in terms of an overcomplete dictionary
— True
— False
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The Sparsity Problem

* We want to use as few dictionary entries as
possible to do this.

Min |,

st. X=D«

How can we solve the above?

58
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Matching Pursuit (MP)

* Greedy algorithm

* Finds an atom in the dictionary that best
matches the input signal

* Remove the weighted value of this atom from
the signal

* Again, find an atom in the dictionary that best
matches the remaining signal.

Continue till a defined stop condition is
satisfied.

60
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TaLSH
Matching Pursuit
* Find the dictionary atom that best matches
the given signal.
"\
‘ Weight:w3
-; f
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61
TaLSH
Matching Pursuit
* Find best match for updated signal
63
VILSH

Matching Pursuit

Algorithm Matching Pursuit
Input: Signal: f7).
Output: List of coefficients: ((I,n’g,.m).
Initialization:
Rf, — fu)
Repeat
find g,f" = D with maximum inner product < Rf“!g,:m -+

Refempel R.f‘ﬂ!g’:m =i
Rfo1 = Bfu— gy
n — n+l;

Until stop condition {for example: |iRj;I || < threshold)

From http://en.wikipedia.org/wiki/Matching_pursuit
Sparse and O

vercomplete

10/10/2023

Matching Pursuit

* Remove weighted image to obtain updated
signal

Find best match for

———> this signal from the
dictionary

65
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Matching Pursuit

* Find best match for updated signal

Iterate till you reach a stopping condition,

norm(Residqa_II_nputSignal) < threshold

64

Matching Pursuit

* Problems ???

66

11



Matching Pursuit

* Main Problem
— Computational complexity

— The entire dictionary has to be searched at every
iteration

10/10/2023

Comparing MP and BP

Hard thresholding

(remember the equations)

Greedy optimization at
each step
Weights obtained using
greedy rules

67

Basis Pursuit (BP)

* Remember,

Min d],
st. X=D«

68
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Basis Pursuit

* Remember,

Min |,

st. X=D«a

In the general case, this is intractable

Requires combinatorial optimization

ViLsH

Basis Pursuit

* Remember,
Min |«
fin [,
st. X=D«a
In the general case, this is intractable
70

WiLSH

Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Min [,

st. X=D«a

71

72
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Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Min e

st. X=D«a

This will provide identical solutions
when D obeys the Restricted
Isometry Property.
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Basis Pursuit

* We can formulate the optimization term as:

Min {|X D + 2]}

/

Constraint

Objective

75

Basis Pursuit

Equivalent to LASSO; for more details, see this

paper by Tibshirani
http://www-stat.stanford.edu/~tibs/ftp/lasso.ps

Min {|X Do + 2]a]}

A is a penalty term on the non-zero elements
and promotes sparsity

77
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Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

]\/iin ”Q”1 [ Objective

st. X=D«
LN

Constraint
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Basis Pursuit

* We can formulate the optimization term as:

Min {lewalll}

A'is a penalty term on the non-zero elements
and promotes sparsity

76

Basis Pursuit

5 5HaH +1 at a;>0
Min{|X -Da| +Aa} | 5 t={L11ata, =0
“ Yo at a,<0

* |lafl; is not differentiable at o = 0
* Gradient of ||a|; for gradient descent updaté
* At optimum, following conditions hold

V,|X -Da + Asign(a;) =0, if|a,|>0

V,|X-Da| <4, ifa,=0

omplete Representations

78
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Basis Pursuit

* There are efficient ways to solve the LASSO
formulation.
— http://web.stanford.edu/~hastie/glmnet_matlab/

* Simplest solution: Coordinate descent

algorithms
— On webpage..
79
e |
L,vs L,
Overcomplete set
. of 6 “bases”
Mm”a"
o =l
st.X =Da
— — X

* L, minimization
— Two-sparse solution

— All else being equal, the two closest bases are
chosen Coar an Overcomlte Repreenation

81

|
General Formalisms
o | Minl],
L4 - 2
L, minimization s1.X =Da MinHXngH“
* L, constrained optimization “ :
stle], <C
Minld],
* L, minimization |5t x =Dg
* L, constrained optimization MinHX—DgHj
stla], <C

10/10/2023

e
L,vs L,

Overcomplete set
of 6 "bases”

Minla],

st.X =Da

* L, minimization
— Two-sparse solution
— ANY pair of bases can explain X with 0 error

80

Comparing MP and BP

Matching Pursuit

Hard thresholding Soft thresholding

(remember the equations)

Greedy optimization at ~ Global optimization

each step
Weights obtained using  Can force N-sparsity
greedy rules with appropriately

wonaneo-chosen weights

83
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Many Other Methods..

