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Topics

• Nearest neighbor regression and classification
• Linear regression

– With an application to glitch elimination in sound
– And its relation to nearest-neighbor regression

• Regression in kernel spaces
• Kernel regression
• Regularization..
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The problems of classification and 
regression

• Classification:  Given a feature , determine 
the class 
– Given image features, classify if this is a face

• Regression: Given an input , estimate 
another feature 
– Given height, age, gender, etc. of a person, 

estimate weight

• In reality both are the same problem:
– The class is simply a categorical feature
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Example-based estimation

• Classification: 
– Have seen one or more people who are exactly 160cm, 

50kg, and all are female
– Get a new test instance of a person who is exactly 160cm, 

50kg.  Is this person..
• Male?
• Female?

• Regression:
– Have seen one or more people who are exactly 160cm, 

female, and their weight is 50kg
– Get a new test instance of a 160cm female person. What is 

your best guess for her weight?
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Example based prediction

• Problem: the gray circle is 
missing its color attribute. 
Predict it

• Find the nearest training 
instance 
– Based on observed feature 

• Predict from it
– may be a class value or a 

continuous valued estimator
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Nearest-neighbor based prediction

• Problem: the gray circle is 
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• Find the nearest training 
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– may be a class value or a 

continuous valued estimator
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Nearest-neighbor prediction

• Alternately, find the closest training 
instances
– Called the -nearest-neighbor method

• Predict desired attribute based on these 
closest neighbors
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K-nearest neighbor prediction

• Problem: the gray circle 
is missing its color 
attribute. Predict it

• Nearest neighbor

• K-nearest neighbor
– Example for k=3

Predict as green

Predict as red
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Distance functions
• How does one define the distance between two 

instances?
– Some attributes may be numeric 

– Other attributes may nominal

• Numeric attributes: Usually the Euclidean distance 
between attribute values is used

• Nominal attributes: Usually a binary distance function –
distance is set to 1 if attribute values are different, 0 if 
they are the same

• Will assume numeric attributes for our signals..
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Distance on numeric features
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K-nearest neighbor prediction

• Find the K nearest neighbors

• Predict as the majority opinion
– But should we also consider the 

actual distance
• Is a farther neighbor as important 

as a closer one?

– What about numeric prediction?
• No notion of “majority”

– No two neighbors may have the 
same value for 

Predict as red
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Weighted K-nearest neighbor 
prediction

• Classification
–

–

• Regression:

–

• The weight is inversely related 
to 
– If increases, decreases

Predict as green
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Weights of neighbors..
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Poll 1

• KNN uses the labels of the nearest neighbor, as defined 
under a given distance measure, to make predictions
– True

– False

• The K closest data points to a given testing instance (in 
the KNN algorithm) always have the same weight
– True

– False
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Weighted K-nearest neighbor 
prediction

Predict as green
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WHY RESTRICT TO K
NEAREST NEIGHBORS?
Considering that distant
examples carry less weight

• Classification
–

–

• Regression:

–

• The weight is inversely related 
to 
– If increases, decreases



Weighted example-based 
prediction

• Classification
–

–

• Regression:
–

• All training instances invoked!
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Weights of cohort
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NN prediction with inner-product 
weights
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Nearest Neighbor Classification

௧௘௦௧ ௚௥௘௘௡ ௥௘ௗ

How?
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Nearest Neighbor Regression
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Nearest Neighbor Regression

௧௘௦௧ ௧௘௦௧
்

௜ ௜

௜∈௧௥௔௜௡௜௡௚ ௦௘௧

24

Simply stretching any axis changes the 
inner products and, as a result, the relative
weights of the training instances.

Stretching an axis can change the answer!

How do we fix this?



