Machine Learning for Signal
Processing
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Topics

Nearest neighbor regression and classification

Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

Regression in kernel spaces

Kernel regression

Regularization..
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Linear regression

— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

Kernel regression

Regularization..

Regression in kernel spaces
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The problems of classification and™
regression

e Classification: Given a feature X, determine
the class Y

— Given image features, classify if this is a face

* Regression: Given an input X, estimate
another feature Y

— Given height, age, gender, etc. of a person,
estimate weight

* |In reality both are the same problem:
— The class is simply a categorical feature

11755/18797 4



Example-based estimation

e (Classification:

— Have seen one or more people who are exactly 160cm,
50kg, and all are female
— Get a new test instance of a person who is exactly 160cm,
50kg. Is this person..
e Male?

* Female?

* Regression:

— Have seen one or more people who are exactly 160cm,
female, and their weight is 50kg

— Get a new test instance of a 160cm female person. What is
your best guess for her weight?
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Example-based estimation

Classification:

— Have seen one or more people who are exactly 160cm,
50kg, and all are female

— Get a new test instance of a person who is#
50kg. Is this person.. cU8J

— Have seen one or more people who are exactly 160cm,
female, and their weight is 50kg

— Get a new test instance of a 160cm female person. What is
your best guess for her weight?
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L MLSP
Example based prediction

* Problem: the gray circle is
missing its color attribute. o
Predict it e ¢

* Find the nearest training
Instance

— Based on observed feature X

* PredictY from it

— Y may be a class value or a
continuous valued estimator



MLSEP
Nearest-neighbor based prediction

* Problem: the gray circle is
missing its color attribute. o
Predict it e ¢




MLSP
Nearest-neighbor prediction

* Alternately, find the k closest training
Instances

— Called the k-nearest-neighbor method

 Predict desired attribute based on these k
closest neighbors



e e e M‘!wmsma
K-nearest neighbor prediction

* Problem: the gray circle

IS missing its color o
attribute. Predict it o ¢
Predict as green
. o .
* Nearest neighbor o .
¢ o
* K-nearest neighbor .
— Example for k=3 ./&redict as red
o
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Distance functions

How does one define the distance between two
instances?
— Some attributes may be numeric

— Other attributes may nominal

Numeric attributes: Usually the Euclidean distance
between attribute values is used

Nominal attributes: Usually a binary distance function —
distance is set to 1 if attribute values are different, O if
they are the same

Will assume numeric attributes for our signals..
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Distance on numeric features

O d(xq,x2) =[x — x2||2

w(xy,x3) = x1Tx2

d(xq, %) = —
X1 X2

12
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K-nearest neighbor prediction

* Find the K nearest neighbors

* Predict as the majority opinion

O
— But should we also consider the ¢
actual distance °
Predict as red
* |s a farther neighbor as important
as a closer one? ® ®

— What about numeric prediction?

* No notion of “majority”

— No two neighbors may have the
same value for Y

13
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Weighted K-nearest neighbor

prediction
Classification
— Score(class) =
Zi:(iEKNN)& class(i)=class W(X, xi) ®
O
— class(x) = argmax Score(class) °
class .
Predict as green
Regression: o

®
— Y(X) = Ziexnn WX, XY

The weight w(x, x;) is inversely related
tod(x, x;)
— If d(x, x;) increases, w(x, x;) decreases

14



Weights of neighbors..

1
O\’ d(xq,x3) = |[xg — x2”2 w(x,y) = d(x,y)
® w(xy, xp) = exp(—ad(xq, x3))
\.

W(x11x2) = X1, Xy = XIXZ

15



Poll 1

 KNN uses the labels of the nearest neighbor, as defined
under a given distance measure, to make predictions

— True

— False

 The K closest data points to a given testing instance (in
the KNN algorithm) always have the same weight

— True

— False



Poll 1

 KNN uses the labels of the nearest neighbor, as defined
under a given distance measure, to make predictions

— True

— False

 The K closest data points to a given testing instance (in
the KNN algorithm) always have the same weight

— True

— False



MLSE

Weighted K-nearest neighbor

prediction
Classification
— Score(class) =
Zi:(iEKNN)& class(i)=class W(X, xi) ®
O

— class(x) = argmax Score(class) °

class .

