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Estimating distribution, an example:
Multinomials

Histogram of
outcomes
n, n,

63154124.. 123 456

 Adice roller rolls dice and you plot the histogram of outcomes
— Shown to the right

* The distribution is a multinomial
— More precisely, a category distribution
— Parameters to be learned: pq, vy, P3, P4, Ps, Vg

e Estimate the distribution



Estimating distributions: An example

* The left figure shows the histogram of a collection of
observations

e We decide to model the distribution as Gaussian

— Parameters: Mean u and variance g2

* Estimate the parameters



Agenda

Generative Models

Fitting models to data

Where’d the closed forms go?
Dealing with missing information

How expectation maximization solves all our
problems



The story of generative models

 What are generative models
* How to estimate them

— Expectation maximization



What is a generative model

A model for the probability distribution of a data x

— E.g. a multinomial, Gaussian etc.

 Computational equivalent: a model that can be used to “generate”
data with a distribution similar to the given data x

— Typical setting: a box that takes in random seeds and outputs random
samples like x

seed

— Question: how do we generate the random seeds...
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Some “simple” generative models

P2 P4

* The multinomial PMF
P(x=v)=P(v)
— For discrete data
* v belongs to a discrete set

— Can be expressed as a table of probabilities if
the set of possible vs is finite

— Else, requires a parametric form, e.g. Poisson
ko2

k!

* Ais the Poisson parameter

P(x =k) = fork =0

e The Gaussian PDF
P(x =v)

1
———exp(—0.5(x — W7 (x — W)
N

— For continuous-valued data
— uis the mean of the distribution
— XY is the Covariance matrix
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Learning a generative model for data

* You are given some set of observed data X = {x}.

* You choose a model P(x; @) for the distribution of x

— 0 are the parameters of the model

* Estimate the theta such that P(x; 8) best “fits” the
observations X = {x}

— Hoping it will also represent data outside the training set.



An example: Multinomials

Pe

P1 Ps P4

Histogram of
outcomes
n, n,

P2 Ps

1 23 456

P2 P4

P1 p

P3 Pe

63154124.. 123 456

1 23 456

A dice roller rolls dice and you plot the histogram of outcomes
— Shown toright
The distribution is a multinomial
— Parameters to be learned: p4, P2, D3, P4, Vs, Ps
Which of the two multinomial PDFs shown to the right is more likely to be the PDF
for the dice?

—  Why?
Y 10



An example

The left figure shows the histogram of a collection of observations
We decide to model the distribution as Gaussian

— Parameters: Mean u and variance g2

Which of the three Gaussians shown in the right figure is most likely
to be the actual PDF of the RV?

— Why?

11



Defining “Best Fit”: Maximum likelihood

The data are generated by draws from the distribution

— l.e. the generating process draws from the distribution

 Assumption: The world is a boring place
— The data you have observed are very typical of the process

 Consequent assumption: The distribution has a high probability of
generating the observed data

— Not necessarily true

* Select the distribution that has the highest probability of generating
the data

— Should assign lower probability to less frequent observations and vice
versa



Maximum Likelihood Estimation:
Multinomial

* Probability of generating (n,, n,, ns, ny, ng, n¢)
P(n19n29n39n49n59n6) — COI’lStH plnl

* Find py,p,,P3,P4,Ps,Pg SO that the above is maximized
* Alternately maximize

log(P(nl 2 nz ” n3 2 1’24 ” nS 2 n6 )) = IOg(COI’ZSf) + Z ni lOg(pl )

— Log() is a monotonic function
— argmax, f(x) = argmax, log(f(x))



Maximum Likelihood Estimation:
Multinomial

Probability of generating (n,, n,, n;, n,, ng, n¢)
P(n19n29n39n49n59n6) — COI’lStH plnl

Find p,P,,P3,P4,Ps,Pe SO that the above is maximized

Alternately maximize
log(P(n1 Sy, My, My, M, T )) = log(Const) + Z n, log(pi)

— Log() is a monotonic function
— argmax, f(x) = argmax, log(f(x))
Solving for the probabilities gives us

— Requires constrained optimization to _ ITS JUST
. Pi = COUNTING!
ensure probabilities sum to 1 an




