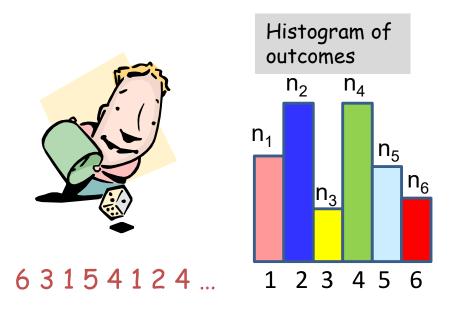


Maximum Likelihood Estimation and Expectation Maximization

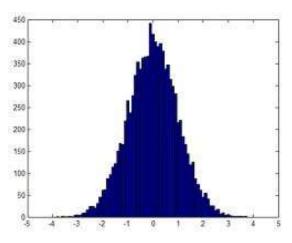
Bhiksha Raj

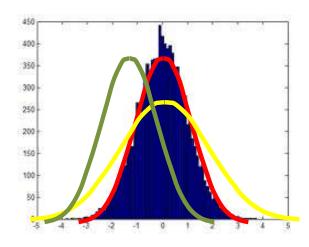
Estimating distribution, an example: Multinomials



- A dice roller rolls dice and you plot the histogram of outcomes
 - Shown to the right
- The distribution is a multinomial
 - More precisely, a category distribution
 - Parameters to be learned: $p_1, p_2, p_3, p_4, p_5, p_6$
- Estimate the distribution

Estimating distributions: An example





- The left figure shows the histogram of a collection of observations
- We decide to model the distribution as Gaussian
 - Parameters: Mean μ and variance σ^2
- Estimate the parameters

Agenda

- Generative Models
- Fitting models to data
- Where'd the closed forms go?
- Dealing with missing information
- How expectation maximization solves all our problems

The story of generative models

- What are generative models
- How to estimate them

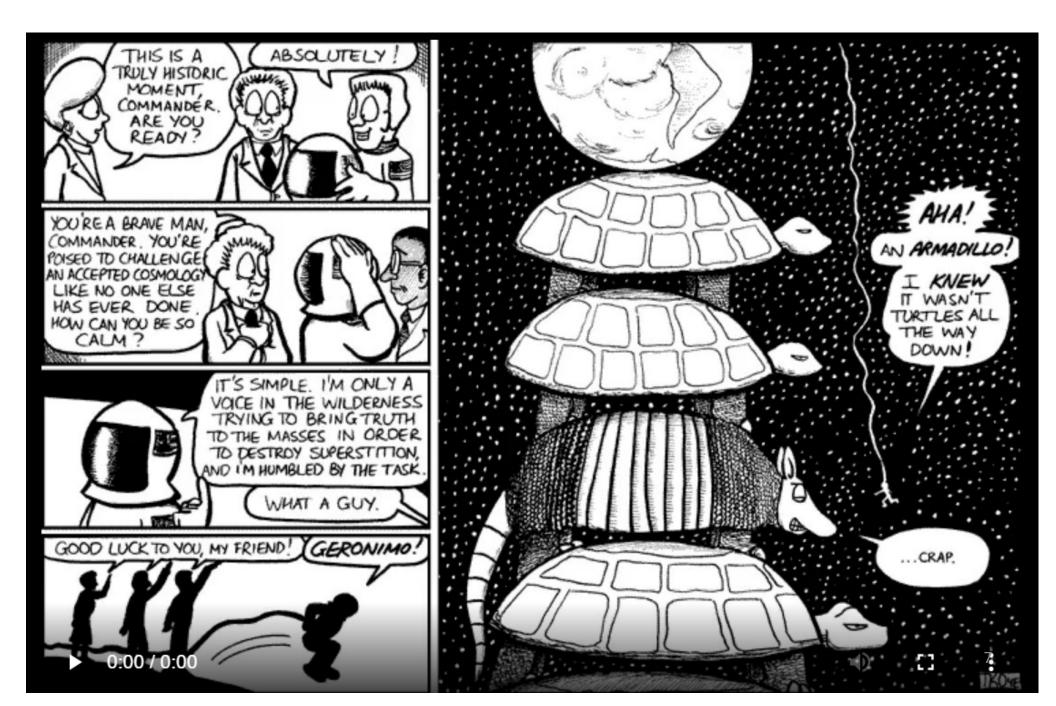
- Expectation maximization

What is a generative model

- A model for the probability distribution of a data *x*
 - E.g. a multinomial, Gaussian etc.
- Computational equivalent: a model that can be used to "generate" data with a distribution similar to the given data x
 - Typical setting: a box that takes in random seeds and outputs random samples like x

- Question: how do we generate the random seeds...

Its turtles all the way down (kinda)...



Some "simple" generative models

• The multinomial PMF

 $P(x = v) \equiv P(v)$

- For discrete data
 - v belongs to a discrete set
- Can be expressed as a table of probabilities if the set of possible vs is finite
- Else, requires a parametric form, e.g. Poisson

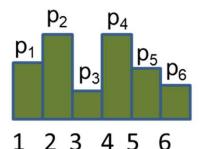
$$P(x=k) = \frac{\lambda^k e^{-\lambda}}{k!} \text{ for } k \ge 0$$

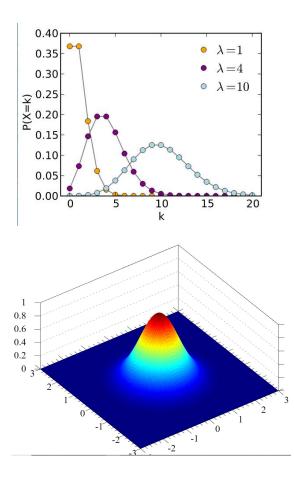
- λ is the Poisson parameter
- The Gaussian PDF

$$P(x = v)$$

$$= \frac{1}{\sqrt{2\pi |\Sigma|}^{D}} \exp(-0.5(x-\mu)^{T} \Sigma^{-1}(x-\mu))$$

- For continuous-valued data
- $-\mu$ is the mean of the distribution
- $-\Sigma$ is the Covariance matrix



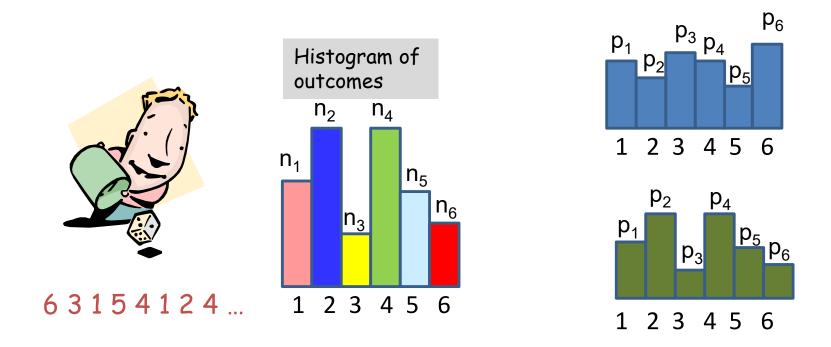


Learning a generative model for data

- You are given some set of observed data $X = \{x\}$.
- You choose a model $P(x; \theta)$ for the distribution of $x \theta$ are the parameters of the model
- Estimate the theta such that $P(x; \theta)$ best "fits" the observations $X = \{x\}$

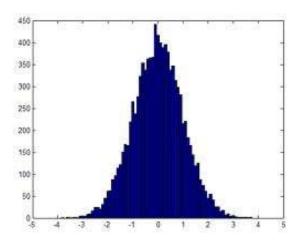
- Hoping it will also represent data outside the training set.

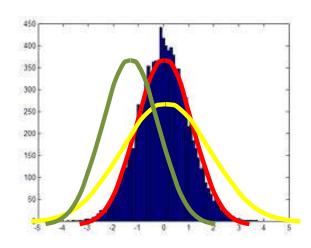
An example: Multinomials



- A dice roller rolls dice and you plot the histogram of outcomes
 - Shown to right
- The distribution is a multinomial
 - Parameters to be learned: $p_1, p_2, p_3, p_4, p_5, p_6$
- Which of the two multinomial PDFs shown to the right is more likely to be the PDF for the dice?
 - Why?