Predict as green

Regression: o .

— Y(X) = Ziexnn WX, XY

WHY RESTRICT TO K
NEAREST NEIGHBORS?
Considering that distant
to d(x, x;) examples carry less weight

— If d(x, x;) increases, w(x, x;) decreases

The weight w(x, x;) is inversely related
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Weighted example-based

prediction
* Classification
— Score(class) =
Dicclass(i)=class W (X, X;)

— class(x) = argmax Score(class)
class

* Regression:
- Y(x) = Xy w(x, xp)Y;

* All training instances invoked!

19
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Weights of cohort

1
O\. d(xq, %) = |lxg — x5|I? w(x,y) = d(x,y)
O\ w(xy, xp) = exp(—ad(xq, x3))

20




NN prediction with inner-product™
weights

Yiest = z (x’trestxi)yi

[Etraining set

21
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Nearest Neighbor Classification

How?
— T — T
Scoregreen - Z (xtestxi) Scorered - z (xtestxi)
lEgTreen iEred

Yiest = SCOT€yreen > Scorey,q? Green,
else Red

22



Nearest Neighbor Regression

How?

Yiest = Z (x;:restxi)yi

[Etraining set

23



Nearest Neighbor Regression

Yiest = Z (x;:restxi)yi

[Etraining set

Simply stretching any axis changes the
inner products and, as a result, the relative
weights of the training instances.

Stretching an axis can change the answer!

How do we fix this? »



Normalizing the axes

¢

el

Normalize each axis by the inverse
standard deviation (of the training data)

— So that the varianceis 1

Compute the answer on the normalized

data

> —05x

X =
Yiest = Z(xtestxl)y

25



MLSP

The whitening matrix

 Top: Skewed natural scatter

of a data set

Bottom: Scatter after

whitening via
1
x =C ?x

Rotates and rescales the axes

to make scatter circular

(spherical)

11755/18797
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Normalizing the axes

)

/

W

Nz

% —_ HOLD THIS THOUGHT

* Normalize each ax
standard deviatior

— So that the varig
 Compute the ansv

by the inverse
(of the training data)

ceisl

r on the normalized

data AV 4

x=C%x

L

Yiest = Z(/x\{est:fi)yi

27
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Poll 2

Mark all that are true

— The order of the distance among data points is
invariant to scaling an axis

— The inner product is a good measure of weight, as
closer points have larger inner products

— Whitening is an essential step for the KNN
algorithm

— KNN can only be used for classification and not
regression



Poll 2

Mark all that are true

— The order of the distance among data points is
invariant to scaling an axis

— The inner product is a good measure of weight,
as closer points have larger inner products

— Whitening is an essential step for the KNN
algorithm

— KNN can only be used for classification and not
regression
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Lessons

* C(lassification are regression are two versions of the same
problem

— Predicting an attribute of a data instance based on other
attributes

* Nearest-neighbor based prediction: Predict the weighted
average value of desired attribute from all the training
Instances

 Amazing fact they never told you: Every form of
prediction/classification/regression is actually just a variant
of weighted nearest-neighbor prediction



Changing Gears
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Topics

* Nearest neighbor regression and classification
* Linear regression

— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces

* Kernel regression

* Regularization..
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A Common Problem

0.06
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e Can you spot the glitches? &)

11755/18797
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How to fix this problem?

\\\\\\\\\

e “Glitches” in audio

— Must be detected |

— How? W\M M\M\MM \/\P‘J\/U\ML/W i :
° Th e n Wh at? ::o 100 200 w0 400 500 600 700 800 900
e Glitches must be “fixed” - o

— Delete the glitch ol |

e Resultsin a “hole” O_ZZ;( ’\
— Fillinthehole Z\W\M\WM -\WW‘WW
— How??

|
\\\\\\\\\\\\\\\
000000000000000000000000000

11755/18797
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Interpolation..

