
Time series prediction
Prakarsh Yadav

11755 - Machine Learning for Signal Processing



Contents:

● Introduction to time series and forecasting
● Stationarity and Wold Representation
● Autoregressive and Moving Average processes
● Autoregressive moving average processes and forecasting
● Non-stationary processes



Contents:

● Introduction to time series and forecasting
● Stationarity and Wold Representation
● Autoregressive and Moving Average processes
● Autoregressive moving average processes and forecasting
● Non-stationary processes



What is a time series?
Time series: A collection of data 
which is indexed in time order

Any measurement we make at 
timed intervals can be considered 
as a time series

But given a time series, What can 
we say about it?

- Increasing?
- Decreasing?

Can we forecast?

COVID-19 cases in the USA

Polio cases in the world
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Time series and forecasting
A time series can comprise of any 
measurements:

- Daily high/low temperatures
- Stock prices
- Weekly precipitation

This leads us to …

Given a time series, can we 
predict the most likely next 
measurement?

- Forecasting!
5



Forecasting
Say we just started recording a time series and we assume it has a linear relationship 
with time

We got 4 measurements, and fit a line to it

We are just getting started!

Slope: -0.00156
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Forecasting
We are confident in our linear model of the time series 

We got ambitious and collected next 50 measurements

The slope changed but still not a bad fit!

Slope:  0.04912
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Forecasting
Like diligent grad students we get started on data collection!

We collect 1000 measurements!

Maybe linear is not a valid assumption, what if we assume it quadratic?

Slope: 0.9992
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Forecasting
Quadratic assumption is looking good now and we are even happier!
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Forecasting
Quadratic assumption is looking good now and we are even happier!

Now we are getting tired of data collection.

With this understanding, can we forecast the next measurements? 10



We predict the next 20 values but as a validation we also collect measurements

It seems like we are maybe getting an outlier, but we have faith in our model and well 
continue with it

Forecasting
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Forecasting
We get ambitious and predict the next 1000 values

Looks like we made an oopsie! We did not expect this to have happened.
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Now we dial down out predictions and measure a lot more more before forecasting

So the time series is doing its own thing and neither linear nor quadratic models would 
work!

In forecasting, our assumptions regarding the time series are critical!

We will now discuss how to make valid assumptions and where they will hold true!

Forecasting
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Wouldn’t it be nice if the properties of time series do not change? 

Assume: The time series we are measuring is being sampled 
from a distribution whose parameters do not change with time. 

Then, the process can be considered to be “stationary” in time

Parameters such as mean and variance are not a function of 
time

Assuming that the time series is stationary confers some 
advantages:

- We do not violate any statistical analysis assumptions
- Law of large number and central limit theorem still apply
- Easier to model and forecast such processes

Consider Costco hot dog pricing, very likely it is going to be 
$1.5 for tomorrow

15



Strictly stationary time series

Let {Xt} be a time series, and Fx is the cumulative distribution function of {Xt}

The {Xt} is strictly stationary if

Fx(xt1, …,xtn) = Fx(xt1+𝛕, …,xtn+𝛕)

For all 𝜏, t1, tn ∈ℝ and for all n∈ℕ

Then the mean and variance of the time series will not change with time!

Examples,

Constant function; Xt = Y, for all t; Xt = cos (t+Y), for all t∈ℝ

Is it useful? (a question for later)

- How far from reality is this? (Very much so!) 16



Strictly stationary time series

Examples: 

Xt = cos (t+10)

Xt = Y ; Y= 1

17Very restrictive view of the world!



Nth order stationary time series

Let {Xt} be a time series, and Fx is the cumulative distribution function of {Xt}

The {Xt} is Nth order stationary if

Fx(xt1, …,xtn) = Fx(xt1+𝛕, …,xtn+𝛕)

For all 𝜏, t1, tn ∈ℝ and for all n∈ {1, …, N)

Then the mean and variance of the time series will not change within the time 
window!