Maximum Likelihood: Gaussian

= Given a collection of observations (X, X,,...),
estimate mean u and covariance ®

P(X,,X,,.)= exp(—0.5(X, — 1)" O (X, — 1))

1
HJ(W’ 0

log(P(X,, X,,...))=C- OSZ(log O|)+(X,— 1) O (X, - w))



Maximum Likelihood: Gaussian

= Given a collection of observations (X, X,,...),
estimate mean u and covariance ®

P(X,,X,,.)= exp(—0.5(X, — 1)" O (X, — 1))

1
HJ(W’ 0

log(P(X,, X,,...))=C- OSZ(log O|)+(X,— 1) O (X, - w))

* Maximizing w.r.t uand ® gives us
ITS STILL

1 | T
=— > X O=—)> (X, —ulX, - JUST
NZ ’ N,Z( X ) COUNTING!



_Laplacian

p=0b=1 —o
05 } w=0,b=2
n=0b=4 —
u=-5,b=4 ——
04 |
03 F
0.2 F
) %
0 L L L Il A

-10 -8 -6 -4 -2 0 2 4 6 8 10

P(x) = L(x; u,b) :%beXp(_ | x;ﬂ |j

* Parameters: Median u, scale b (6 > 0)

— uis also the mean, but is better viewed as the median

11755/18797 17



Maximum Likelihood: Laplacian

= Given a collection of observations (x,, x,,...), estimate

mean u and scale b

log(P(x,,x,,...))= C — N log(b) —Z B ;“ |

* Maximizing w.r.t uand b gives us

= median(ixy) b= |~

Still just counting




(from wikipedia)

f'\{“y,o,éwgs-
TN waf

log of the density as we change a from
a=(0.3,0.3,0.3) 10 (2.0, 2.0, 2.0),
keeping all the individual ai's equal to
each other.

k=3, Clockuise from fop lef
a=(6, zoé)wée 7m%r)n (g',ofé), 2,3, 4) Hr(ai)
P(X)=D(X;x)=

* Parameters are os
— Determine mode and curvature
* Defined only for probability vectors
— X=[X{ X, .. X¢], 2 X; = 1, x,>=0for all1

11755/18797 19



Maximum Likelihood: Dirichlet

= Given a collection of observations (X, X,,...),
estimate o

log(P(X,, X,,-))= 33 (&, ~Dlog(X, )+ N log(T(e,))- N IOE{F(Z 0@)

I

e No closed form solution for as.
— Needs gradient ascent

* Several distributions have this property: the ML
estimate of their parameters have no closed form
solution



Maximum likelihood

 The maximum likelihood principle:

Ny

— argmax P(X; 8) = argmax log(P(X;0))
6 6

Ns

n
] _i

1 23 45 6

—

21




Maximum likelihood

The maximum likelihood principle:
— argmax P(X; 8) = argmax log(P(X;0))
0 6

For the histogram

— argmax  log([lyex PGO)) «—

{P1,02,P3, 04,0506}

N4

1 23 45 6

For the Gaussian

— argmaxlog(][yex P(x)) -

u,02




Maximum likelihood

 The maximum likelihood principle:

Ny Ny
— argmax P(X; 8) = argmaxlog(P(X; 0)) n,
9 0 Ns
* For the histogram N _i
— argmax  log([lyexP()) «— |
{P1,02,P3,P4,P5,D6} \ v J 1 23 45 6

Can be grouped by value (every instance of i has the same probability)

e For the Gaussian

— argmaxlog(][yex P(x)) :
wo? \ Y ;

This probability is a Gaussian

—

23



Maximum likelihood

The maximum likelihood principle:
— argmax P(X; 8) = argmax log(P(X;0))
0 6

For the histogram

N4

— argmax log(]_[l- p;n i) ]
{P1,02,03,P4,P5D6}

1 23 45 6

For the Gaussian

— argmax log([T,ex Gaussian(x; u, 02))-
u,o?




Maximum likelihood

The maximum likelihood principle:
— argmax P(X; 8) = argmax log(P(X;0))
6 6

For the histogram

Ny

— argmax  ),; n;log(p;) <
{P1,02,03,P4,P5.D6}

= p; = % (N is the total number of observations)

1 23 45 6

For the Gaussian

— argmax Y,cx log Gaussian(x; u, 62) -
wo?