AN

 “Extend” the curve on the left to “predict” the values in the
“blank” region

— Forward prediction

* Extend the blue curve on the right leftwards to predict the
blank region

— Backward prediction
* How?

— Regression analysis..

11755/18797 35
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OK / T NOTOK

* Regression-based reconstruction can be done
anywhere

e Reconstructed value will not match actual value

* Large error of reconstruction identifies glitches

11755/18797 36
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What is a regression

* Analyzing relationship between variables

* Expressed in many forms
 Wikipedia

— Linear regression, Simple regression, Ordinary
east squares, Polynomial regression, General
inear model, Generalized linear model, Discrete

choice, Logistic regression, Multinomial logit,
Mixed logit, Probit, Multinomial probit, ....

* Generally a tool to predict variables



MLSP

Regressions for prediction

s y=1(x;0)+e
* Different possibilities
— yisascalar

* yisreal
* y is categorical (classification)

— Yy is a vector

— X IS a vector
* X is a set of real valued variables
* X is a set of categorical variables
* X is a combination of the two

— 1(.) is a linear or affine function
— (.) is a non-linear function
— 1(.) is a time-series model



A linear regression

20  -10 10 20 30 40 50 60

X
* Assumption: relationship between variables is linear
— A linear trend may be found relating x and y
— y = dependent variable
— X = explanatory variable
— Given x, y can be predicted as an affine function of x

11755/18797
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MLSP
An Imaginary regression..

http://pages.cs.wisc.edu/~kovar/hall.html N

Check this shit out (Fig. 1). s * k
That's bonafide, 100%-real data, o % 3 | e
my friends. | took it myself over the 1) - >,
course of two weeks. And this was not “ 04 e S
a leisurely two weeks, either; | busted L T s o

my ass day and night in order to provide e * s

you with nothing but the best data 0w 20 2 W 3
possible. Now, let's look a bit more LA

closely at this data, remembering
that it is absolutely first-rate. Do you see the exponential dependence? | sure
don't. | see a bunch of crap.

Christ, this was such a waste of my time.

Banking on my hopes that whoever grades this will just look at the pictures, |
drew an exponential through my noise. | believe the apparent legitimacy is
enhanced by the fact that | used a complicated computer program to make the fit.
| understand this is the same process by which the top quark was discovered.
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Linear Regressions

c y=alxtb+te
— e = prediction error

* Given a “training” set of {Xx, y} values: estimate a
and b
—y,=alx,+b+te,

* |faandb are well estimated, prediction error will be
small
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Linear Regression to a scalar

yi=a'x;tbte,
»=ax,tbte,
y3=a'x3+b+e;

m Define:
y:[y1y2y3“‘] X:|:X1X2X3 :| a:[aT b]

e=|e e, e;...]
* Rewrite

y=aX+e

11755/18797 42
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Learning the parameters

y=aX+e

.
. L
2 m PT
"-'o.' *ee *
. . .
.. . . . .
/u. -'.
. . . o
L 5 o o* .
. .
/\ 2
10 20 30 40 50 60

y p— aX Assuming no error

------

* Given training data: several x,y

* Can define a “divergence”: D(y, V)
— Measures how much § differs fromy

— |deally, if the model is accurate this should be small

* Estimate a to minimize D(y, ¥)
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The prediction error as divergence

yi=a'x;+b+e,
n=a'x,tb+e,
y3=a'x3+bte;

y=aX+e
D(y,y)=E=¢ +e; +e; +...