Normalizing the axes

• Normalize each axis by the inverse 
standard deviation (of the training data)
– So that the variance is 1

• Compute the answer on the normalized 
data
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The whitening matrix

• Top:  Skewed natural scatter 
of a data set

• Bottom:  Scatter after 
whitening via 

• Rotates and rescales the axes 
to make scatter circular 
(spherical)
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Normalizing the axes

• Normalize each axis by the inverse 
standard deviation (of the training data)
– So that the variance is 1

• Compute the answer on the normalized 
data
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Poll 2

• Mark all that are true
– The order of the distance among data points is 

invariant to scaling an axis
– The inner product is a good measure of weight, as 

closer points have larger inner products
– Whitening is an essential step for the KNN 

algorithm
– KNN can only be used for classification and not 

regression
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Lessons
• Classification are regression are two versions of the same 

problem
– Predicting an attribute of a data instance based on other 

attributes

• Nearest-neighbor based prediction: Predict the weighted 
average value of desired attribute from all the training 
instances

• Amazing fact they never told you: Every form of 
prediction/classification/regression is actually just a variant 
of weighted nearest-neighbor prediction
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Changing Gears
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Rube Goldberg



Topics

• Nearest neighbor regression and classification
• Linear regression

– With an application to glitch elimination in sound
– And its relation to nearest-neighbor regression

• Regression in kernel spaces
• Kernel regression
• Regularization..
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A Common Problem

• Can you spot the glitches?
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How to fix this problem?
• “Glitches” in audio

– Must be detected
– How?

• Then what?

• Glitches must be “fixed”
– Delete the glitch

• Results in a “hole”
– Fill in the hole
– How?
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Interpolation..

• “Extend” the curve on the left to “predict” the values in the 
“blank” region
– Forward prediction

• Extend the blue curve on the right leftwards to predict the 
blank region
– Backward prediction

• How?
– Regression analysis..



Detecting the Glitch

• Regression-based reconstruction can be done 
anywhere

• Reconstructed value will not match actual value
• Large error of reconstruction identifies glitches
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What is a regression

• Analyzing relationship between variables
• Expressed in many forms
• Wikipedia

– Linear regression, Simple regression, Ordinary 
least squares, Polynomial regression, General 
linear model, Generalized linear model, Discrete 
choice, Logistic regression, Multinomial logit, 
Mixed logit, Probit, Multinomial probit, ….

• Generally a tool to predict variables
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Regressions for prediction
• y = f(x; Q) + e
• Different possibilities

– y is a scalar
• y is real
• y is categorical (classification)

– y is a vector
– x is a vector

• x is a set of real valued variables
• x is a set of categorical variables
• x is a combination of the two

– f(.) is a linear or affine function
– f(.) is a non-linear function
– f(.) is a time-series model

11755/18797 38



A linear regression

• Assumption: relationship between variables is linear
– A linear trend may be found relating x and y
– y = dependent variable
– x = explanatory variable
– Given x, y can be predicted as an affine function of x
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An imaginary regression..
• http://pages.cs.wisc.edu/~kovar/hall.html
• Check this shit out (Fig. 1). 

That's bonafide, 100%-real data, 
my friends. I took it myself over the 
course of two weeks. And this was not 
a leisurely two weeks, either; I busted 
my ass day and night in order to provide 
you with nothing but the best data 
possible. Now, let's look a bit more 
closely at this data, remembering 
that it is absolutely first-rate. Do you see the exponential dependence? I sure 
don't. I see a bunch of crap.

Christ, this was such a waste of my time.
Banking on my hopes that whoever grades this will just look at the pictures, I 

drew an exponential through my noise. I believe the apparent legitimacy is 
enhanced by the fact that I used a complicated computer program to make the fit. 
I understand this is the same process by which the top quark was discovered.
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Linear Regressions

• y = aTx + b + e
– e = prediction error

• Given a “training” set of {x, y} values: estimate a
and b
– y1 = aTx1 + b + e1

– y2 = aTx2 + b + e2

– y3 = aTx3 + b+ e3

– …
• If a and b are well estimated, prediction error will be 

small
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Linear Regression to a scalar

• Rewrite
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 Define:

y1 = aTx1 + b + e1

y2 = aTx2 + b + e2

y3 = aTx3 + b + e3



Learning the parameters

• Given training data:  several x,y

• Can define a “divergence”: 
– Measures how much differs from y

– Ideally, if the model is accurate this should be small

• Estimate a to minimize 
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The prediction error as divergence

• Define divergence as sum of the squared error in predicting y
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Prediction error as divergence