1 1
zM:ﬁZxEXx; o’ :NZxEX(x_.u)Z




Poll 1: tinyurl.com/mlisp23-20231102-1

 The true model that generates any dataset is always
the most likely model (i.e. the one with the highest
probability to generate the dataset

— True
— False

 Maximum likelihood estimation reduces to simple
counting-like solutions in many cases

— True
— False



Poll 1

 The true model that generates any dataset is always
the most likely model (i.e. the one with the highest
probability to generate the dataset

— True
— False

 Maximum likelihood estimation reduces to simple
counting-like solutions in many cases

— True
— False



But now for something
somewhat different

Caller rolls a dice and flips a coin
He calls out the number rolled if the coin shows head
Otherwise, he calls the number+1

Can we estimate p(heads) and p(number) for the dice from a
collection of outputs

28



But now for something somewhat
different

Roller rolls two dice
He calls out the sum

Determine P(dice) from a collection of outputs



Your friendly neighborhood gamblers

63154124 .. 44163212 ..

Two gamblers shoot dice in a closed room

— The dice are differently loaded for the two of them

A crazy crier randomly select one of the them and calls out his number

— But doesn’t mention whose number he chose

You only see the numbers

— But do not know which of them rolled the number

How to determine the probability distributions of the two dice?

11755/18797 30



Your friendly Gaussian gambler...

6.1 1.2 -2.1 3.4 09 -2.1 -0.8 ...

Your friendly neighborhood Gaussian gambler has a collection of Gaussian
generators

In each trial he randomly selects a Gaussian, and draws a number from it
He calls out that number

From only the numbers he calls out, can you estimate all of the Gaussians?

31



The challenge

* |In each of these problems
there was some information
missing

e |f this information were
available, estimation would’ve
been trivial

32



Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process



Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process



Examples of incomplete data:
missing data

— — L — . L — — N
_ g \\\
T
— — L — .I I P — \\\
| . — 1 | 1 [ ] — 1 | | | o 06 o

Blacked-out components are missing from data

Objective: Estimate a Gaussian distribution from a collection of
vectors

Problem: Several of the vector components are missing

Must estimate the mean and covariance of the Gaussian with these
incomplete data

— What would be a good way of doing this?

35



Maximum likelihood estimation with
incomplete data

P(x) = Gaussian(x; u, %)

— — L — . L — — N

o g \\\
— — AN D I N S— — .I — r ///// \\\
| . — 1 | 1 [ ] — 1 | | | o 06 o

Blacked-out components are missing from data

* Original problem: Estimate the Gaussian given a collection X = {x} of
complete vectors
argmax log(P (X)) where X is the entire data
u,x

= argmax

where P() is a Gaussian
> logP(x)
wx

xeX
¢ Unfortunately, Mmany components of each vector are missing in our data

36



Maximum likelihood estimation with
incomplete data

ZTETERLEREE"
. TN

e

01 02 03 04 O5 Og 07 Og Og 0109011012 On

These are the actual data we have: Aset O = {0y, ..., o5} of incomplete vectors
— Comprising only the observed components of the data

37



Maximum likelihood estimation with
incomplete data
n =

m1m2 m3 m4 EEE mN

* These are the actual data we have: Aset O = {04, ..., oy} of incomplete vectors
— Comprising only the observed components of the data

* | We are missing the data M = {my, ..., my}

— Comprising the missing components of the data

38



Maximum likelihood estimation with
incomplete data

X1 X2 X3 Xg X5 Xg X7 Xg X9 X10X11X12 XN

* These are the actual data we have: Aset O = {04, ..., o5} of incomplete vectors
— Comprising only the observed components of the data

* We are missing the data M = {my, ..., my}

— Comprising the missing components of the data

* | The complete data includes both the observed and missing components
X o {xlr '")xN}r xi — (Oi’ ml)

— Keep in mind that at the complete data are not available (the missing components are missing)




Maximum likelihood estimation with
incomplete data

— — — — . _ —  — N
/«/ A
_— Y
— AN
7 ™

X1 X2 X3 Xg X5 Xg X7 Xg X9 X10X11X12 XN

e Maximum likelihood estimation: Maximize the likelihood of the observed data
— Thatis all we really have

argmax log(P(0)) = argmaxz log P(0)
wx 79>

 Unfortunately, the Gaussian is defined on the complete vector :
— P(x) = Gaussian(x; u, %)
— In order to compute P(0) we must derive it from P(x)