E = |ly — aX]|*

* Define divergence as sum of the squared error in predicting y

11755/18797 44



Prediction error as divergence

4
»

3

>

1L

o

1

"4

e y=ax t+e

— e = prediction error

— Find the “slope” a such that the total squared

length of the error lines is minimized

11755/18797
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Solving a linear regression
y=aX+te

* Minimize squared error

E = |ly — aX||*

a = ypinv(X)

11755/18797
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More Explicitly

1 1 17

Y=[»y,»;..] X:|:X1 X, X3 }

A =yX' (XX '

a = ypinv(X)

e X iswiderthanitis tall
pinv(X) = XT(XX")~1

a = yX"(XxT)"

MLSP
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Regression in multiple dimensions

Y1 =AX; tb+e y; is a vector
Y=AXx, tbte,

y; =Ax;+b+e;

Vi = j™ component of vector y;

a, =i row of A

* Also called multiple regression X b, = j™ component of b
2
yi=a;x;t b te

- =a,X;:+b, +e
i l 1 Vi3 = a3X; + by + €3

e Equivalent of saying:

* Fundamentally no different from N separate single
regressions

— But we can use the relationship between ys to our benefit
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Multiple Regression

X, X, X A
Y=[y,y,Y;.] X:{ll 12 13..} A:[A b]
E=[e e, e,..]

Frobenius horm

Y = AX+E
2 2/

DIV = ZHy ~Ax | =|Y-AX

F

* Minimizing

A = Ypinv(X) = YX' (XX J'



MLSP
Aside: The Frobenius norm

* The Frobenius norm is the square root of the

sum of the squares of all the components of

IEllr = | ) e,

N UJ
e The derivative of the squared Frobenius norm:

7Y — AX||2 =0 = A = YX(XXT)!

the matrix

11755/18797 50
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A Different Perspective

/+

/

——————

* yisanoisy reading of Ax
y =Ax+e

* Erroreis Gaussian
e ~N(0,0°1)
* Estimate A from Y=[y, v,..¥y] X=[X, X,..X,]

11755/18797 51
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The Likelihood of the data

y=Ax+e e ~N(0,0°T)

* Probability of observing a specificy, given x,
for a particular matrix A

P(y|x;A) = N(y;Ax,c°T)
e Probability of collection: FEARXK] gk

P(Y|X;A) =] [ N(y;;Ax,,0°T)

l
* Assuming IID for convenience (not necessary)
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A Maximum Likelihood Estimate
y=A'x+e e~N(,0°T) Y=[y, y,..¥y] X=[x; X,..X,]

P(Y | X) =H \/(27:02)1) exp( —12 Hy,. - ATxl.sz

20

2

10gP(Y|X;A):C—ZZ;2

Y. _Axi

 Maximizing the log probability is identical to
minimizing the error

— |ldentical to the least squares solution

A =YX (XX ] = Ypinv(X)
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Returning to Multiple Regression
Y=y, y,y;-.] X= {);1 X12 X13 } A= [A b]
E=[e e, e,..]

Y = AX+E

zﬂV:wa—szz

2
F

‘Y—AX

* Minimizing

A = Ypinv(X) = YX' (XX J'
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Predicting an output

15}

10F

L]
3
.
. .
.
. . - .
.
o . . °
... 0..'
e . e o
‘¢ . ° * o° 2
. .
.

-20 -10 10 20 30 40 50 60

* From a collection of training data, have learned A

* Given x for a new instance, but noty, what is y?
* Simple solution:

y =Ax+b

11755/18797 55



Applying it to our problem

Prediction by regression

Forward regression

0000000

000000

Xt — alx‘[-l_l_ a2xt—2' * .akxt'k_l_et oces

Backward regression

X, = bxp+ boXyn. . Xy ey

11755/18797
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Applying it to our problem

* Forward prediction

Xy

X1

_'xK+1 a

X X

X X3

| Xx Xk
x =Xa, +e

pinv(X)x=a,

Xk

X k-1

X

_eK+1 ]

11755/18797
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Applying it to our problem

* Backward prediction

T

Xi_ k-2

X, o
X Xioo
| Xk Xk
x = Xb, +e

pinv(X)X=Db,

Xk

- X_g

Xy

€ _Kx-1

€ _ k-2

11755/18797
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Finding the burst

|x‘ l A
i I]
li

* Ateachtime
— Learn a “forward” predictor a,
— At each time, predict next sample x*'=2; a,, x
— Compute error: ferr=|x-x " |2
— Learn a “backward” predict and compute backward error