* [terative Hard Thresholding (IHT)
* CoSAMP
* OMP

84
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Poll 4

* Which of the following are valid ways of
obtaining a sparse representation w
— Minimize |w]|_0 while constraining X = Dw
— Minimize |w|_0 while constraining X <= Dw
— Minimize | |X-Dw||*2 + lambda*|w]|_1
— Minimize |w|_2 while constraining X <= Dw

85

Problems

* How to obtain the dictionary

— Which will give us meaningful representations

* How to compute the weights?

INNEEEI Q EE

87

Dictionaries: Compressive Sensing

¢ Just random vectors!

—

)
T

VLSH

89
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Poll 4

* Which of the following are valid ways of
obtaining a sparse representation w
— Minimize |w|_0 while constraining X = Dw
— Minimize |w|_0 while constraining X <= Dw
— Minimize | |X-Dw| |*2 + lambda*|w]|_1

— Minimize |w|_2 while constraining X <= Dw

86

Trivial Solution

* D =Training data

* Impractical in most situations

— Popular approach: sample random vectors from
training data

88

More Structured ways of Constructing
Dictionaries

* Dictionary entries must be structurally

“meaningful”
— Represent true compositional units of data

* Have already encountered two ways of

building dictionaries
— NMF for non-negative data
— K-means ..

90
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Train the codebook
from training data
using K-means

* Every vector is approximated by the centroid of the cluster
it falls into

* Cluster means are “codebook” entries
— Dictionary entries
— Also compositional units the compose the data

Sparse and Overcomplete Representation

K-Means for Composing Dictionaries

91

¢ Learn Codewords to minimize the total
squared length of the training vectors from
the closest codeword

K-Means for Dictionaries

Each column is a codeword (centroid)
from the codebook

D a

* o must be 1 sparse

0
=]
0

* Only o entry must 1 0
llllo=1 "Jlex]ls=1 Fo

92

Length-unconstrained
K-Means for Dictionaries

Each column is a codeword (centroid)
from the codebook

D

* o must be 1 sparse

A Q
SESSEEREE-EEEE

* No restriction on o value
[[ocflo=1

93

¢ Learn Codewords to minimize the total
squared projection error of the training
vectors from the closest codeword

Sparse and Overcomplete Representations

94

SVD K-means

1. Initialize a set of (unit-length)
centroids randomly

2. For each data point x, find the
projection from the centroid for
each cluster

T
Petuster = ‘x Metusier

3. Putdata point in the cluster of the
closest centroid

Cluster for which Poster is

maximum

4. When all data points are
clustered, recompute centroids

m

cluster

= Principal Eigenvector({x | x € cluster}) ‘

95
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* Only represents Radial patterns

10/10/2023

What about this pattern?

patterns will not ca
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* Dictionary entries that represent radial

pture this structure

— 1-sparse representations will not do

What about this pattern?

* We need AFFINE patterns
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What about this pattern?
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* We need AFFINE patterns

* Each vector is modeled by a linear
combination of K (here 2) bases

...

0 4® Every lineisa

100

. :)f two bases'

.. 2-sparse

Constraint:
Line = a.b; + (1-a)b,

)

* We need AFFINE patterns

* Each vector is modeled by a linear
combination of K (here 2) bases

from the codebook

D

* o must be k sparse
* No restriction on o

101

< llo = k

Each column is a codeword (centroid)

se and Overcomplete Re

Codebooks for K sparsity?

a

value
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oy
0
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s |
Formalizing
Given training data
{X1,X2,...., X1}
We want to find a dictionary D, such that
D oy = X q
with (¥ sparse
103
s |
An iterative method
* Given D, estimate (¥; to get sparse solution
— We can use any method
7
: 2
Iglillz [ Xi = Dol + [lewlla
i=1
* Given @, estimate D
T
min Z I X; — Day||? Difficult!
i=1
105
s |
K'SVD D;j!=1
2. For each codeword (k): -
* For each vector x that 00201
used k 1o@oH
* Subtract the contribution of g 3 =(1) = e D
all other codewords to o= ool
obtain e(x) ool
*  Codeword-specific residual 0 s . 0 .
* Compute the principal ooflo@
Eigen vector of {e,(x _
8 e} er(x) = x-Xjzx % Dj
3. Returntostep 1