Another view: the time series is stationary within the period we observe

Note: some definitions in literature refer to PDF instead of CDF 18



Going further: Covariance stationary processes

A weaker constraint on stationarity requirement

A time series {Xt} is Covariance stationary if

E(Xt) = µ

Var(Xt) = σ2
X

Cov(Xt,Xt+𝛕) = 𝛾(𝛕)

Note: All are independent of t

Advantages?

- We assume covariance only depends on 𝜏 and is not a constant
- Model more complex time series 19



Autocorrelation function (ACF)

Autocorrelation Function (ACF) of a time series is defined as 

Rt,t+𝛕 = Cov(Xt,Xt+𝛕) [√Var(Xt)√Var(Xt+𝛕)]
-1

Useful properties: 

- Rt,t = Var(Xt)
- For covariance stationary processes, Rt,t+𝛕 = Rt-𝛕, t,i.e. ACF is a function of 𝛕 

only
- For covariance stationary processes,Cov(Xt,Xt+𝛕) = Cov(Xt-𝛕,Xt)

20



Poll 1: which of the following time series is stationary?

- A coin toss of 400 trials
- A biased coin toss (always heads) with 400 trials
- Temperature at 4 PM for Shadyside
- Random walk

https://tinyurl.com/mlsp23-1024-01
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● Stationary time series are convenient to work with
○ Easier parameter discovery and optimization
○ Existing literature and methodologies that readily translates 

● A reasonable compromise between what is (real data) and what we can work 
with (our model)

● An interesting perspective,
○ The more informed and less constrained stationary model we have, the less deviation it will 

have from the real series
○ Example, in case of stock prices, 

■ Case 1: The future price is the running mean of previous price and plus stochastic noise
■ Case 2: The future price is multivariate (depends on previous prices, profits, geopolitical 

scenario, etc.) and what is still unknown is stochastic noise
○ Are either of the models perfectly accurate? NO!
○ Is one better than the other? YES!

Why stationarity?

23



Wold Representation theorem

Any zero-mean covariance stationary time series {Xt} can be decomposed as the 
sum of two time series, one deterministic and one stochastic

Xt = Vt + St

Here {Vt} a linear deterministic process,

- A linear combination of previous values of Vt, with constant coefficients

St is an infinite moving average process of error terms (stochastic)

- St = ∑∞
i=0𝜓iηt-i

- 𝜓 is the moving average weights, and {ηt} is the linear white noise

Named after Herman Wold 24



Wold Representation theorem: Properties

Xt = Vt + St

St = ∑∞
i=0𝜓iηt-i

- Weights are stable, ∑∞
i=0𝜓i

2
 <∞ (square summable)

- Conventionally, 𝜓0 = 1
- White noise {ηt}~ iid N(0,σ2) has, E(ηt) = 0, E(ηt

2) = σ2, E(ηtηs) = 0,
- White noise {ηt} is uncorrelated with {Vt}, E(ηtVs) = 0

25



Wold Representation theorem

Why is this representation useful?

- We just modelled a time series, Xt, as a sum of two linear variables!
- We can estimate the variables!

- It forms the basis of moving average (MA)  and autoregressive (AR) models 
to explain time series (discussed later)

- It is a MA(∞) and AR(∞) representation

Challenge:

- It needs infinite number of parameters to represent the time series
- But they decay rapidly in practice

26
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The lag operator L() shifts a time series back by one time increment

- Basically, a short hand to manipulate time series data

For {Xt}, L(Xt) = Xt-1

We can also have different orders of lag operator,  

Or recursive application L(L(Xt)= L2(Xt)

L0(Xt) = Xt; L
1(Xt) = Xt-1; L

2(Xt) = Xt-2; …; Ln(Xt) = Xt-n;

Inverse also exists,

L-n(Xt) = Xt+n

A slight detour to Lag operator

28



Wold Representation theorem with Lag operator

Defining some notation and setup

Xt = Vt + St

Xt = ∑∞
i=0𝜓iηt-i + Vt

Xt = ∑∞
i=0𝜓iL

i(ηt) + Vt

Xt = 𝜓(L)ηt + Vt, 

where 𝜓(L) = ∑∞
i=0𝜓iL

i

29



Wold Representation theorem with Lag operator

Now, assume 𝜓(L) is invertible

𝜓-1(L) = ∑∞
i=0𝜓

*
iL

i, s.t.