The log likelihood of incomplete data

* The probability of any vector x with observed and missing parts o
and m

P(x) = P(o,m)

 Compute the probability of the observed components by
marginalizing out the missing components

P(o) = f_o:oP(x)dm = f_o:oP(o, m)dm

 The log probability of the entire observed training data:

Z log f_oo P(o,m)dm

0€0



Maximum likelihood estimation with
incomplete data

— — — — . _ —  — N
/«/ A
_— Y
— AN
7 ™

X1 X3 X3 X4 X5 Xg X7 Xg Xg X10X11X12 XN

e Maximum likelihood estimation: Maximize the likelihood of the observed data

argmaxlog(P(())) = argmaxz logf P(o,m)dm

0€0

* This requires the maximization of the log of an integral!
— Noclosed form
— Challenging on a good day, impossible on a bad one



Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process



Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process

p N

Shooting Dice | General Mixtures




Our dice rolling gamblers

63154124 .. 44163212 ..

 Two persons shoot loaded dice repeatedly
— The dice are differently loaded for the two of them

 We observe the series of outcomes for both persons

* How to determine the probability distributions of the two dice?

11755/18797 45



Examples of incomplete data:
missing information in multinomial mixtures

P(o)
I||I.|

P(0) = ) P()P, (0)
k

Mixture Multinomial

* The generative model characterizes the data as the outcome of a two-level process
— In the first step the process chooses a Multinomial from a collection
— Inthe second, it draws the observation o from the chosen multinomial
— The overall model is a mixture Multinomial

* Objective: Learn the parameters of all the multinomials from training data
— The probabilities of the individual outcomes
— And also the probability with which each multinomial is selected for the draw

46



Examples of incomplete data:
missing information in multinomial mixtures

P(o)

P(0) = ) P()P, (0)
k

Mixture Multinomial

* Note, the process actually draws two variables for each observation, k and o.

 The probability of a particular draw is actually the joint probability of both variables
P(k,0) = P(k)P(olk) = P(k)Py (0)
« To compute the probability of obtaining any observation o, we are marginalizing out the multinomial
index variable

P(0) = z Pk, 0) = 2 P(k)Py, (0)
k k

47



The complete data needed to precisely
learn the model

CAONN NI ICINICIC OO IO IC XG0 X0 X0 10
Ideal training data: Each number |(645123452214346216...
comes with information about
which dice rolled it

— Asindicated by the colors, we
know who rolled what number

11755/18797 48



Estimating probabilities with complete data

* Ideal training data: Each number
comes with information about
which dice rolled it

— Asindicated by the colors, we
know who rolled what number

* Segregate numbers by “color”

€ XCJC JOIC JO IC JO XC IO JC 16 JC 1O JC JO XC I
645123452214346216...

f/h\\ f’/ﬁ f/h\\ f/h\\ f’/ﬁ \‘/7\\\ f/h\\ f/h\\ f’/h)
( )( >< > ( >< >< >< >< >< > (E AN AN 4N AN AN 4N AN 4aN

652421361..]1413524426..

Collection of “blue” Collection of “red”
numbers numbers




Estimating probabilities with complete data

* Ideal training data: Each number
comes with information about
which dice rolled it

— Asindicated by the colors, we
know who rolled what number

* Segregate numbers by “color”

e Estimate individual
distributions from the
separated counts

no. of times number was rolled

CACIC O JC I IC X6 O JO JC JO € JO I8 26 XC JO
645123452214346216...

200000000 000000000
(NN AN 4N AN AN 4N N AN

652421361..]1413524426..

P(number) =
total number of observed rolls

1 2 3 4 5 6

11755/18797 50




The problem

 We are not given information
about which dice rolled what
number

— QOur data are incomplete

e What we want :
(01) kl)l (021 kZ)J (03) k3)

* What we have: 04, 0,,05 ...