An example





- The left figure shows the histogram of a collection of observations
- We decide to model the distribution as Gaussian

– Parameters: Mean μ and variance σ^2

- Which of the three Gaussians shown in the right figure is most likely to be the actual PDF of the RV?
 - Why?

Defining "Best Fit": Maximum likelihood

- The data are generated by draws from the distribution
 - I.e. the generating process draws from the distribution
- Assumption: The world is a boring place
 - The data you have observed are very typical of the process
- Consequent assumption: The distribution has a high probability of generating the observed data
 - Not necessarily true
- Select the distribution that has the *highest* probability of generating the data
 - Should assign lower probability to less frequent observations and vice versa

Maximum Likelihood Estimation: Multinomial

- Probability of generating $(n_1, n_2, n_3, n_4, n_5, n_6)$ $P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod p_i^{n_i}$
- Find $p_1, p_2, p_3, p_4, p_5, p_6$ so that the above is maximized
- Alternately maximize

$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_i n_i \log(p_i)$$

- Log() is a monotonic function
- $\operatorname{argmax}_{x} f(x) = \operatorname{argmax}_{x} \log(f(x))$

Maximum Likelihood Estimation: Multinomial

- Probability of generating $(n_1, n_2, n_3, n_4, n_5, n_6)$ $P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod p_i^{n_i}$
- Find $p_1, p_2, p_3, p_4, p_5, p_6$ so that the above is maximized
- Alternately maximize

$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_i n_i \log(p_i)$$

- Log() is a monotonic function
- $\operatorname{argmax}_{x} f(x) = \operatorname{argmax}_{x} \log(f(x))$
- Solving for the probabilities gives us
 - Requires constrained optimization to ensure probabilities sum to 1

$$p_i = \frac{n_i}{\sum_j n_j}$$
ITS JUST
COUNTING

Maximum Likelihood: Gaussian

 Given a collection of observations (X₁, X₂,...), estimate mean μ and covariance Θ

$$P(X_1, X_2, ...) = \prod_i \frac{1}{\sqrt{(2\pi)^d |\Theta|}} \exp\left(-0.5(X_i - \mu)^T \Theta^{-1}(X_i - \mu)\right)$$

$$\log(P(X_1, X_2, ...)) = C - 0.5 \sum_{i} (\log(|\Theta|) + (X_i - \mu)^T \Theta^{-1} (X_i - \mu))$$

Maximum Likelihood: Gaussian

 Given a collection of observations (X₁, X₂,...), estimate mean μ and covariance Θ

$$P(X_1, X_2, ...) = \prod_i \frac{1}{\sqrt{(2\pi)^d |\Theta|}} \exp\left(-0.5(X_i - \mu)^T \Theta^{-1}(X_i - \mu)\right)$$

$$\log(P(X_1, X_2, ...)) = C - 0.5 \sum_{i} (\log(|\Theta|) + (X_i - \mu)^T \Theta^{-1} (X_i - \mu))$$

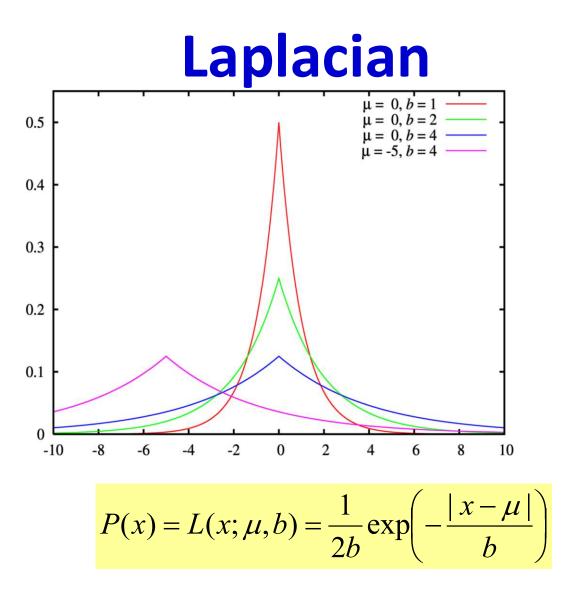
• Maximizing w.r.t μ and Θ gives us

$$\mu = \frac{1}{N} \sum_{i} X_{i} \qquad \Theta = \frac{1}{N} \sum_{i} (X_{i} - \mu) (X_{i} - \mu)^{T}$$

ITS STILL

COUNTIN

JUST



- Parameters: Median μ , scale *b* (*b* > 0)
 - $-\ \mu$ is also the mean, but is better viewed as the median

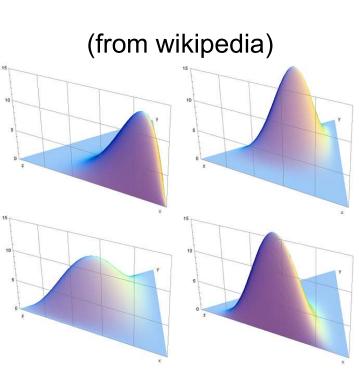
Maximum Likelihood: Laplacian

 Given a collection of observations (x₁, x₂,...), estimate mean μ and scale b

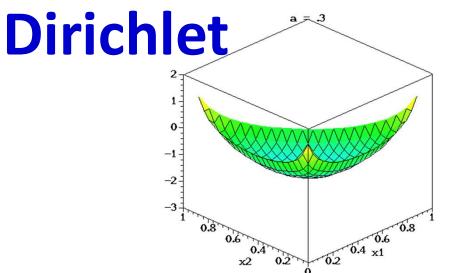
$$\log(P(x_1, x_2, ...)) = C - N \log(b) - \sum_i \frac{|x_i - \mu|}{b}$$

• Maximizing w.r.t μ and b gives us

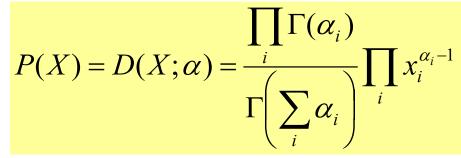
$$\mu = median(\{x_i\}) \quad b = \frac{1}{N} \sum_{i} |x_i - \mu|$$
 Still just counting



K=3. Clockwise from top left: α =(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)



log of the density as we change a from a=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual ai's equal to each other.



- Parameters are α s
 - Determine mode and curvature
- Defined only for probability vectors

$$- X = [x_1 x_2 ... x_K], \Sigma_i x_i = 1, x_i \ge 0$$
 for all i

Maximum Likelihood: Dirichlet

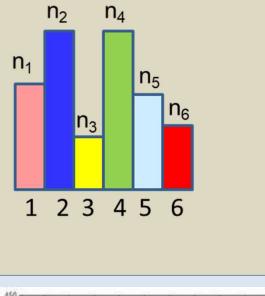
Given a collection of observations (X₁, X₂,...), estimate α

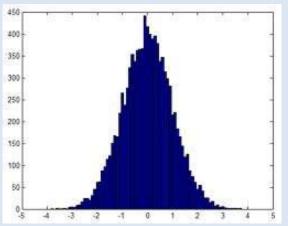
$$\log(P(X_1, X_2, \dots)) = \sum_{j} \sum_{i} (\alpha_i - 1) \log(X_{j,i}) + N \sum_{i} \log(\Gamma(\alpha_i)) - N \log\left(\Gamma\left(\sum_{i} \alpha_i\right)\right)$$

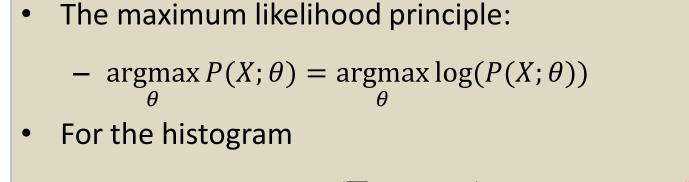
- No closed form solution for $\alpha s.$
- Needs gradient ascent
- Several distributions have this property: the ML estimate of their parameters have no closed form solution