* berr,

— Compute average prediction error over window, threshold

— If the error exceeds a threshold, identify burst

11755/18797
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Filling the hole

* Learn “forward” predictor at left edge of “hole”
— For each missing sample

— At each time, predict next sample x*'=2; a,,.x
* Use estimated samples if real samples are not available

 Learn “backward” predictor at left edge of “hole”
— For each missing sample

— At each time, predict next sample x*'=2X; b\ x,
* Use estimated samples if real samples are not available

* Average forward and backward predictions



0.02

0.01

-0.01

-0.02

-0.03

Reconstruction zoom in

Reconstruction area Next
glitch
v
]
|
Interpolation
result
Actual
B data ]
| | | | | | | | | | |
7.04 7.05 7.06 7.07 7.08 7.09 7.1 7.11 712 713 714
4
x10

LL/III] LOIT I

MLSP

Distorted
signal

O

Recovered
signal
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Incrementally learning the regression

-1
A — YXT (XXT ) Requires knowledge of

all (x,y) pairs

* Can we learn A incrementally instead?
— As data comes in?

e The Widrow Hoff rule

Scalar prediction version

1 A n
2™ =a'+n(y,-3)x, 5 =)x
e Note the structure =~ error
— Can also be done in batch mode!
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Predicting a value

A=YX'(XX]" §=Ax=YX'(XX")'x

* What are we doing exactly?
— For the explanation we are assuming no “b” (X is 0 mean)
— Explanation generalizes easily even otherwise

C=XX'
1 1
m let x=C 2x and x_c2x
= Whitening x
s NO°>C?O>is the whitening matrix for x

1 1

y=YX'C 2C 2x =YX},
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Predicting a value

F=YX"8=) y&/%

N

X,
y=YX'3=[y, .. yy] @ &=y}

7 i
Xy

 What are we doing exactly?
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Predicting a value

EORAEY

* Given training instances (x,y;) fori = 1..N, estimate y
for a new test instance of x with unknowny :

* yissimply a weighted sum of the y; instances from the
training data

* The weight of any y; is simply the inner product
between its corresponding x; and the new x

— With due whitening and scaling..



Poll 3

e Mark all true statements

Every form of prediction/classification/regression is just a variant of
weighted nearest-neighbor prediction

We can regard classification as a special kind of regression where the
scalar prediction is not a real regression but a categorical value

Besides pseudo-inverse, we can use maximume-likelihood estimation
(MLE) to solve some of the linear regression problems by assuming
that the data is produced by a linear model with Gaussian noise with
unknown parameters

Linear prediction can be applied on time series to detect every glitch
in a signal, no matter how large the error is, and reconstruct the
original signal perfectly



Poll 3

e Mark all true statements

Every form of prediction/classification/regression is just a variant of
weighted nearest-neighbor prediction

We can regard classification as a special kind of regression where the
scalar prediction is not a real regression but a categorical value

Besides pseudo-inverse, we can use maximum-likelihood estimation
(MLE) to solve some of the linear regression problems by assuming
that the data is produced by a linear model with Gaussian noise with
unknown parameters

Linear prediction can be applied on time series to detect every glitch
in a signal, no matter how large the error is, and reconstruct the
original signal perfectly

11755/18797 67
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What are we doing: A different ™
perspective

§=Ax=YX" (XX |'x

e Assumes XX! is invertible
e Whatifitisnot

— Dimensionality of X is greater than number of
observations?