ML estimation with only observed data

* The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate P, (0) — the parameters of all the multinoials

argmax log(P(0)) = argmax z log P(0)
{Pk(0),Vk} {Pr(0) vk} £

52



ML estimation with only observed data

* The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate P, (0) — the parameters of all the multinoials

argmax log(P(0)) = argmax z log P(0)
{Pk(0),Vk} {Pr(0) vk} £

* The probability of an individual vector:

P(0) = ) P()P(0)
k

53



ML estimation with only observed data

* The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate P, (0) — the parameters of all the multinoials

argmax log(P(0)) = argmax z log P(0)
{Pk(0),Vk} {Pr(0) vk} £
* The probability of an individual vector:

P(0) = ) P()P(0)
K
* The maximum likelihood estimation again

argmax Z log z P(k)P,(0)
{Pr(0)VKk} =

0€0
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ML estimation with only observed data

The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate P, (0) — the parameters of all the multinoials

argmax log(P(0)) = argmax z log P(0)
{Pk(0),Vk} {Pr(0) vk} £

The probability of an individual vector:

P(0) = ) P()P(0)
k

The maximum likelihood estimation again
argmax Z logz P(k)P,(0)
{Pr(0)vk} &= | T ]

|

This includes the log of a sum, which defies direct optimization

55



Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process

v ™~

Shooting Dice | General Mixtures




Examples of incomplete data:
mlssmg information in Gaussian mixtures

N(o; uy,21) ‘g
VAN P(o)
RRRUCTZR AVAV N

N(o; p3,%3) P(o) = )Y P(k)N(o; uy, Zx)
VAN 2, PUONG: e

———— }N (0; Uy, 24) ;i Mixture Gaussian

\
Q

v

-----------------------------------------------------------------------------------------

* The generative model characterizes the data as the outcome of a two-level process
— Inthe first step the process chooses a Gaussian from a collection
— Inthe second, it draws the vector o from the chosen Gaussian
— The overall model is a mixture Gaussian

* Objective: Learn the parameters of all the Gaussians from training data

— Learn the means and variances of the individual Gaussians
* And also the probability with which each Gaussian is selected for the draw

57



The Gaussian Mixture generative model

: N(O, H1, z:1)
VAN P(0)

: P(k)

N N(o; uy,%q1) k /\/\/\/\
. /o T

N(o; p3,%3) P(o) = )Y P(k)N(o; uy, Zx)
A zk: kr &k

}N(O; HarZg) Mixture Gaussian

\
Q

v

n
=
NS IS NSNS NN NN N NS S NS N NSNS NN NS NN NN NSNS E NN SIS E NSNS NN NS NSNS N NN NN EENEENEEEE

* Note, the process actually draws two variables for each observation, k and o.

 The probability of a particular draw is actually the joint probability of both variables
P(k,0) = P(k)P(olk) = P(k)N(o; uy, Z)

« To compute the probability of obtaining any observation o, we are marginalizing out the Gaussian
index variable

P(0) = ) P(k,0) = ) PUON(O; s Z0)
k k

58



The complete data needed to
precisely learn the model

ko200 0 0000 2 P(0)

| I I I 1
| I I I 1

|
|

I I | I I I 1

I I | I I I 1

I I | I I I 1

[ I |
[ [ I

* |deal data: Each training instance includes both the
data vector o and the Gaussian k it was drawn from

— In order to estimate the parameters of any Gaussian, you
only need to segregate the training instances from that
Gaussian, and compute the mean and variance from them

59



Learning a GMM with “complete” data

oo - P(x)

[
X
= =l = = _ — —J =
e SS - -~ */r‘ S~ao S~
’ Jo~e 7 AR ~~_ ~.
’ -’ » 277 TN\ o ~< ~o
’ . [N PN St -- ~<o ~<
’ -, s ~ - ~ ~~o S~ o N
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The GMM problem of incomplete data:
missing information

P(o)

* Problem : We are not given the actual Gaussian for each
observation

— Our data are incomplete

 Whatwe want: (04,kq), (04, k), (03,k3) ...
* What we have: 04,05, 05 ...