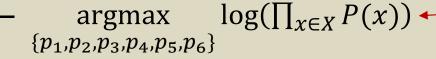
• The maximum likelihood principle:

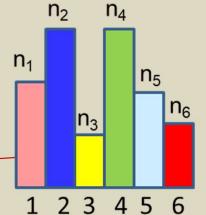
$$- \operatorname{argmax}_{\theta} P(X; \theta) = \operatorname{argmax}_{\theta} \log(P(X; \theta))$$

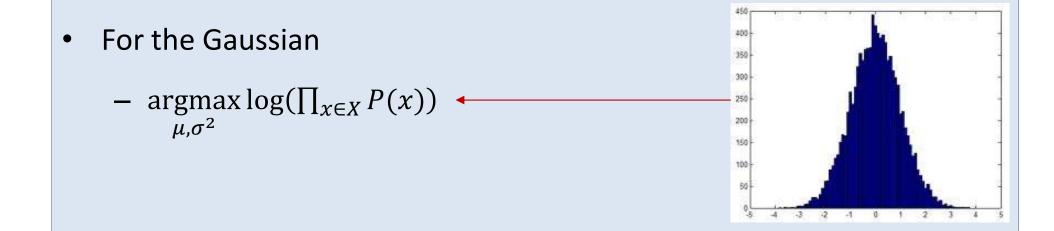




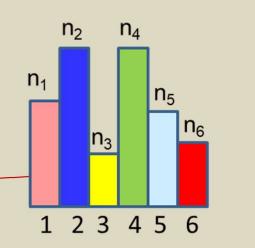








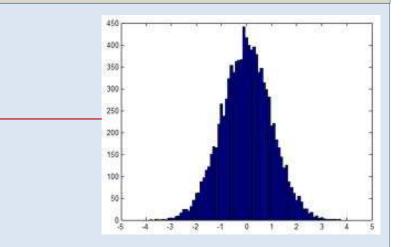
- $\operatorname{argmax}_{\theta} P(X;\theta) = \operatorname{argmax}_{\theta} \log(P(X;\theta))$
- For the histogram
 - $\underset{\{p_1, p_2, p_3, p_4, p_5, p_6\}}{\operatorname{argmax}} \log(\prod_{x \in X} P(x)) \leftarrow$



Can be grouped by value (every instance of i has the same probability)

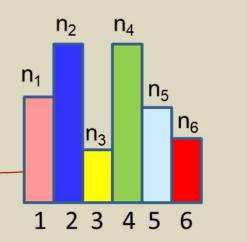
- For the Gaussian
 - $\operatorname{argmax}_{\mu,\sigma^2} \log(\prod_{x \in X} P(x))$

This probability is a Gaussian

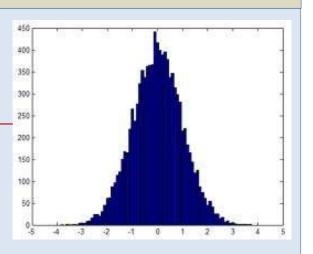


- $\operatorname{argmax}_{\theta} P(X; \theta) = \operatorname{argmax}_{\theta} \log(P(X; \theta))$
- For the histogram

$$- \underset{\{p_1, p_2, p_3, p_4, p_5, p_6\}}{\operatorname{argmax}} \log(\prod_i p_i^{n_i}) \bullet$$



- For the Gaussian
 - $\underset{\mu,\sigma^2}{\operatorname{argmax}} \log(\prod_{x \in X} Gaussian(x; \mu, \sigma^2))$



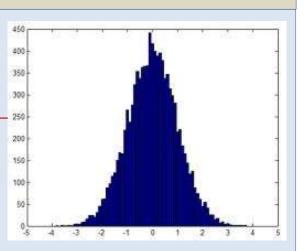
- The maximum likelihood principle:
 - $\operatorname{argmax}_{\theta} P(X; \theta) = \operatorname{argmax}_{\theta} \log(P(X; \theta))$
- For the histogram

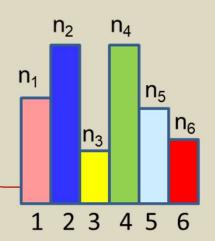
$$- \underset{\{p_1, p_2, p_3, p_4, p_5, p_6\}}{\operatorname{argmax}} \sum_i n_i \log(p_i) \bullet$$

• For the Gaussian

-
$$\underset{\mu,\sigma^2}{\operatorname{argmax}} \sum_{x \in X} \log Gaussian(x; \mu, \sigma^2) \blacktriangleleft$$

$$\Rightarrow \mu = \frac{1}{N} \sum_{x \in X} x; \qquad \sigma^2 = \frac{1}{N} \sum_{x \in X} (x - \mu)^2$$





Poll 1: tinyurl.com/mlsp23-20231102-1

- The true model that generates any dataset is always the most likely model (i.e. the one with the highest probability to generate the dataset
 - True
 - False
- Maximum likelihood estimation reduces to simple counting-like solutions in many cases
 - True
 - False

Poll 1

- The true model that generates any dataset is always the most likely model (i.e. the one with the highest probability to generate the dataset
 - True
 - False
- Maximum likelihood estimation reduces to simple counting-like solutions in many cases
 - True
 - False

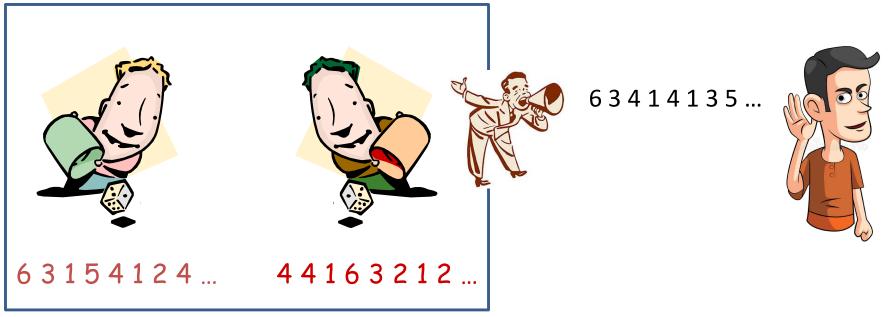
But now for something somewhat different

- Caller rolls a dice and flips a coin
- He calls out the number rolled if the coin shows head
- Otherwise, he calls the number+1
- Can we estimate p(heads) and p(number) for the dice from a collection of outputs

But now for something somewhat different

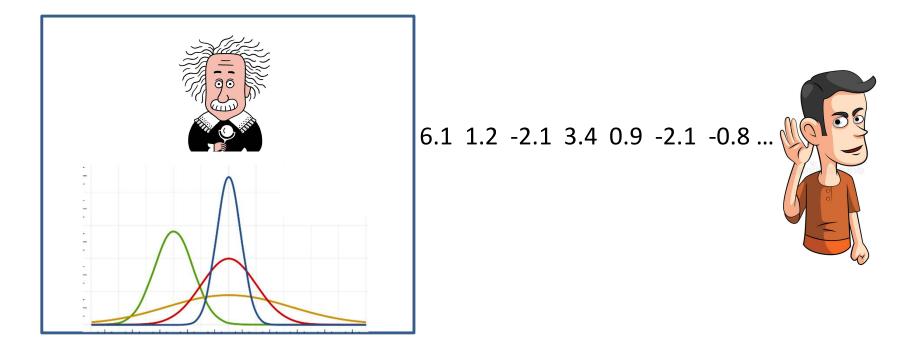
- Roller rolls two dice
- He calls out the sum
- Determine P(dice) from a collection of outputs

Your friendly neighborhood gamblers



- Two gamblers shoot dice in a closed room
 - The dice are differently loaded for the two of them
- A crazy crier randomly select one of the them and calls out his number
 - But doesn't mention whose number he chose
- You only see the numbers
 - But do not know which of them rolled the number
- How to determine the probability distributions of the two dice?