107
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ViLsH
Formalizing
Two objectives:
- Approximation | Day; — Xl
- Sparsity in coefficients llevil1
,1,
. 2
min i — ; ;
min 31X — e+l
i=1
NON-Convex!!!
104
ViLsH
K SVD
* Initialize Codebook D=
00201
10000
00010
1. For every vector, 907000
compute K-sparse O= oo0010
alphas Z 2 2 2 (1’
— Using any pursuit ele|a|lo]|2
algorithm
106
TS

K-SVD

D

* Termination of each iteration: Updated
dictionary

* Conclusion: A dictionary where any data vector
can be composed of at most K dictionary entries
— More generally, sparse composition

se and Overcomplete Representations

108
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K-SVD algorithm (skip)

Initialization : Set the random normalized dictionary matrix
D e R™X_ SetJ = 1.

Repeat until convergence,

Sparse Coding Stage: Use any pursuit algorithm to compute x;
fori=1,2,...,N

min {||ly: — Dx|3} subjectto ||x|lo < Ty.

Codebook Update Stage: Fork =1,2, ..., K
 Define the group of examples that use d,
wp ={i| 1< i <N, xi(k) # 0}
o Compute
E,=Y-) dy/,
ik
e Restrict E; by choosing only the columns corresponding to

those elements that initially used d in their representation,
and obtain Ef.

® Apply SVD decomposition Ef = UAV?. Update:
di = up, x% = A(L 1) - vy

Set J — J 4 1. Searse and Overcomplete Representatior 09

109

So how does that work

* |n case you forgot this music...
* 975 vectors (1025 dimensions)
* N=12, K=5

111

|
Applications of Sparse Representations

* Many many applications
— Signal representation
— Statistical modelling

— We've seen one: Compressive sensing

* Another popular use
— Denoising

113
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Problems

P
[+ How to obtain the dictionary
— Which will give us meaningful representations

\* How to compute the weights?

IEEEE 2 HE
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K-SVD bases

112

Denoising

* As the name suggests, remove noise!

114
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Denoising

* As the name suggests, remove noise!
* We will look at image denoising as an example

10/10/2023

A toy example

115

A toy example

D _ I G] I Identity matri

GG Translation of a
Gaussian pulse

116

117

Image Denoising

* Here’s what we want
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Image Denoising

* Here’s what we want

118

oy

Image Denoising

T

Sparse and Overcomplete Representations

* Here’s what we want

120
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Image Denoising

TaLSH
The Image Denoising Problem
* Given an image
* Remove Gaussian additive noise from it
121
TaLSH

Image Denoising

* Remove the noise from Y, to obtain X as best
as possible.

122

Image Denoising

* Remove the noise from Y, to obtain X as best
as possible

* Using sparse representations over learned
dictionaries

123

Image Denoising

* Remove the noise from Y, to obtain X as best
as possible

* Using sparse representations over learned
dictionaries

* We will learn the dictionaries

125
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Image Denoising

* Remove the noise from Y, to obtain X as best
as possible

* Using sparse representations over learned
dictionaries

* We will learn the dictionaries

* What data will we use? The corrupted image
itself!

126
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Image Denoising

* We use the data to be denoised to learn the
dictionary.

* Training and denoising become an iterated
process.

* We use image patches of size Vn x Vn pixels
(i.e. if the image is 64x64, patches are 8x8)

10/10/2023

127

Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

Min {|X ~Dal + 2|ja] }

Min{|X ~Da] + e}

129

Image Denoising

Min {|X ~Dal + i}

* In the above, X is a patch.

* If the larger image is fully expressed by the
every patch in it, how can we go from patches
to the image?

131

ViLsH
Image Denoising
* The data dictionary D
—Size=nxk(k>n)
— This is known and fixed, to start with
— Every image patch can be sparsely represented
using D
128
ViLsH
Image Denoising
. 2
Min {|X -Da] + Ajaf }
* In the above, X is a patch.
130
TS
Image Denoising
2
. 2
Min X ~Y]}+ X |R, X ~Da, |
- ij
+Z/1ij a O}
p _v
132
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= |
Image Denoising
2
-
"
%}
(X =) is the error between the
input and denoised image. His a
penalty on the error.
133
= |
Image Denoising
2
. 2
Min X~ Y[+ X|R, X ~Da, |
- ij
135
|
Image Denoising
* But, we don’t “know” our dictionary D.
* We want to estimate D as well.
2
2
wlx -7+ 2R, X ~De, |
ij
22|y )
ij

We can use the previous equation itself!!!