𝜓-1(L) 𝜓(L) = I = L0

Also, we assume Vt = 0, i.e. Xt = Xt - Vt

Xt = 𝜓(L)ηt

𝜓-1(L)Xt = 𝜓-1(L)𝜓(L)ηt

Then, if 𝜓-1(L) exists, {Xt} is also invertible, and can be represented as 

Xt = (∑∞
i=0𝜓

*
iXt-i) + ηt

Note: This is an autoregressive representation of Xt
30



What if the time series has persistence?

The data future measurements are dependent on the previous measurement, s.t. 
they can be described as a function of previous value

Recall, Xt = (∑∞
i=0𝜓

*
iXt-i) + ηt

Xt = 𝜓Xt-1 + ηt, 

where ηt~ iid N(0,σ2)

This is an autoregressive process of first order AR(1)

- Recall Wold representation is AR(∞)
- Think of Markov processes and their orders!

31



What if the time series has persistence on p values?

The data future measurements are dependent on the previous measurements, s.t. 
they can be described as a function of previous values

Recall, Xt = (∑∞
i=0𝜓

*
iXt-i) + ηt

Xt = 𝜓1Xt-1 +𝜓2Xt-2 + … + 𝜓pXt-p + ηt, 

where ηt~ iid N(0,σ2)

This is an autoregressive process of order p, AR(p)

- It is a linear combination of previous values (explanatory variables)

32



AR(1) process representation

Solving AR with recursion:

Xt = 𝜓Xt-1 + ηt,

Xt = 𝜓(𝜓Xt-2 + ηt-1) + ηt, 

Xt = 𝜓j+1Xt-(j+1) + 𝜓jηt-j + … + 𝜓2ηt-2 + 𝜓ηt-1 + ηt, 

Note: 

- if |𝜓| <1, then 𝜓j+1Xt-(j+1)→0, for large enough j (important relation with MA(∞))
- if |𝜓| >1, then 𝜓j+1Xt-(j+1)→ ∞, for large enough j (not summable, hence 

non-stationary)

33



AR(1) Properties Xt = 𝜓Xt-1 + ηt, 

Given an AR(1),Xt = 𝜓j+1Xt-(j+1) + 𝜓jηt-j + … + 𝜓2ηt-2 + 𝜓ηt-1 + ηt, 

E[Xt] = μ

Now, if data is mean centered, Xt = Xt - μ

Var[Xt] = E[Xt-E[Xt]]
2 = E[ηt+ 𝜓ηt-1+ 𝜓2ηt-2+...+𝜓jηt-j]

2

Var[Xt] = Var[ηt] + 𝜓2Var[ηt] + 𝜓4Var[ηt] + … = (1 + 𝜓2+ 𝜓4+...)σ2 

Var[Xt] = σ2(1 - 𝜓2)-1, as, ηt~ iid N(0,σ2)
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AR(1) Properties Xt = 𝜓Xt-1 + ηt, 

Given an AR(1),Xt = 𝜓j+1Xt-(j+1) + 𝜓jηt-j + … + 𝜓2ηt-2 + 𝜓ηt-1 + ηt, 

Cov[Xt,Xt-1] = E[(Xt-E[Xt]) (Xt-1 -E[Xt-1])];  Xt = Xt - μ

Cov[Xt,Xt-1] = E[(ηt+ 𝜓ηt-1+ 𝜓2ηt-2+...)  (ηt-1+ 𝜓ηt-2+ 𝜓2ηt-3+...) ]

Cov[Xt,Xt-1]= (𝜓1+ 𝜓3+ 𝜓5+...)σ2 = 𝜓(1 + 𝜓2+ 𝜓4+...)σ2 

Cov[Xt,Xt-1] = 𝜓σ2(1 - 𝜓2)-1 = 𝜓Var[Xt]

35



AR(2) process representation

Given a AR(2), Xt = 𝜓1Xt-1 +𝜓2Xt-2 + ηt, 

We define 

Such that, 

This is matrix representation of AR(2)