— Underdetermined

* |n this case XX will generally be invertible

A=Y(X'X)'X"  §=Y(X'X)'Xx
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High-dimensional regression
§=Y(X"X)"'X"x

e XX isthe “Gram Matrix”

T T T
X, X, XX, ... X;Xy
T T T
Go| XX XXy . XXy
T T T
XX, XX, o XXy |

y=YG 'X'x
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High-dimensional regression
y=YG 'X'x
* Normalize Y by the inverse of the gram matrix

Y =-YG

* Working our way down..

yZYXTX y:ZYzXzTX



Linear Regression in High-dimensional™™
Spaces

y = Zy"iXiTX Y-YG

* Given training instances (x,y;) fori = 1..N, estimate y
for a new test instance of x with unknowny :

* yissimply a weighted sum of the normalized 'y,
instances from the training data

— The normalization is done via the Gram Matrix

* The weight of any y. is simply the inner product
between its corresponding x; and the new x
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Topics

* Nearest neighbor regression and classification

* Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces

* Kernel regression

* Regularization..

11755/18797 72
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Relationships are not always linear

0.5 1.0 1.5

-0.5 0.0

-1.0

-1.5

0 20 40 60 80 100 120

e How do we model these?
* Multiple solutions

11755/18797 73
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Non-linear regression

* y=Ap(x)te

X = @(X) o
X = O(X) =[o(x)) o(x,)..@(x)] -
B Y = AD(X)te

= Replace X with ®(X) in earlier equations for
solution

A =Y(@X)OX) ] o(X)"
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Problem

B Y =AD(X)te
= Replace X with ®(X) in earlier
equations for solution

A =Y(OX)OX) ] &(X)"

s O(X) may be in a very high-dimensional space

= The high-dimensional space (or the transform
®d(X)) may be unknown..

= Note: For any new instance x:

§ = AD(x)= Y(@X)D(X)" ] o(X) ®(x)= YG'O(X) d(x)
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The regression is in high dimensions

* Linear regression: Y = z VX X Y =-YG™

* High-dimensional regression

_(D(Xl )T(D(Xl) (D(Xz )T(D(Xz) (D(Xl )T(D(XN)
G = (D(Xz )T(D(Xl) (D(Xz )T(D(Xz) (D(Xz )T.(D(XN)
_(D(Xl )T (D(Xl ) (D(XN )T (D(Xz ) (D(XN )T (D(XN )_




Doing it with Ke

* High-dimensional regression with Kernels:

K(x,y)=®(x) O(y)

_K(Xlaxl) K(x;,x,)
K(x,,x;) K(x,,X,) ...

_K(XNaxl) K(XNaxz)

rnels

K(XUXN)_
K(x,,x,)

K(XNaxN)_

* Regression in Kernel Hilbert Space..

YZY(}_1 yZZYiK(XZ.,X)

MLSP



Poll 4

 We can carry out non-linear regression by
applying a Kernel function to linear regression

— True
— False

* The Gram matrix XX will always be full rank,
where X is the data matrix

— True
— False

!



Poll 4

 We can carry out non-linear regression by
applying a Kernel function to linear regression

— True
— False

* The Gram matrix XX will always be full rank,
where X is the data matrix

— True
— False

!



Topics

* Nearest neighbor regression and classification

* Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces
* Kernel regression

* Regularization..
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A different way of finding nonlinear “—
relationships: Locally linear regression

* Previous discussion: Regression parameters are
optimized over the entire training set

 Minimize

T 2l
Y, - A X, _bH

* Single global regression is estimated and applied to al
future x

e Alternative: Local regression
* Learn a regression that is specific to x
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Being non-committal: Local hans

Regression

* Estimate the regression to
be applied to any x using
training instances near x

E= Sy

X ; eneighborhood (x)

 The resultant regression has the form

y = Zw(x,xj)ijre

X ; €neighborhood (X)

— Note : this regression is specific to x
* A separate regression must be learned for every x



MLSP

Local Regression

y = Zw(x,xj)ijre

X ;€neighborhood (X)

But what is w()?
— For linear regression d() is an inner product

More generic form: Choose d() as a function of the
distance between x and x;

If w() falls off rapidly with |x and x;| the
“neighbhorhood” requirement can be relaxed

y = Zw(x,xj)yj +e

all
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Kernel Regression: d() = K()

ZKh (X - Xi)yz'

" ZKh(X_Xi)