• y = ax + e
– e = prediction error
– Find the “slope” a such that the total squared 

length of the error lines is minimized
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Solving a linear regression

• Minimize squared error
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More Explicitly

• is wider than it is tall
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Regression in multiple dimensions

• Also called multiple regression
• Equivalent of saying:

• Fundamentally no different from N separate single 
regressions
– But we can use the relationship between ys to our benefit
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y1 = Ax1 + b + e1

y2 = Ax2 + b + e2

y3 = Ax3 + b + e3

yi is a vector

yi = Axi + b + ei

yi1 = a1xi + b1 + ei1

yi2 = a2xi + b2 + ei2

yi3 = a3xi + b3 + ei3

yij = jth component of vector yi

ai = ith row of A

bj = jth component of  b



Multiple Regression

• Minimizing
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Aside: The Frobenius norm

• The Frobenius norm is the square root of the 

sum of the squares of all the components of 

the matrix

• The derivative of the squared Frobenius norm:
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A Different Perspective

• y is a noisy reading  of Ax

• Error e is Gaussian

• Estimate A from 
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The Likelihood of the data

• Probability of observing a specific y, given x, 
for a particular matrix A

• Probability of collection:

• Assuming IID for convenience (not necessary)
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A Maximum Likelihood Estimate

• Maximizing the log probability is identical to 
minimizing the error
– Identical to the least squares solution
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Returning to Multiple Regression

• Minimizing
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Predicting an output

• From a collection of training data, have learned A
• Given x for a new instance, but not y, what is y?
• Simple solution:
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Applying it to our problem
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• Prediction by regression

• Forward regression
• xt = a1xt-1+ a2xt-2…akxt-k+et

• Backward regression
• xt = b1xt+1+ b2xt+2…bkxt+k +et



Applying it to our problem

• Forward prediction
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Applying it to our problem

• Backward prediction
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Finding the burst

• At each time
– Learn a “forward” predictor  at

– At each time, predict next sample  xt
est = Si at,k xt-k

– Compute error:  ferrt=|xt-xt
est |2

– Learn a “backward” predict and compute backward error
• berrt

– Compute average prediction error over window, threshold

– If the error exceeds a threshold, identify burst
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Filling the hole

• Learn “forward” predictor at left edge of “hole”
– For each missing sample
– At each time, predict next sample  xt

est = Si at,kxt-k

• Use estimated samples  if real samples are not available

• Learn “backward” predictor at left edge of “hole”
– For each missing sample
– At each time, predict next sample  xt

est = Si bt,kxt+k

• Use estimated samples  if real samples are not available

• Average forward and backward predictions
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Reconstruction zoom in
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Incrementally learning the regression

• Can we learn A incrementally instead?
– As data comes in?

• The Widrow Hoff rule

• Note the structure
– Can also be done in batch mode!
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Predicting a value

• What are we doing exactly?
– For the explanation we are assuming no “b” (X is 0 mean)
– Explanation generalizes easily even otherwise 
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Predicting a value

• What are we doing exactly?
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Predicting a value

• Given training instances (xi,yi) for i = 1..N, estimate y
for a new test instance of x with unknown y :

• y is simply a weighted sum of the yi instances from the 
training data

• The weight of any yi is simply the inner product 
between its corresponding xi and the new x
– With due whitening and scaling..
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Poll 3

• Mark all true statements
– Every form of prediction/classification/regression is just a variant of 

weighted nearest-neighbor prediction
– We can regard classification as a special kind of regression where the 

scalar prediction is not a real regression but a categorical value
– Besides pseudo-inverse, we can use maximum-likelihood estimation 

(MLE) to solve some of the linear regression problems by assuming 
that the data is produced by a linear model with Gaussian noise with 
unknown parameters

– Linear prediction can be applied on time series to detect every glitch 
in a signal, no matter how large the error is, and reconstruct the 
original signal perfectly
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What are we doing: A different 
perspective

• Assumes XXT is invertible
• What if it is not

– Dimensionality of is greater than number of 
observations?