Also, referred to as Yule-Walker equations
36



AR(2) process stationarity test

To find roots of the equation 

We can compute eigenvalues (m1,m2) of 

Which satisfy the characteristic equation x2 - 𝜓1x - 𝜓2 = 0

Then, 

37



AR(2) process stationarity test

For stationarity eigenvalues have less than 1 absolute value, 

i.e. |m1|,|m2| <1

Which will be the case if,

 𝜓1 + 𝜓2 < 1

- 𝜓1 + 𝜓2 < 1

𝜓2 > -1
38



AR(2) process stationarity test: an alternate view

Write the characteristic equation as 1- x2 - 𝜓1x - 𝜓2 = 0, Hamilton (1994)

In this representation, the roots of this equation must lie outside the unit circle, 
for the AR process to be stationary

The roots are the inverse of 𝜓1 and 𝜓2, 

so their magnitude is >1 to ensure |𝜓1| and |𝜓2| <1

Hamilton, J. D.: Time Series Analysis, Princeton University Press (1994).
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Then we have a Moving Average (MA) process

Xt = µ + ηt+ θηt-1, MA(1)

Here, µ  is a constant, ηt and ηt-1, are iid N(0,σ2)

Additionally, 

E[Xt] = E[µ+ ηt+ θηt-1] = E[µ] + E[ηt]+ E[θηt-1] = µ

Var[Xt] = E[Xt-E[Xt]]
2 = E[(µ+ ηt+ θηt-1) - µ]2 = E[ηt]

2+ E[θηt-1]
2+ 2θE[ηtηt-1] 

Var[Xt] = σ2+θ2σ2 +0

Var[Xt] = (1+θ2)σ2 Note: Both quantities are 
independent of t

What if the error terms (η) varies with time?

40



We have an MA(1) process, Xt = µ + ηt+ θηt-1, 

Cov[Xt, Xt-1] = E[(Xt-E[Xt])(Xt-1-E[Xt-1])]
 = E[(ηt+ θηt-1)(ηt-1+ θηt-2)] 

Cov[Xt, Xt-1] = E[ηtηt-1] + θE[ηt-1
2] + θE[ηtηt-2] + θ2E[ηt-1ηt-2] = 0 + θσ2 + 0 + 0

Cov[Xt, Xt-1] = θσ2

Generally, for MA(q) process, Xt = µ + θ0ηt+ θ1ηt-1+ … + θqηt-q, 

Cov[Xt, Xt-q] = E[(Xt-E[Xt])(Xt-q-E[Xt-q-1])]
 = E[(ηt+ θηt-1)(ηt-q+ θηt-q-1)]

Cov[Xt, Xt-q] = 0, for q>1 

Note: With constant E[Xt], Var[Xt] and Cov[Xt, Xt-q] independent of t, 

MA processes are covariance stationary!

MA Covariance

41



Call back to Wold Representation Theorem

Xt = Vt + St

Here {Vt} a linear deterministic process,

- A linear combination of of previous values of Vt, with constant coefficients

St is an infinite moving average process of error terms (stochastic)

- St = ∑∞
i=0𝜓iηt-i

Now we know what AR(p) and MA(q) processes look like, 

We can appreciate that WRT represents time series as a linear combination of 
MA(∞) and AR(∞) processes

42



Poll 2: Mark true statements

- Lag operator requires that the time series is modeled by linear variables

- For Wold Representation Theorem, moving average weights are constrained

- Stationary time series can be modeled through the lag operator

- For AR processes, if |𝜓| >1, then they it is stationary

https://tinyurl.com/mlsp23-1024-02

43

https://tinyurl.com/mlsp23-1024-02


Poll 2: Mark true statements

- Lag operator requires that the time series is modeled by linear variables

- For Wold Representation Theorem, moving average weights are constrained

- Stationary time series can be modeled through the lag operator

- For AR processes, if |𝜓| >1, then they it is stationary

44



Contents:

● Introduction to time series and forecasting
● Stationarity and Wold Representation
● Autoregressive and Moving Average processes
● Autoregressive moving average processes and forecasting
● Non-stationary processes