* Typical Kernel functions: Gaussian, Laplacian, other
density functions

— Must fall off rapidly with increasing distance between x
and Xx;

* Regression is local to every x : Local regression

* Actually a non-parametric MAP estimator of y
— But first.. MAP estimators;;
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Topics

* Nearest neighbor regression and classification

* Linear regression
— With an application to glitch elimination in sound
— And its relation to nearest-neighbor regression

* Regression in kernel spaces

* Kernel regression

* Regularization..
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Returning to Linear Regression

Model: ” Without outliers
y=Ax+Db “F L ]

A, b = argmin(Y — (Ax + b))? ) /
Ab .|

4

* The problem with fitting a linear model to
minimize L2 error

— Highly sensitive to outliers
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Returning to Linear Regression

/f With a single

Model:
y = Ax + D {1 outlier
A, b = argmin(Y — (Ax + b))? -~
A,b
~
. i

* The problem with fitting a linear model to
minimize L2 error

— Highly sensitive to outliers
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A problem with regressions

.

&
s
4
sl
Sb
e
1
op
1 . .

VA

1

o

» / ‘
2 -

e Least-squares fit is sensitive

— Erroris squared

A =YX (XX"J'

— Small variations in data = large variations in weights

— Outliers affect it adversely

e Unstable

— |f dimension of X >= no. of instances

e (XXT)is notinvertible
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Conservative solution

 Default: Y is extremely sensitive to X

— Results in large changes in regression estimate in response to small
changes in input

* Alternate default assumption: Y does not depend on X
— Prediction is just a horizontal lineatY = 0
— Useless

* Conservative Compromise: Y is weakly related to X
— Large increments in X result in small increments in Y

— Willing to change opinion if we see a large number of instances where
a large increment in X resulted in a large change in Y

* Seeing just a few instances will not satisfy us
— Reduced sensitivity to outliers
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The Believer’s Linear Regression

Model: _ _
y=Ax+ b+ err

A, b = argmin(Y — (Ax + b))?
Ab

_— .

.

* Response of standard regression given only
two training instances

— Belief: Observed data tell the entire truth

 Model completely fit to trends in data
* Asingle pointis a trend
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The Disbeliever’s Linear hasd

Regression

Model:

y=err

o~
oy

Alternately stated:

y=Ax+ b+ err

A=b=0 —_—

 All data are noise

— The truth is that Y is a zero-mean random variable

— The observed data are outcomes of noise
variations
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The Conservative Regression

Model:
y=Ax+ b+ err

Strong belief that A and b are close to 0

e After seeing only one point..
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The Conservative Regression

Model:
y=Ax+ b+ err

Strong belief that A and b are close to 0

* The data provide evidence, but belief in the
default is strong
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The Conservative Regression

Model:
y=Ax+ b+ err

Strong belief that A and b are close to 0

- —
—b

ADb = rgmlely, (Ax; + b)||*> + A(A% + b?), A>0

* Minimize the error of prediction by the model
* But also insist that A and b be as small as possible

— A gives measure of “insistence” that A and b be small
— Externally set
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The Conservative Regression

Model:
y=AXx + err
o~
Strong belief that A is close to 0 o
Using the augmented x notation __
(padding x with a 1) to include ~ -
biClS Ter'm S e ———————————————— -
A= argminleyi _AZ||% + AlAI2, A>0
A .
l

* Minimize the error of prediction by the model
e But also insist that A should be as small as possible

— A gives measure of “insistence” that A must be small
— Externally set
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Simple solution

Conventional solution:
A= argmin”Y — A)?”i
A
A=YX(XX")"
With regularization
A= arg;nin”Y - A)?”i + A||A||%

Also called Tikhonov Regularization or Ridge regression
Minmization gives us

A=YX(XXT+A)"

This is exactly the same as conventional estimation, with additional
diagonal loading of the correlation matrix of X

— Can be alternately explained as “stabilizing” the correlation matrix, for

inversion
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Other forms of regularization: L1 ™
regularization