61



ML estimation with only observed data

* The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate {(ug, ), Vk} — the parameters of all the Gaussians

argmax log(P(0)) = argmax ZlogP(o)
{12k, VE} {(hwZx) VE} 2=

62



ML estimation with only observed data

* The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate {(ug, ), Vk} — the parameters of all the Gaussians

argmax log(P(0)) = argmax ZlogP(o)
{12k, VE} {(hwZx) VE} 2=

* The probability of an individual vector:

P(0) = ) PUON(0; e, 20)
k

63



ML estimation with only observed data

* The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate {(ug, ), Vk} — the parameters of all the Gaussians

argmax log(P(0)) = argmax ZlogP(o)
{12k, VE} {(hwZx) VE} 2=

* The probability of an individual vector:

P(0) = ) PURIN(0; . By)
K
* The maximum likelihood estimation again

argmax z logz P(k)N (o; g, Zx)
K

(ko) Vi) 520
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ML estimation with only observed data

The maximum likelihood estimation problem:
— Given observed data O = {04, 05,053 ... },
— estimate {(ug, ), Vk} — the parameters of all the Gaussians

argmax log(P(0)) = argmax ZlogP(o)
{12k, VE} {(hwZx) VE} 2=

The probability of an individual vector:

P(0) = ) PUON(0; e, 20)
k

The maximum likelihood estimation again

argmax z logz P(k)N (o; g, Zx)

(AT I

|

This includes the log of a sum, which defies direct optimization
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The general form of the problem

 The “presence” of missing data or variables requires them to be
marginalized out of your probability

— By summation or integration

e This results in a maximum likelihood estimate of the form

6 = argmaxz logz P (h,o0;0)
6
0 h

— The inner summation may also be an integral in some problems

— Explicitly introducing 6 in the RHS to show that the probability is computed by
a model with parameter 6 which must be estimated

 The log of a sum (or integral) makes estimation challenging
— No closed form solution
— Need efficient iterative algorithms



Poll 2: tinyurl.com/mlisp23-20231102-2

e Select all that are true

— MLE with missing data yields problems that have closed-
form solutions

— There are no closed form solutions due to the integral
inside the log, but if there were a sum inside the log, there
would be a closed form solution

— MLE with missing data maximizes the likelihood of the
observations only

— The likelihood of the observed data is derived from the
complete data by marginalizing out the missing data



Poll 2

Select all that are true

— MLE with missing data yields problems that have closed-
form solutions

— There are no closed form solutions due to the integral
inside the log, but if there were a sum inside the log, there
would be a closed form solution

— MLE with missing data maximizes the likelihood of the
observations only

— The likelihood of the observed data is derived from the
complete data by marginalizing out the missing data
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The general form of the problem

 The “presence” of missing data or variables requires them to be
marginalized out of your probability

Can we get an approxuma’rlon to this that is more tractable?
(i.e without a summation or integral within the log)

6 = argmax logz P (h,o0)
0

0]

— The inner summation may also be an integral in some problems

 The log of a sum (or integral) makes estimation challenging
— No closed form solution
— Need efficient iterative algorithms
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The variational lower bound

e \We can rewrite

P(h,o)
Q(h)

log P(0) = lcgz P (h, o) = lcgz o(h)
h h

— Where Q(h) is some function such that Q(h) = 0and ),;, Q(h) =1
* |.e. a probability distribution

 The logarithm is a concave function, therefore

P(h, O) P(h' O)
logzh:Q(h) o0 zZ@(h) 08— 7o



The logarithm is a concave function

25
20

15
14

f(x) = log(x)

log(qx1 + (1 — q)xz) /
\ 08(x2)
log(x) - —qlog(x;) + (1 — q)log(x,)
X1 N X2 l
qx; + (1 —q)x;
a 2 4 & a 10

For any x;and x,, forany 0 < g <1,
log(qx; + (1 = q)x2) = qlog(x;) + (1 — q)log(xz)

More generally for any set of {x;}, and any weights {q;}st.q; = 0and };;q; =1

log (Z Clixi> = Z qilog(x;)

71



The variational lower bound

* By the concavity of the log function

P(h, 0) P(h, 0)
logzh:Q(h) R EZQ(h)log o)

— ForanyQ(h) = 0and ), Q(h) =1
— Note, the LHS is exactly equal to log P(0)

* This is the variational lower bound on log P(0)
— Also called the Evidence Lower BOund, or ELBO