Auto Regressive Moving Average (ARMA) processes

A linear combination of AR and MA processes

Simplest ARMA, 

ARMA(1,1), Xt = 𝜓Xt-1 + ηt+ θηt-1, 

As lag operator, 𝜓(L)Xt = θ(L)ηt,

Where, 𝜓(L) = 1 - ∑p
i=0𝜓iL

i, and θ(L) = 1 - ∑q
i=0θiL

i,

Note: With these definitions we can construct ARMA(2,1) or generally ARMA(p,q)

46



ARMA (p,q)

A process is ARMA(p,q) if it is autoregressive with order p and moving average 
with order q

ARMA(p,q), Xt = 𝜓1Xt-1 + 𝜓2Xt-2 +...+𝜓pXt-p + ηt+ θ1ηt-1+ θ2ηt-2+...+ θqηt-q, 

As lag operator, 𝜓(L)Xt = θ(L)ηt,

Where, 𝜓(L) = 1 - ∑p
i=0𝜓iL

i, and θ(L) = 1 + ∑q
i=0θiL

i,

Wold decomposition of ARMA(p,q)

Xt = [𝜓(L)]-1θ(L)ηt,

47



 (1 - 𝜓(L))Xt = (1 + θ(L))ηt,

We can approximate the lag operator inverse as,

Xt =  [(1 - 𝜓(L))]-1(1 + θ(L))ηt

Xt =  [(1 - 𝜓(L))]-1ηt + [(1 - 𝜓(L))]-1θ1ηt-1

Expressing this as a Geometric Progression,

Xt =  ∑∞
j=0(𝜓L)jηt + θ∑∞

j=0(𝜓L)jηt-1

 Xt =  ηt +∑∞
j=1𝜓

jηt-j + θ∑∞
j=1 𝜓

j-1ηt-j

 Xt =  ηt +∑∞
j=1(𝜓

j
 + θ𝜓j-1)ηt-j

if |𝜓| < 1, weights are summable and Var[Xt] and Cov[Xt ,Xt-1] are finite

Recall ARMA(1,1) process 

48



AR model parameter estimation

Assume AR(1), with μ mean; Xt = μ + 𝜓Xt-1 + ηt, alternatively,ηt= Xt - μ - 𝜓Xt-1 

where, ηt~N(0,σ2),

MLE formulation is: Find θ*, such that L(θ|X) is maximized

L(θ|X) = ∏N
i=1

 p(xi|θ)

Alternatively we can minimize the negative log likelihood function (NLL)

NLL = -log(L(θ|X))

49



AR model parameter estimation

For ηt= Xt - μ - 𝜓Xt-1  and  ηt~N(0,σ2),

We can estimate p(X1,...,Xt|X0,θ) as,

p(X1,...,Xt|X0,θ) = (2𝜋σ2)-T/2 exp(-1/(2σ2) * ∑T
t=1 ηt

2

p(X1,...,Xt|X0,θ) = (2𝜋σ2)-T/2 exp(-1/(2σ2) * ∑T
t=1 (Xt - μ - 𝜓Xt-1)

2

NLL is

-log(L(θ|X)) = ½(T*log σ2) + 1/(2σ2)*∑T
t=1 (Xt - μ - 𝜓Xt-1)

2 + const.

Note: This is quadratic in X and can be minimized by…
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AR model parameter estimation

-log(L(θ|X)) = ½(T*log σ2) + 1/(2σ2)*∑T
t=1 (Xt - μ - 𝜓Xt-1)

2 + const.

Note: This is quadratic in X and can be minimized by…
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AR model parameter estimation

Rewriting, 

as, 

where,

52



MA model parameter estimation

Assume MA(1), with μ mean; Xt = µ + ηt+ θηt-1,, alternatively,ηt= Xt - µ - θηt-1

The PDF of Xt, is p(Xt|Xt-1,...,X1, η0=0, θ) = (2𝜋σ2)-1/2 exp(-ηt
2 / (2σ2)) 

NLL is

-log(L(θ|X,η0=0)) = ½(T*log σ2) + 1/(2σ2)*∑T
t=1 ηt

2  + const.
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Forecasting with ARMA(p,q)

Problem statement: Given X1:t = X1, … Xt, what is the best estimate (X*t+1) of Xt+1?