Your friendly Gaussian gambler...

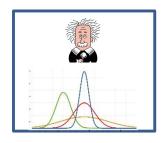


- Your friendly neighborhood Gaussian gambler has a collection of Gaussian generators
- In each trial he randomly selects a Gaussian, and draws a number from it
- He calls out that number
- From only the numbers he calls out, can you estimate all of the Gaussians?

The challenge

 In each of these problems there was some information missing

 If this information were available, estimation would've been trivial



Let's Look at Missing Information

Missing Information about **Underlying Data**

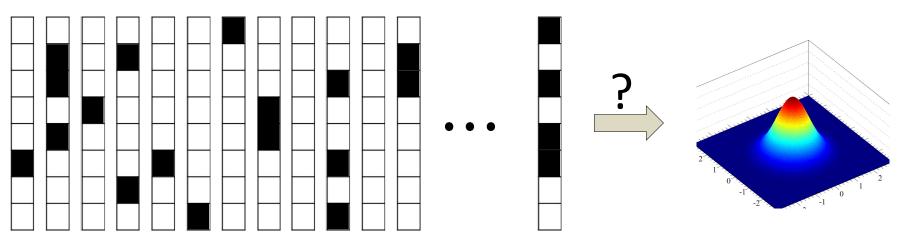
Missing Information about **Underlying Process**

Let's Look at Missing Information

Missing Information about **Underlying Data**

Missing Information about **Underlying Process**

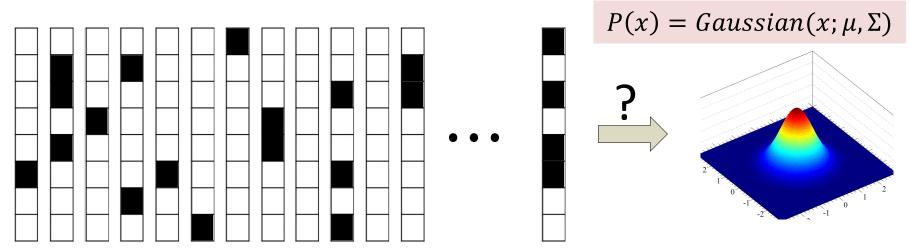
Examples of incomplete data: missing data



Blacked-out components are missing from data

- Objective: Estimate a Gaussian distribution from a collection of vectors
- Problem: Several of the vector components are missing
- Must estimate the mean and covariance of the Gaussian with these incomplete data
 - What would be a good way of doing this?

Maximum likelihood estimation with incomplete data



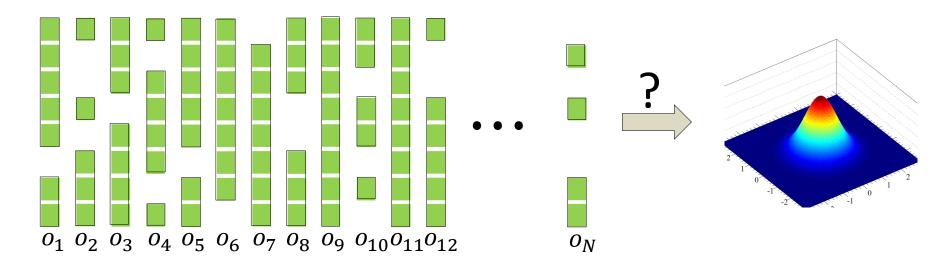
Blacked-out components are missing from data

Original problem: Estimate the Gaussian given a collection X = {x} of complete vectors

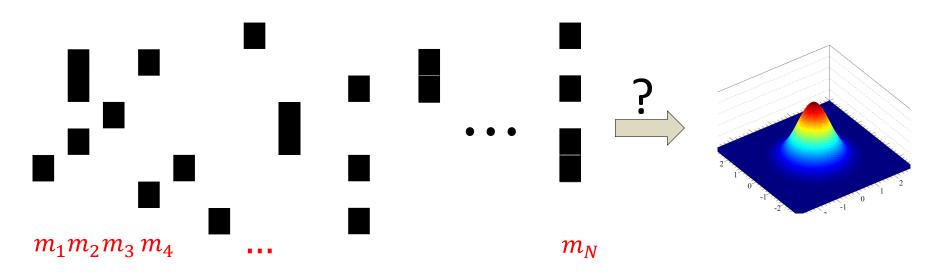
$$\underset{\mu,\Sigma}{\operatorname{argmax}} \log(P(X)) \text{ where X is the entire data}$$

$$= \underset{\mu,\Sigma}{\operatorname{argmax}} \sum_{x \in X} \log P(x)^{\text{where P() is a Gaussian}}$$

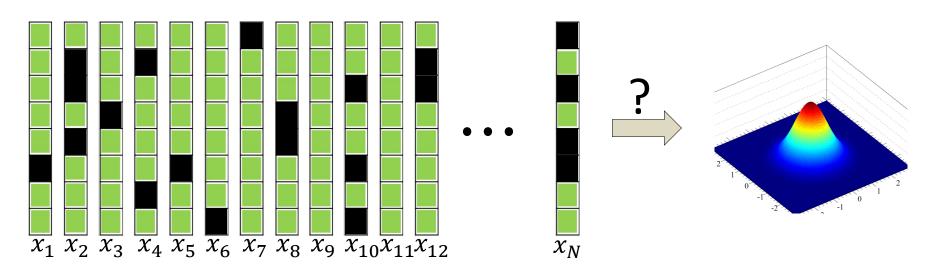
• Unfortunately, many components of each vector are missing in our data



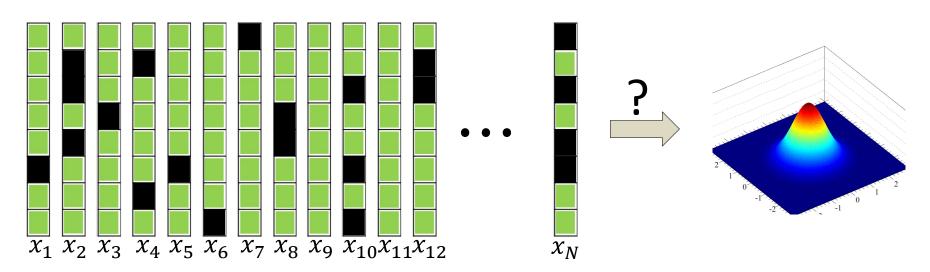
These are the actual data we have: A set O = {o₁, ..., o_N} of *incomplete* vectors
 Comprising only the *observed* components of the data



- These are the actual data we have: A set $O = \{o_1, ..., o_N\}$ of *incomplete* vectors
 - Comprising only the *observed* components of the data
- We are *missing* the data $M = \{m_1, \dots, m_N\}$
 - Comprising the *missing* components of the data



- These are the actual data we have: A set $O = \{o_1, ..., o_N\}$ of *incomplete* vectors
 - Comprising only the observed components of the data
- We are *missing* the data $M = \{m_1, \dots, m_N\}$
 - Comprising the missing components of the data
- The *complete* data includes both the observed and missing components
 X = {x₁, ..., x_N}, x_i = (o_i, m_i)
 – Keep in mind that at the complete data are *not* available (the missing components are missing)



- Maximum likelihood estimation: Maximize the likelihood of the observed data
 - That is all we really have

$$\underset{\mu,\Sigma}{\operatorname{argmax}} \log(P(O)) = \underset{\mu,\Sigma}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

- Unfortunately, the Gaussian is defined on the *complete* vector :
 - $P(x) = Gaussian(x; \mu, \Sigma)$
 - In order to compute P(o) we must *derive* it from P(x)