Or more explicitly

e By the concavity of the log function
P(h,o0;0)
Q(h)

— Explicitly showing that the probability is computed by
a model with parameter 6

log P(0;0) > 2 Q(h) log
n

* We must maximize P(0;0) w.r.t 0

 This is the variational lower bound or ELBO on
log P(0;0)



The (variational) lower bound
f(6)

lowerbound: f'(0) < f(0)

7

0

 The lower bound is always at or below the original function
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The (variational) lower bound
f(6)

tightlowerbound: f'(6) < f(0)

0

The lower bound is always at or below the original function

If it is a tight lower bound, the max of the lower bound can be
expected to be near the max of the function

— To make the lower bound tight, we need to choose Q (h) properly

v
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Choosing a good Q(h)

 LetQ(h) = P(h|o;0")

Og 0, = g ( |Ol ) OgP(th,H,)

e Let

Py L P(h,o0;0)
1(6,6") = zh:P(h|o,9 )log o

* We get

logP(0;6) =](6,6")

e And

logP(0;0) =](6,0)



Choosing a good Q(h)

 LetQ(h) = P(h|o;0")

e Let

Og O, — e ( |Ol ) OgP(th,H,)
0.9 =S it 0
] ) _ - ( |O' )OgP(h|0,9’)
* We get

logP(0;6) =](6,6")

e And
ClogP(o:0) = J(0.6)
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P(o;68) =](6,0)

P(h,o;0)

J(6,6) = ; P(hlo; 0) log ;3

= Z P(h|o; 8)logP(o;0)
h

log P(0; e)zp(mo; 6) =logP(0;6)
h



Expectation Maximization

We have
J(6,6") = Z P(h|o; 6" log Ph,0;9)
- P(hlo;8")
where
logP(0;60) = ](6,60")
And

log P(0;0) =](6,0)

This gives us the following iterative algorithm that guarantees non-
decreasing P(o; 8) with iterations:

0**1 « argmax (6, 6%)
9



6**1 « argmaxJ(6,0")
0

log P(0;0°) = J(6°,8%

90
* Initialize 6°
e Construct J(8,09)
— It touches log P(0; 8) at 8 because log P(0;6°%) = J (69,09
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6**1 « argmaxJ(6,0")
0

log P(0;0°) = J(6°,8%

Find 81 = argmaxJ(6,6°)
9

— J(6%,08°) = J(08°,6Y) (since you're maximizing J (8, 8°) w.r.t 8)
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6**1 « argmaxJ(6,0")
0

log P(0;0°) = J(6°,8%

v

e Find 8! = argmax/(9,6%)
6

— J(6%,0% = J(68°,69) (since you're maximizing /(8,6°) w.r.t 8)
« logP(0;0%) =J(61,6%

— since J(8,8°) is a lower bound on log P(0; )
* Sothe iteration increases log P(0; 0)
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6**1 « argmaxJ(6,0")
0

log P(0;01) = J(61,61)

* Construct J(8,01)
— It touches log P(0; 0) at 8! because log P(0; 81) = J(61,01)
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6**1 « argmaxJ(6,0")
0

log P(0;01) = J(61,61)

v

Find 82 = argmax (6, 6%)
9

— J(6%,01) = J(6%,6%) (since you’re maximizing J(8,61) w.r.t 6)
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9k+1

« argmax J(6,0")

Y.
log P(0;01) = J(61,61) log P(0; 6°)

v

00 o1 0?2
e Find % = argmaxJ(9,0%)
9

— J(6%,01) = J(6%,6%) (since you’re maximizing J(8,61) w.r.t 6)
« logP(0;0%) =J(6%6Y

— Since J(8,01) is a lower bound on log P(0; )
* So the iteration increases log P(o; 0)
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6**1 « argmaxJ(6,0")
0

v

6° 61 6~

Repeat the steps:
— Compose J(8,6%) to “touch” log P (0; 0) at the current estimate 6*

— Set 0%*1 « argmax (6, 6%)
6

Each step is guaranteed to increase (or at least not decrease) log P(o0; 0)
— Stop when log P(o; 0) stops increasing
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6**1 « argmaxJ(6,0")
0

N/

v

6° 61 0% 63

Repeat the steps:
— Compose J(8,6%) to “touch” log P (0; 0) at the current estimate 6*