Equivalent to, minimizing Mean Squared Error (MSE)

 min E((X*t+1- Xt+1)
2)

To prove the minimization of MSE is indeed forecasting,

Say Z is any random variable measurable with respect to the information

set generated by X1:t, then

E((Xt+1- Z)2) = E((Xt+1- E(Xt+1) + E(Xt+1) - Z)2)

E((Xt+1- Z)2) = E((Xt+1- E(Xt+1))
2) + E((E(Xt+1) - Z)2) + 2E((Xt+1- E(Xt+1))( E(Xt+1) - Z))
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Forecasting with ARMA(p,q)

E((Xt+1- Z)2) = E((Xt+1- E(Xt+1))
2) + E((E(Xt+1) - Z)2) + 2E((Xt+1- E(Xt+1))(E(Xt+1) - Z))

Here, E((Xt+1- E(Xt+1))( E(Xt+1) - Z)) = E((Xt+1- E(Xt+1))(E(Xt+1) - Z)) 

     = (E(Xt+1) - E(E(Xt+1)))(E(Xt+1) - Z)) 

     = 0*(E(Xt+1) - Z)) , as E(E(Xt+1)) = E(Xt+1)

then, E((Xt+1- Z)2) = E((Xt+1- E(Xt+1))
2) + E((E(Xt+1) - Z)2) 

which is minimum at, Z = E(Xt+1)= E(X*t+1)
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Poll 3: All ARMA processes can be decomposed according 
to Wold representation

- True

- False

https://tinyurl.com/mlsp23-1024-03
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How do we tell if a process is stationary?

We conduct statistical test: (Null Hypothesis)

Given AR(1), Xt = 𝜓Xt-1 + ηt, 

We assume, H0: 𝜓 = 1 (unit root, non-stationarity) OR H1: |𝜓| < 1 (stationarity) 

This is, Autoregressive Unit Root Test

59



Additional Stationarity tests

Unit Root test (H0: non-stationarity)

- Dickey-Fuller (DF) test - Dickey and Fuller (1979)
- Augmented Dickey-Fuller (ADF) test - Said and Dickey (1984)
- Unit Root (PP) test - Phillips and Perron (1988)
- Efficient Unit (ERS) Root Test - Elliot, Rothenberg, and Stock (2001)

Stationarity test (H0: stationarity)

- KPSS test - Kwiatkowski, Phillips, Schmidt, and Shin (1992)
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What if a process is non stationary?

Consider the example of Random Walk, Xt = Xt-1 + ηt, 

where ηt~ N(0,σ2)

Var[Xt] = Var[Xt-1 + ηt] = Var[Xt-1] + σ2 = Var[Xt-2 + ηt]  + σ2 =Var[Xt-3 + ηt]  + 2σ2 

Var[Xt] =Var[X0]  + tσ2 

Why is this not stationary?
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Violations of stationarity

A time series {Xt} is Covariance stationary if

E(Xt) = µ

Var(Xt) = σ2
X

Cov(Xt,Xt+𝛕) = 𝛾(𝛕)

If any of these are a function of time, then process may be non-stationary!
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Examples of non-stationary processes

63



Examples of stationary processes
Autocorrelation Function (ACF), Rt,t+𝛕 = Cov(Xt,Xt+𝛕) [√Var(Xt)√Var(Xt+𝛕)]

-1
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Autocorrelation function (ACF)

Autocorrelation Function (ACF) of a time series is defined as 

Rt,t+𝛕 = Cov(Xt,Xt+𝛕) [√Var(Xt)√Var(Xt+𝛕)]
-1

Useful properties: 

- Rt,t = Var(Xt)
- For covariance stationary processes, Rt,t+𝛕 = Rt-𝛕, t,i.e. ACF is a function of 𝛕 

only
- For covariance stationary processes,Cov(Xt,Xt+𝛕) = Cov(Xt-𝛕,Xt)
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How do we deal with non stationary processes?