The log likelihood of incomplete data

• The probability of any vector x with observed and missing parts o and m

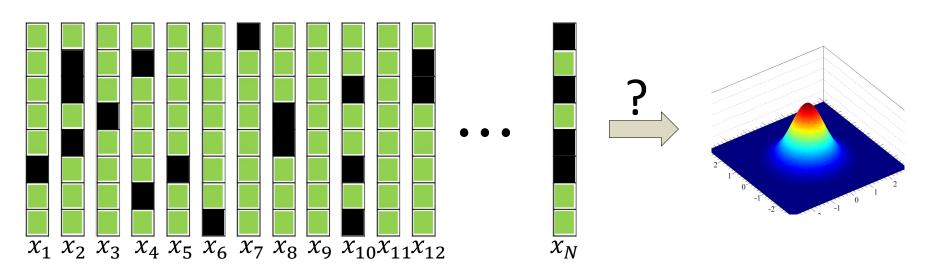
$$P(x) = P(o,m)$$

• Compute the probability of the observed components by marginalizing out the missing components

$$P(o) = \int_{-\infty}^{\infty} P(x)dm = \int_{-\infty}^{\infty} P(o,m)dm$$

• The log probability of the *entire observed training data*:

$$\sum_{o\in O} \log \int_{-\infty}^{\infty} P(o,m) dm$$



• Maximum likelihood estimation: Maximize the likelihood of the observed data

$$\underset{\mu,\Sigma}{\operatorname{argmax}} \log(P(O)) = \underset{\mu,\Sigma}{\operatorname{argmax}} \sum_{o \in O} \log \int_{-\infty}^{\infty} P(o,m) dm$$

- This requires the maximization of the log of an integral!
 - No closed form
 - Challenging on a good day, impossible on a bad one

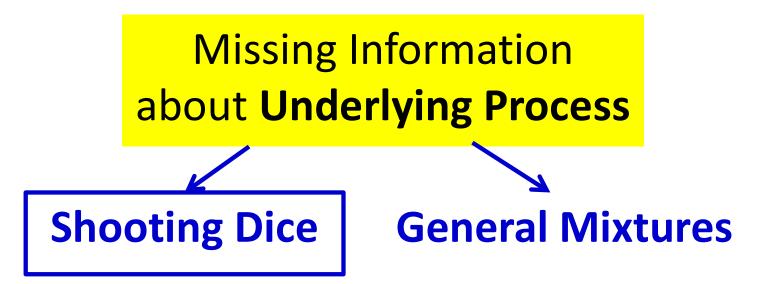
Let's Look at Missing Information

Missing Information about **Underlying Data**

Missing Information about **Underlying Process**

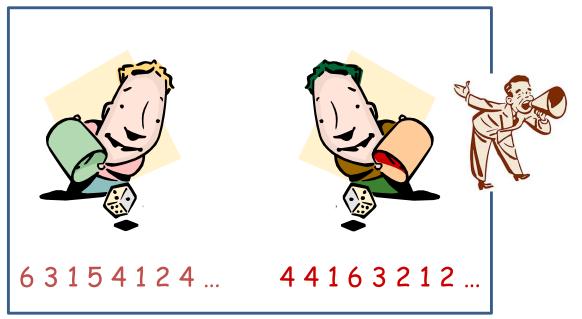
Let's Look at Missing Information

Missing Information about **Underlying Data**



11755/18797

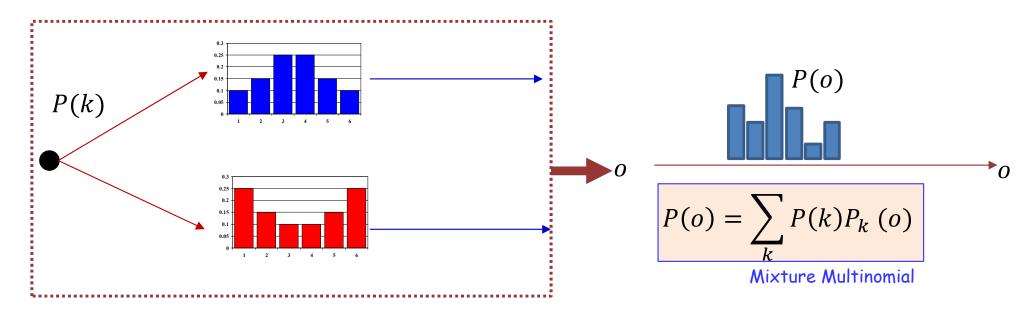
Our dice rolling gamblers



- Two persons shoot loaded dice repeatedly

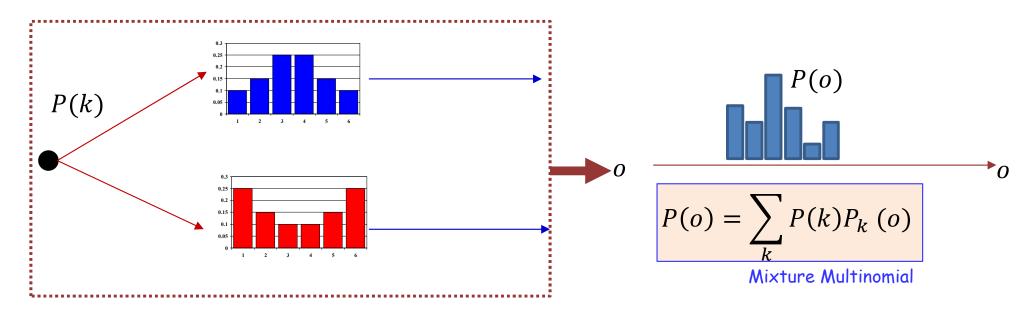
 The dice are differently loaded for the two of them
- We observe the series of outcomes for both persons
- How to determine the probability distributions of the two dice?

Examples of incomplete data: missing information in multinomial mixtures



- The generative model characterizes the data as the outcome of a two-level process
 - In the first step the process chooses a Multinomial from a collection
 - In the second, it draws the observation o from the chosen multinomial
 - The overall model is a *mixture Multinomial*
- Objective: Learn the parameters of all the multinomials from training data
 - The probabilities of the individual outcomes
 - And also the probability with which each multinomial is selected for the draw

Examples of incomplete data: missing information in multinomial mixtures



- Note, the process actually draws *two* variables for each observation, k and o.
- The probability of a particular draw is actually the joint probability of both variables $P(k, o) = P(k)P(o|k) = P(k)P_k(o)$
- To compute the probability of obtaining any observation o, we are *marginalizing out* the multinomial index variable

$$P(o) = \sum_{k} P(k, o) = \sum_{k} P(k)P_k(o)$$

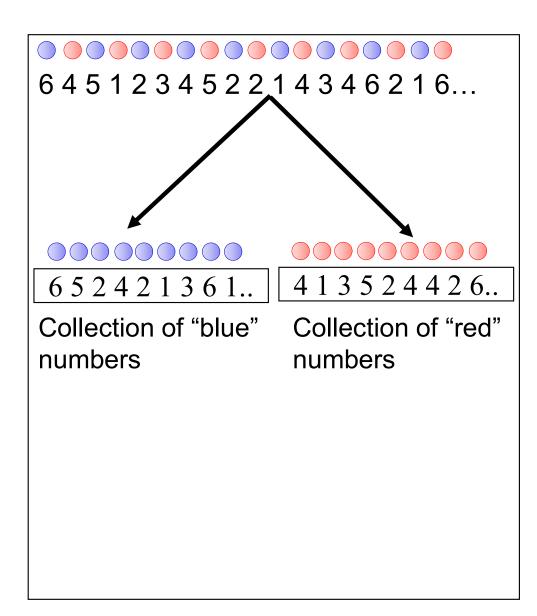
The *complete* data needed to precisely learn the model

- Ideal training data: Each number comes with information about which dice rolled it
 - As indicated by the colors, we know who rolled what number

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6...