– Underdetermined

• In this case XTX will generally be invertible
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High-dimensional regression

• XTX is the “Gram Matrix”
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High-dimensional regression

• Normalize Y by the inverse of the gram matrix
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Linear Regression in High-dimensional 
Spaces

• Given training instances (xi,yi) for i = 1..N, estimate y
for a new test instance of x with unknown y :

• y is simply a weighted sum of the normalized  yi

instances from the training data
– The normalization is done via the Gram Matrix

• The weight of any yi is simply the inner product 
between its corresponding xi and the new x
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Topics

• Nearest neighbor regression and classification
• Linear regression

– With an application to glitch elimination in sound
– And its relation to nearest-neighbor regression

• Regression in kernel spaces
• Kernel regression
• Regularization..
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Relationships are not always linear

• How do we model these?
• Multiple solutions
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Non-linear regression

• y = Aj(x)+e

11755/18797 74

)]( ... )(  )([)( 21 KxφxφxφXX 

 Y = A(X)+e

 Replace X with (X) in earlier equations for 
solution
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Problem
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 Y = A(X)+e

 Replace X with (X) in earlier
equations for solution

 (X) may be in a very high-dimensional space
 The high-dimensional space (or the transform 
(X)) may be unknown..

 Note: For any new instance x:
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The regression is in high dimensions
• Linear regression:

• High-dimensional regression
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Doing it with Kernels
• High-dimensional regression with Kernels:

• Regression in Kernel Hilbert Space..
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Poll 4

• We can carry out non-linear regression by 
applying a Kernel function to linear regression
– True
– False

• The Gram matrix XTX will always be full rank, 
where X is the data matrix
– True
– False
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Poll 4

• We can carry out non-linear regression by 
applying a Kernel function to linear regression
– True
– False

• The Gram matrix XTX will always be full rank, 
where X is the data matrix
– True
– False
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Topics

• Nearest neighbor regression and classification
• Linear regression

– With an application to glitch elimination in sound
– And its relation to nearest-neighbor regression

• Regression in kernel spaces
• Kernel regression
• Regularization..
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A different way of finding nonlinear 
relationships: Locally linear regression

• Previous discussion: Regression parameters are 
optimized over the entire training set

• Minimize

• Single global regression is estimated and applied to all 
future x

• Alternative: Local regression
• Learn a regression that is specific to x
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Being non-committal: Local 
Regression

• Estimate the regression to
be applied to any x using 
training instances near x

• The resultant regression has the form

– Note : this regression is specific to x
• A separate regression must be learned for every x
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Local Regression

• But what is w()?
– For linear regression d() is an inner product

• More generic form:  Choose d() as a function of the 
distance between x and xj

• If w() falls off rapidly with |x and xj| the 
“neighbhorhood” requirement can be relaxed
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Kernel Regression: d() = K()

• Typical Kernel functions:  Gaussian, Laplacian, other 
density functions
– Must fall off rapidly with increasing distance between x

and xj

• Regression is local to every x :  Local regression

• Actually a non-parametric MAP estimator of y
– But first.. MAP estimators.. 84
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Topics

• Nearest neighbor regression and classification
• Linear regression

– With an application to glitch elimination in sound
– And its relation to nearest-neighbor regression

• Regression in kernel spaces
• Kernel regression
• Regularization..
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Returning to Linear Regression

• The problem with fitting a linear model to 
minimize L2 error
– Highly sensitive to outliers
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Returning to Linear Regression

• The problem with fitting a linear model to 
minimize L2 error
– Highly sensitive to outliers
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A problem with regressions

• Least-squares fit is sensitive
– Error is squared
– Small variations in data  large variations in weights
– Outliers affect it adversely

• Unstable
– If dimension of X >= no. of instances

• (XXT) is not invertible
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Conservative solution
• Default:  is extremely sensitive to 

– Results in large changes in regression estimate in response to small 
changes in input

• Alternate default assumption:  does not depend on 
– Prediction is just a horizontal line at 
– Useless

• Conservative Compromise:  is weakly related to 
– Large increments in result in small increments in 
– Willing to change opinion if we see a large number of instances where 

a large increment in resulted in a large change in 
• Seeing just a few instances will not satisfy us

– Reduced sensitivity to outliers

11755/18797 89



The Believer’s Linear Regression

• Response of standard regression given only 
two training instances
– Belief: Observed data tell the entire truth