— Set 0%*1 « argmax (6, 6%)
6

Each step is guaranteed to increase (or at least not decrease) log P(o0; 0)
— Stop when log P(o; 0) stops increasing
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6**1 « argmaxJ(6,0")
0

log P(o0; 0)

S/

v

6° 61 0% 63

Repeat the steps:
— Compose J(8,6%) to “touch” log P (0; 0) at the current estimate 6*

— Set 0%*1 « argmax (6, 6%)
6

Each step is guaranteed to increase (or at least not decrease) log P(o0; 0)
— Stop when log P(o; 0) stops increasing
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6**1 « argmaxJ(6,0")
0

A /
o~

v

§o o1 92 93 g+ 9

Repeat the steps:
— Compose J(8,6%) to “touch” log P (0; 0) at the current estimate 6*

— Set 0%*1 « argmax (6, 6%)
6

Each step is guaranteed to increase (or at least not decrease) log P(o0; 0)
— Stop when log P(o; 0) stops increasing
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Expectation Maximization

Initialize 6°
k=0
lterate (over k) until log P(O; 0) converges:

— Construct ELBO function

B | P(h,o0;0)
1(6,6% ) = Z Z P(hlo; %) log 5o "o

0€EO h

— Maximization step
0**1 « argmax (6, 6%)
6

Let’s simplify a bit



Expectation Maximization

* Initialize 8°

c k=0

* Iterate (over k) until log P(0O; 6) converges:
— Construct ELBO function

1(8,6%) = zzP(Mo 6% log P(h, 0; 6) —Zzp(mo 6% log P(h|o; 6%)

0€E0 0€0

— Maximization step
0**1 « argmaxJ(6,6%)
6
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Expectation Maximization

* Initialize 8°

c k=0

* Iterate (over k) until log P(0O; 6) converges:
— Construct ELBO function

!
1(6,0%) = 2 zP(h|o; 8%) log P(h, o; 9)@(}40; 9%) 10@
0€0 h €0 h

— Maximization step Can be ignored for maximization

0**1 « argmaxJ(6,6%)
6

Not a function of 6
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Expectation Maximization

e |nitialize 6°
e k=0

* |terate (over k) until log P(0; 6) converges:

— Expectation Step:
Compute P(h|o; 8%) for all 0 € O for all h

— Maximization step

ORt1 argmaxz ZP(h|0 6%)1log P(h, 0; 8)

0€0



Expectation Maximization for
Maximum Likelihood Estimation

Objective: Estimate

0* = argmaxz logz P(h,o0;0)

0€0

Solution: Iteratively perform the following optimization instead

ORT1 argmaxz ZP(h|o 6")log P(h, 0; 8)

0€0

This maximizes an Empirical Lower Bound (ELBO) and guarantees
increasing log likelihood with iterations

— Giving you a local maximum log likelihood estimate for 8*



Expectation Maximization: In
summary

e Construct an Empirical Lower Bound function ](9, ok )
Jj(6,6%)

ZZP(MO 6% log P(h, 0; 6)

0€e0

Z ZP(h|o 6% log P(h|o; 6%)

0€0

* [teratively maximize the ELBO fucntion
0**1 « argmax (6, 6%)
6



Expectation Maximization

e Initialize °
e k=0
* lIterate (over k) until },,co log P(0; 8) converges:

— Expectation Step:
Compute P(h|o; 0%) for all o € O for all h

— Maximization step

OFT1 argmaxz: Z P(h|o;8%)1og P(h,0;6)
0
n

0€e0



Poll 3: tinyurl.com/mlisp23-20231102-3

 EM iteratively estimates a tight “variational lower
bound” to the likelihood function and maximizes it
with respect to the parameters
— True
— False

 We could alternately compute a tight upper bound to
the likelihood and minimize it

— True
— False



Poll 3:

 EM iteratively estimates a tight “variational lower
bound” to the likelihood function and maximizes it

with respect to the parameters
— True
— False

 We could alternately compute a tight upper bound to
the likelihood and minimize it

— True
— False



That’s so much math, but what does
it really do?

* What does EM practically do when we have
missing data?

— What is the intuition behind how it resolves the
problem?

e Next class...