Estimating probabilities with complete data

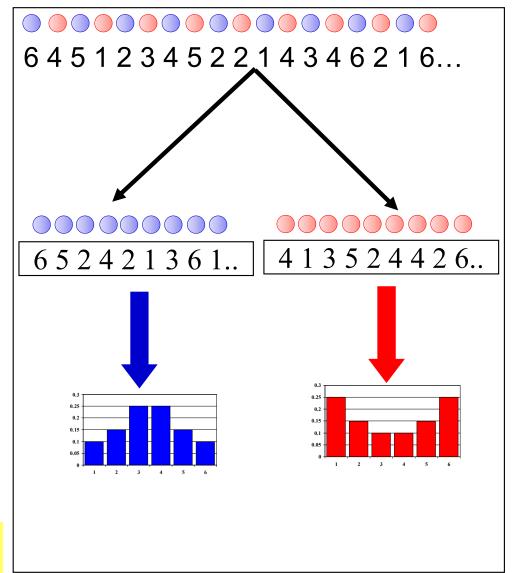
- Ideal training data: Each number comes with information about which dice rolled it
 - As indicated by the colors, we know who rolled what number
- Segregate numbers by "color"



Estimating probabilities with complete data

- Ideal training data: Each number comes with information about which dice rolled it
 - As indicated by the colors, we know who rolled what number
- Segregate numbers by "color"
- Estimate individual distributions from the separated counts

 $P(number) = \frac{\text{no. of times number was rolled}}{\text{total number of observed rolls}}$



The problem

- We are not given information about which dice rolled what number
 - Our data are *incomplete*
- What we want : $(o_1, k_1), (o_2, k_2), (o_3, k_3) \dots$
- What we have: $o_1, o_2, o_3 \dots$

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6...

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \}$,
 - estimate $P_k(o)$ the parameters of all the multinoials

$$\underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \}$,
 - estimate $P_k(o)$ the parameters of all the multinoials

$$\underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

• The probability of an individual vector:

$$P(o) = \sum_{k} P(k)P_{k}(o)$$

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \}$,
 - estimate $P_k(o)$ the parameters of all the multinoials

$$\underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

• The probability of an individual vector:

$$P(o) = \sum_{k} P(k)P_{k}(o)$$

• The maximum likelihood estimation again

$$\underset{\{P_k(o)\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log \sum_k P(k) P_k(o)$$

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \},\$
 - estimate $P_k(o)$ the parameters of all the multinoials

$$\underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{P_k(o),\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

• The probability of an individual vector:

$$P(o) = \sum_{k} P(k)P_{k}(o)$$

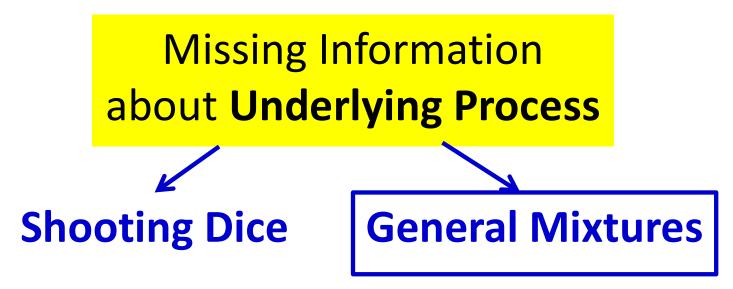
• The maximum likelihood estimation again

$$\underset{\{P_k(o)\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log \sum_k P(k) P_k(o)$$

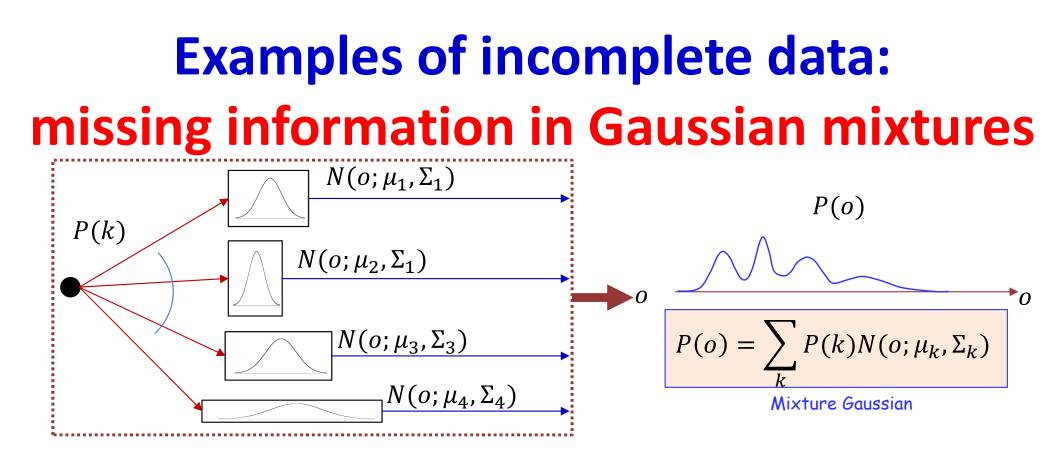
• This includes the log of a sum, which defies direct optimization

Let's Look at Missing Information

Missing Information about **Underlying Data**

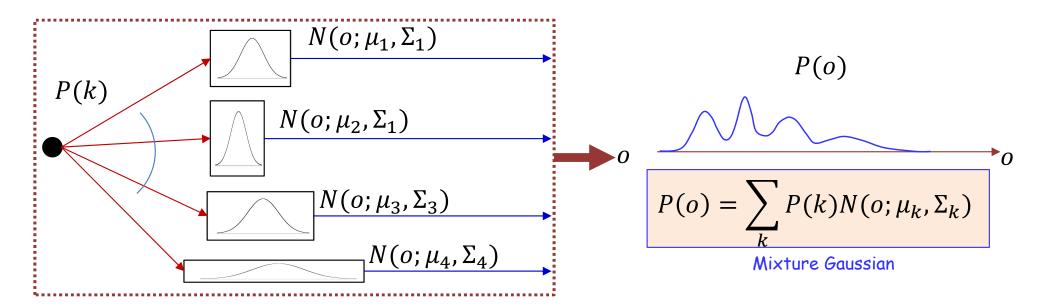


11755/18797



- The generative model characterizes the data as the outcome of a two-level process
 - In the first step the process chooses a Gaussian from a collection
 - In the second, it draws the vector *o* from the chosen Gaussian
 - The overall model is a mixture Gaussian
- Objective: Learn the parameters of all the Gaussians from training data
 - Learn the means and variances of the individual Gaussians
 - And also the probability with which each Gaussian is selected for the draw

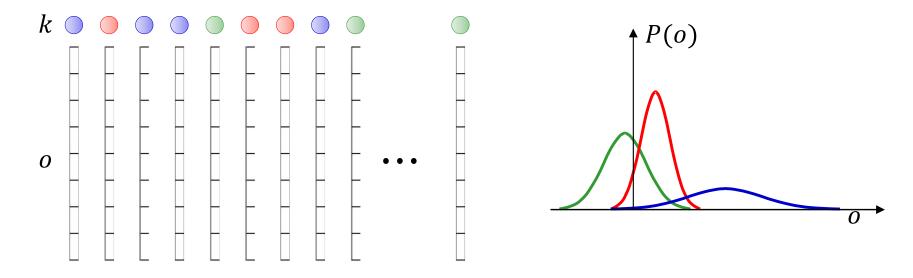
The Gaussian Mixture generative model



- Note, the process actually draws *two* variables for each observation, *k* and *o*.
- The probability of a particular draw is actually the joint probability of both variables $P(k, o) = P(k)P(o|k) = P(k)N(o; \mu_k, \Sigma_k)$
- To compute the probability of obtaining any observation o, we are *marginalizing out* the Gaussian index variable