We can remove the non stationary trend behavior from the data! (Box-Jenkins 
method)

How do we do this?

By differencing method,

Assume, 

- If the process {Xt} has a linear trend in time, then by transformation we can 
obtain a process {∆Xt} that has no trend.

- If the process {Xt} has a quadratic trend in time, then by transformation we 
can obtain a second order process {∆2Xt} that has no trend.
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Differencing operators

For Xt = 𝜓Xt-1 + ηt,

The first order difference operator is,

∆Xt = Xt - Xt-1 , alternatively, ∆Xt = (1- L)Xt, where L is lag operator

The second order difference operator is,

∆(∆Xt) = ∆Xt - ∆Xt-1,  ∆
2Xt = (1- L)∆Xt = (1- L)(1- L)Xt 

∆2Xt = (1- L)2Xt 

Generally, the ith order difference operator is 

∆iXt = (1- L)iXt 
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Trend removal by differencing

A trend is a time dependent variation in the time series {Xt} 

i.e. Xt = TDt + ηt, where TDt = a + bt (deterministic linear trend)

also, ηt ~ AR(1), i.e. ηt = 𝜓ηt-1 - εt, where |𝜓| <1 and εt is WN(0,σ2)

Then moments of Xt are , E[Xt] = E[TDt] + E[ηt] = a +bt

and Var[Xt] = Var[ηt] = σ2/(1-𝜓)

∆Xt = Xt - Xt-1 , where Xt = TDt + ηt,

∆Xt = TDt + ηt - TDt-1 + ηt-1 = a + bt - a - b(t-1) +∆ηt = b+∆ηt 

∆Xt = b+(ηt - ηt-1) = b + (1-L)ηt = b + (1-L)(1-𝜓L)εt-1,

∆Xt = b + (1-L)(1-𝜓L)εt-1
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Incorporating ith order difference and ARMA: ARIMA

The time series {Xt } follows an ARIMA(p, q, d) model (“Integrated ARMA”), if 

- {∆dXt} is stationary (and non-stationary for lower-order differencing)
- In d order differencing it follows an ARMA(p, q) model

Practical Challenges:

● Determining the order of differencing required to remove time 
trends (deterministic or stochastic).

● Estimating the unknown parameters of an ARIMA(p, q, d) model.
● Model Selection: choosing among alternative models with 

different (p, q, d) specifications
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Poll 4: Any time series can be made stationary with the 
differencing method

- True

- False

https://tinyurl.com/mlsp23-1024-04
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Poll 4: Any time series can be made stationary with the 
differencing method

- True

- False
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Limitations of Differencing: trend removal in Random Walk
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Xt = Xt-1 + ηt, where ηt is WN(0,σ2) (also called a Pure Integrated Process I(1))

then, ∆Xt = (1-L)Xt + ηt

Given X0, we can rewrite this as, Xt = X0 + TSt, where TSt = ∑t
j=0ηt

then, TSt is a Stochastic Trend process,

TSt= TSt-1 + ηt, where ηt is WN(0,σ2)

Note:

- As a consequence of ηt, the Stochastic trend processes are not perfectly 
predictable (non-stationary)

- Differencing operator cannot remove trend associated with ηt
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● The data is a time series (exchange rate, AQi)
● We can model the time series with ARMA, ARIMA model (for trend removal)

Considerations:

- Parameter estimation can be carried out by MLE
- The ARMA series can be represented as matrices through Yule-Walker 

equations
- The prediction will not be accurate

- We have partial information and decomposition is not accurate
- The discussed variations of ARMA and ARIMA are for the univariate case, 

explore multivariate ARMA or Vectorized ARMA (VARMA)
- Careful determination of the deterministic and stochastic variable 

decomposition of time series
- Do not model stochastic components as deterministic

Application of Time series forecasting in context of 11755 projects



Additional sources for time series forecasting

● MIT OCW: Topics in mathematics with applications in finance 
(18.S096) by Peter Kempthorne

● Kevin Kotzé’s notes on time series prediction
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