Sparse and Overcomplete Representations
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Image Denoising

Min {4 X -],

+Z Ay
-

%}

Error bounding in each patch
-R;; selects the (ij)™ patch
-Terms in summation = no.
of patches

Sparse and Overcomplete Representations
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ViLsH
Image Denoising
* But, we don’t “know” our dictionary D.
* We want to estimate D as well.
136
MLSP)
Image Denoising
2
. 2
Min {u|X =Y+ 2|7, x-Da,
— ij
20 }
ij
How do we estimate all 3 at once?
138
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Image Denoising

2
2

R,X-Da,

Min -7+ 3|
—_— i

+Z /11,1.
i

il

J

How do we estimate all 3 at once?

We cannot estimate them at the same time!

10/10/2023

Image Denoising

2
2

Min, (X -Y|[+ ZHM(_ Do,
- ij

+Z lij
ij

@

J

How do we estimate all 3 at once?
Fix 2, and find the optimal 3,

140

Image Denoising

Min {@/T : Z‘
£ i

XA AR
p

Initialize X =Y, initialize D

2
2

R,X-Da,

il

You know how to solve the remaining
portion for a — MP, BP!

139
|
Image Denoising
. 2 2
Min_tu| X Yo+ 3[R, X ~Da,|
— g
"‘2/11‘; a, O}
il
Initialize X =Y
141
|

Image Denoising

* Now, update the dictionary D.
* Update D one column at a time, following the

K-SVD algorithm
* K-SVD maintains the sparsity structure

142

143

Image Denoising

Now, update the dictionary D.
Update D one column at a time, following the

K-SVD algorithm
K-SVD maintains the sparsity structure

Iteratively update a and D

144
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Image Denoising

NV
I A, I T A
Zum g F LGN B

O 7 s SR OO AR

Fl RS T TRl TT T | Ml
Learned Dictionary for Face Image denoising

From: M. Elad and M. Aharon, Image denoising via learned
dictionaries and sparse representation, CVPR, 2006.
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TaLSH
Image Denoising
2
. 2
Min | X=Y[+ X |R, X ~Da,|
= i
w—> Const. wrt X
i
We know D and a
T -1 T
X =(ul +) RIR;))(uY +) R Da,)
ij ij
147
VILSH
Image Denoising

¢ Summarizing... We wanted to obtain 3 things
» Weights a
» Dictionary D
» Denoised Image X

149
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Image Denoising

2
2

R,X-Da,

Min {uX-Y[3+ Y]
— i

w—> Const. wrt X

i
We know D and a

The quadratic term above has a closed-
form solution

146

Image Denoising

* Summarizing... We wanted to obtain 3 things

148

Image Denoising

* Summarizing... We wanted to obtain 3 things

» Weights a — Your favorite pursuit algorithm
» Dictionary D — Using K-SVD
» Denoised Image X

150
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Image Denoising

¢ Summarizing... We wanted to obtain 3 things

> Weights a - Your favmt aleorithm

> Dictionary D— Using k-svD  Iterating
» Denoised Image X

151

Image Denoising

* Here’s what we want

153

WS
Comparing to Other Techniques

Non-Gaussian data

PCA of ICA Which is which?

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.

Sparse and Overcomplete Representations
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MLSH
Image Denoising
* Summarizing... We wanted to obtain 3 things
» Weights a
» Dictionary D
» Denoised Image X- Closed form solution
152
MLSH

Image Denoising

* Here’s what we want

'{iﬁ*?% . R’
;ﬁ: -y -.‘ %

Sparse and Overcomplete Representations 154

A

T
e

154

Comparing to Other Techniques

Non-Gaussian data

b

PCA ICA

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.
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Comparing to Other Techniques

Non-Gaussian data

data here

) R

PCA ICA

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.

Sparse and Overcomplete Representation

o

MLsH
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Summary

* Overcomplete representations can be more
powerful than component analysis
techniques.

* Dictionary can be learned from data.

* Relative advantages and disadvantages of the
pursuit algorithms.
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Comparing to Other Techniques

Data still in 2-D space

ICA
/

Overcomplete

Doesn’t capture the underlying representation,
which Overcomplete representations can do...

ViLsH
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