An alternate regularization
AN e 2
A= argminHY - AXHF + A|A[4
A

The one-norm|A|;sums the magnitude of components of 4

— The minimization causes A to be sparse

No closed form solution

— Quadratic programming solutions required

Dual formulation

A= argminHY — A)?HIZ: subjectto |[A]; <t
A

“LASSO” — Least absolute shrinkage and selection operator
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Regularization

onstraints
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Map Estimation

A Maximum Likelihood Estimator maximizes

P(data | parameters)

A Maximum A Posteriori Estimator maximizes

P(parameters | data)

P(data | parameters) - P(parameters
P(data)

P(parameters | data) =
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MAP estimate priors

{.ﬁ} A 2-0 Laplace p.d.f. 1 |;l' . #|
1. STeXp | ——5—

b
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* Left: Gaussian Prior on W
* Right: Laplacian Prior
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MAP estimate of weights

dL =(2a"XX" +2yX’

ZGI)da =0

a=(XX"+0l] XY’

* Equivalent to diagonal loading of correlation matrix

— Improves condition number of correlation matrix

* Can be inverted with greater stability

— Will not affect the estimation from well-conditioned data

— Also called Tikhonov Regularization

e Dual form: Ridge regression

 MAP estimate of weights

— Not to be confused with MAP estimate of Y

MLSP



MLSP

MAP estimation of weights with ™
Laplacian prior

* Assume weights drawn from a Laplacian
— P(a) = Mlexp(-A'lal;)
* Maximum a posteriori estimate

a=argmax, C'-(y—a'X) (y—-a'X)" —1"'[a|

* No closed form solution

— Quadratic programming solution required
* Non-trivial
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MAP estimation of weights with ™
Laplacian prior

* Assume weights drawn from a Laplacian
— P(a) = Mlexp(-A'laly)
* Maximum a posteriori estimate

a=argmax, C'—(y—-a'X) (y—-a'X)" -1 ‘3‘1

* Identical to L, regularized least-squares
estimation



L,-regularized LSE

a=argmax, C'-(y—a'X) (y-a'X)" —1"'[a|

No closed form solution
— Quadratic programming solutions required

Dual formulation

a=argmax, C'—(y—a' X)' (y—a'X)" subject to ‘a‘l <t

“LASSO” — Least absolute shrinkage and
selection operator

MLSP



LASSO Algorithms

Various convex optimization algorithms

LARS: Least angle regression
Pathwise coordinate descent..

Matlab code available from web

MLSP

Vishinedasming o Sl



Regularized least squares

Image Credit: Tibshirani

B, B,

e Regularization results in selection of suboptimal (in
least-squares sense) solution

— One of the loci outside center
* Tikhonov regularization selects shortest solution
* L, regularization selects sparsest solution
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Next up..

* Classification with linear regression models

— AKA linear classifiers
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iedasming i 50

LASSO and Compressive Sensing |

Given Y and X, estimate sparse a

LASSO:
— X = explanatory variable
— Y =dependent variable
— a = weights of regression
CS:
— X = measurement matrix
— Y = measurement
— a=data
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An interesting problem: Predicting
War!

 Economists measure a number of social
indicators for countries weekly
— Happiness index
— Hunger index
— Freedom index
— Twitter records

e Question: Will there be a revolution or war next
week?
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An interesting problem: Predicting

War!
* |ssues:
— Dissatisfaction builds up — not an instantaneous
phenomenon
e Usually

— War / rebellion build up much faster
e Often in hours

* Important to predict
— Preparedness for security
— Economic impact
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Predicting War

0, 0, 0, O, O; O, O, O,
wWwwWwW WwWWWW

S| |S| S| |S| S| [S| |S| |S

Given wk1 wk2 wk3 wk4 wk5wk6 wk7wk$
— Sequence of economic indicators for each week

— Sequence of unrest markers for each week

* At the end of each week we know if war happened or not
that week

* Predict probability of unrest next week
— This could be a new unrest or persistence of a current
one



Predicting Time Series

e Need time-series models

e HMMs — later in the course
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