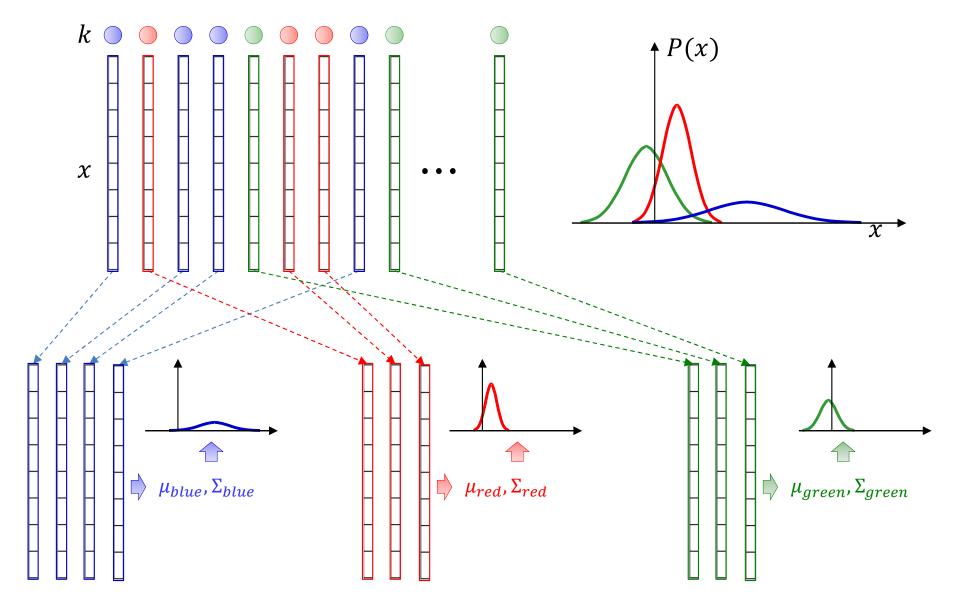
$$P(o) = \sum_{k} P(k, o) = \sum_{k} P(k)N(o; \mu_k, \Sigma_k)$$

The *complete* data needed to precisely learn the model

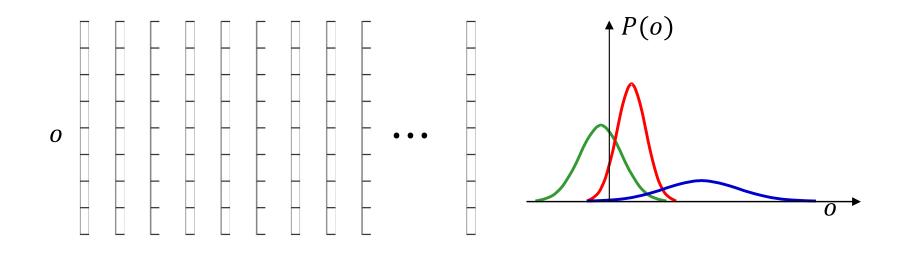


- Ideal data: Each training instance includes both the data vector *o* and the Gaussian *k* it was drawn from
 - In order to estimate the parameters of any Gaussian, you only need to segregate the training instances from that Gaussian, and compute the mean and variance from them

Learning a GMM with "complete" data



The GMM problem of incomplete data: missing information



- Problem : We are not given the actual Gaussian for each observation
 - Our data are incomplete
- What we want : $(o_1, k_1), (o_2, k_2), (o_3, k_3) \dots$
- What we have: $o_1, o_2, o_3 \dots$

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \}$,
 - estimate $\{(\mu_k, \Sigma_k), \forall k\}$ the parameters of all the Gaussians

$$\underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \}$,
 - estimate $\{(\mu_k, \Sigma_k), \forall k\}$ the parameters of all the Gaussians

$$\underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

• The probability of an individual vector:

$$P(o) = \sum_{k} P(k)N(o;\mu_k,\Sigma_k)$$

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \}$,
 - estimate $\{(\mu_k, \Sigma_k), \forall k\}$ the parameters of all the Gaussians

$$\underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

• The probability of an individual vector:

$$P(o) = \sum_{k} P(k)N(o; \mu_k, \Sigma_k)$$

• The maximum likelihood estimation again

$$\underset{\{(\mu_k,\sigma_k^2),\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log \sum_k P(k) N(o; \mu_k, \Sigma_k)$$

- The maximum likelihood estimation problem:
 - Given observed data $0 = \{o_1, o_2, o_3 ... \}$,
 - estimate $\{(\mu_k, \Sigma_k), \forall k\}$ the parameters of all the Gaussians

$$\underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{(\mu_k, \Sigma_k), \forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

• The probability of an individual vector:

$$P(o) = \sum_{k} P(k)N(o; \mu_k, \Sigma_k)$$

• The maximum likelihood estimation again

$$\underset{\{(\mu_k,\sigma_k^2),\forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log \sum_k P(k) N(o;\mu_k,\Sigma_k)$$

• This includes the log of a sum, which defies direct optimization

The general form of the problem

- The "presence" of missing data or variables requires them to be marginalized out of your probability
 - By summation or integration
- This results in a maximum likelihood estimate of the form

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{o} \log \sum_{h} P(h, o; \theta)$$

- The inner summation may also be an integral in some problems
- Explicitly introducing θ in the RHS to show that the probability is computed by a model with parameter θ which must be estimated
- The log of a sum (or integral) makes estimation challenging
 - No closed form solution
 - Need efficient iterative algorithms

Poll 2: <u>tinyurl.com/mlsp23-20231102-</u>2

- Select all that are true
 - MLE with missing data yields problems that have closedform solutions
 - There are no closed form solutions due to the integral inside the log, but if there were a sum inside the log, there would be a closed form solution
 - MLE with missing data maximizes the likelihood of the observations only
 - The likelihood of the observed data is derived from the complete data by marginalizing out the missing data

Poll 2

- Select all that are true
 - MLE with missing data yields problems that have closedform solutions
 - There are no closed form solutions due to the integral inside the log, but if there were a sum inside the log, there would be a closed form solution
 - MLE with missing data maximizes the likelihood of the observations only
 - The likelihood of the observed data is derived from the complete data by marginalizing out the missing data

The general form of the problem

• The "presence" of missing data or variables requires them to be marginalized out of your probability

Can we get an approximation to this that is more tractable? (i.e without a summation or integral within the log)

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{o} \log \sum_{h} P(h, o)$$

- The inner summation may also be an integral in some problems
- The log of a sum (or integral) makes estimation challenging
 - No closed form solution
 - Need efficient iterative algorithms

Du cummotion or integration

The variational lower bound

• We can rewrite

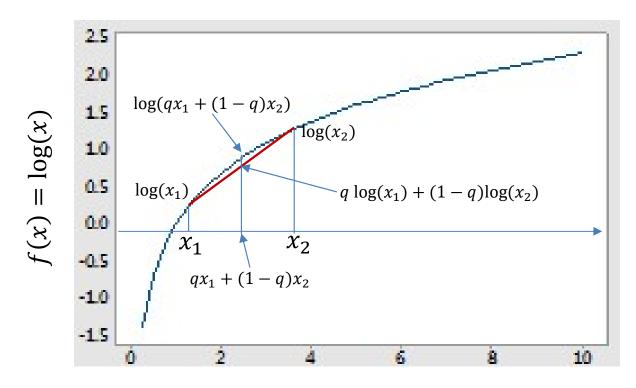
$$\log P(o) = \log \sum_{h} P(h, o) = \log \sum_{h} Q(h) \frac{P(h, o)}{Q(h)}$$

- Where Q(h) is some function such that $Q(h) \ge 0$ and $\sum_h Q(h) = 1$

- I.e. a probability distribution
- The logarithm is a concave function, therefore

$$\log \sum_{h} Q(h) \frac{P(h,o)}{Q(h)} \ge \sum_{h} Q(h) \log \frac{P(h,o)}{Q(h)}$$