• Model completely fit to trends in data
• A single point is a trend
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The Disbeliever’s Linear 
Regression

• All data are noise
– The truth is that is a zero-mean random variable
– The observed data are outcomes of noise 

variations
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Model:

A = b = 0

Alternately stated:



The Conservative Regression

• After seeing only one point..
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The Conservative Regression

• The data provide evidence, but belief in the 
default is strong
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The Conservative Regression

• Minimize the error of prediction by the model
• But also insist that and be as small as possible

– gives measure of “insistence” that and be small
– Externally set
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The Conservative Regression

• Minimize the error of prediction by the model
• But also insist that should be as small as possible

– gives measure of “insistence” that must be small
– Externally set
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Model:

Strong belief that A is close to 0
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Simple solution
• Conventional solution: 

• With regularization

• Also called Tikhonov Regularization or Ridge regression
• Minmization gives us

• This is exactly the same as conventional estimation, with additional 
diagonal loading of the correlation matrix of 
– Can be alternately explained as “stabilizing” the correlation matrix, for 

inversion
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Other forms of regularization: L1 
regularization

• An alternate regularization

• The one-norm sums the magnitude of components of 
– The minimization causes to be sparse

• No closed form solution
– Quadratic programming solutions required

• Dual formulation

• “LASSO” – Least absolute shrinkage and selection operator
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Regularization
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Map Estimation
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A Maximum Likelihood Estimator maximizes

A Maximum A Posteriori Estimator maximizes



MAP estimate priors

• Left:  Gaussian Prior on W
• Right:  Laplacian Prior
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MAP estimate of weights

• Equivalent to diagonal loading of correlation matrix
– Improves condition number of correlation matrix

• Can be inverted with greater stability

– Will not affect the estimation from well-conditioned data
– Also called Tikhonov Regularization 

• Dual form: Ridge regression

• MAP estimate of weights
– Not to be confused with MAP estimate of Y
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MAP estimation of weights with 
Laplacian prior

• Assume weights drawn from a Laplacian
– P(a) =  l-1exp(-l-1|a|1)

• Maximum a posteriori estimate

• No closed form solution
– Quadratic programming solution required

• Non-trivial

11755/18797 102

1

1)()('maxargˆ aXayXaya A
 lTTTTC



MAP estimation of weights with 
Laplacian prior

• Assume weights drawn from a Laplacian
– P(a) =  l-1exp(-l-1|a|1)

• Maximum a posteriori estimate
– …

• Identical to L1 regularized least-squares 
estimation
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L1-regularized LSE

• No closed form solution
– Quadratic programming solutions required

• Dual formulation

• “LASSO” – Least absolute shrinkage and 
selection operator
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LASSO Algorithms

• Various convex optimization algorithms

• LARS: Least angle regression

• Pathwise coordinate descent..

• Matlab code available from web
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Regularized least squares

• Regularization results in selection of suboptimal (in 
least-squares sense) solution
– One of the loci outside center

• Tikhonov regularization selects shortest solution
• L1 regularization selects sparsest solution
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Next up..

• Classification with linear regression models
– AKA linear classifiers
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LASSO and Compressive Sensing

• Given Y and X, estimate sparse a
• LASSO:   

– X = explanatory variable
– Y = dependent variable
– a = weights of regression

• CS:
– X = measurement matrix
– Y = measurement
– a = data
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An interesting problem: Predicting 
War!

• Economists measure a number of social 
indicators for countries weekly
– Happiness index
– Hunger index
– Freedom index
– Twitter records
– …

• Question: Will there be a revolution or war next 
week?
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An interesting problem: Predicting 
War!

• Issues:
– Dissatisfaction builds up – not an instantaneous 

phenomenon
• Usually

– War / rebellion build up much faster
• Often in hours

• Important to predict
– Preparedness for security
– Economic impact
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Predicting War

Given
– Sequence of economic indicators for each week
– Sequence of unrest markers for each week

• At the end of each week we know if war happened or not 
that week

• Predict probability of unrest next week
– This could be a new unrest or persistence of a current 

one
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Predicting Time Series

• Need time-series models

• HMMs – later in the course
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