The logarithm is a concave function



- For any x_1 and x_2 , for any $0 \le q \le 1$, $\log(qx_1 + (1 - q)x_2) \ge q \log(x_1) + (1 - q)\log(x_2)$
- More generally for any set of $\{x_i\}$, and any weights $\{q_i\}$ s.t. $q_i \ge 0$ and $\sum_i q_i = 1$

$$\log\left(\sum_{i} q_{i} x_{i}\right) \geq \sum_{i} q_{i} \log(x_{i})$$

The variational lower bound

By the concavity of the log function

$$\log \sum_{h} Q(h) \ \frac{P(h,o)}{Q(h)} \ge \sum_{h} Q(h) \log \frac{P(h,o)}{Q(h)}$$

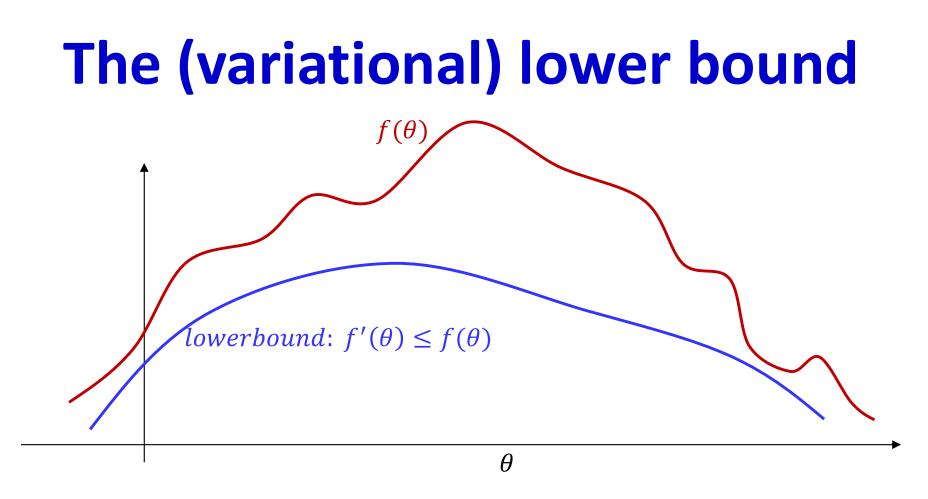
- For any $Q(h) \ge 0$ and $\sum_h Q(h) = 1$
- Note, the LHS is exactly equal to $\log P(o)$
- This is the variational lower bound on log P(o)
 Also called the Evidence Lower BOund, or ELBO

Or more explicitly

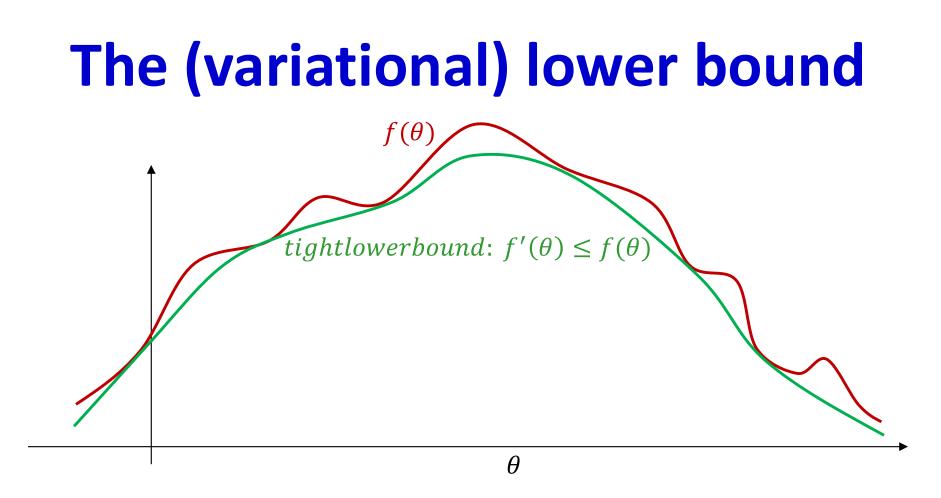
• By the concavity of the log function

$$\log P(o;\theta) \ge \sum_{h} Q(h) \log \frac{P(h,o;\theta)}{Q(h)}$$

- Explicitly showing that the probability is computed by a model with parameter $\boldsymbol{\theta}$
 - We must maximize $P(o; \theta)$ w.r.t θ
- This is the variational lower bound or ELBO on log P(o; θ)



• The lower bound is always at or below the original function



- The lower bound is always at or below the original function
- If it is a tight lower bound, the max of the lower bound can be expected to be near the max of the function

- To make the lower bound tight, we need to choose Q(h) properly

Choosing a good Q(h)

• Let
$$Q(h) = P(h|o; \theta')$$

$$\log P(o;\theta) \ge \sum_{h} P(h|o;\theta') \log \frac{P(h,o;\theta)}{P(h|o;\theta')}$$

• Let

$$J(\theta, \theta') = \sum_{h} P(h|o; \theta') \log \frac{P(h, o; \theta)}{P(h|o; \theta')}$$

 $\log P(o;\theta) \ge J(\theta,\theta')$

• And

 $\log P(o;\theta) = J(\theta,\theta)$

Choosing a good Q(h)

• Let
$$Q(h) = P(h|o; \theta')$$

$$\log P(o;\theta) \ge \sum_{h} P(h|o;\theta') \log \frac{P(h,o;\theta)}{P(h|o;\theta')}$$

• Let

$$J(\theta, \theta') = \sum_{h} P(h|o; \theta') \log \frac{P(h, o; \theta)}{P(h|o; \theta')}$$

• We get

 $\log P(o;\theta) \ge J(\theta,\theta')$

• And

$$\log P(o;\theta) = J(\theta,\theta)$$

$P(o;\theta) = J(\theta,\theta)$

$$J(\theta,\theta) = \sum_{h} P(h|o;\theta) \log \frac{P(h,o;\theta)}{P(h|o;\theta)}$$

$$=\sum_{h} P(h|o;\theta) \log P(o;\theta)$$

$$\log P(o;\theta) \sum_{h} P(h|o;\theta) = \log P(o;\theta)$$

• We have

$$J(\theta, \theta') = \sum_{h} P(h|o; \theta') \log \frac{P(h, o; \theta)}{P(h|o; \theta')}$$

• where

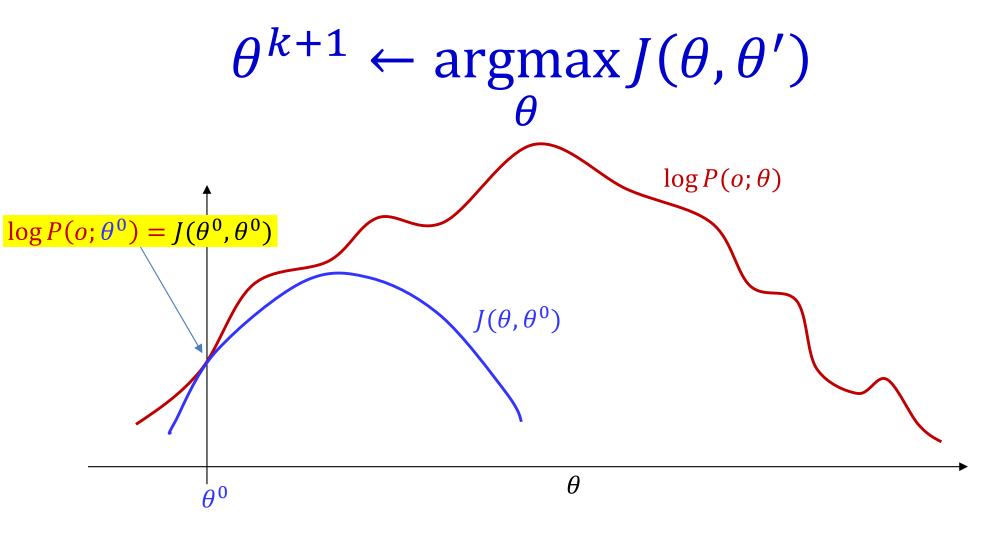
 $\log P(o;\theta) \ge J(\theta,\theta')$

• And

$$\log P(o;\theta) = J(\theta,\theta)$$

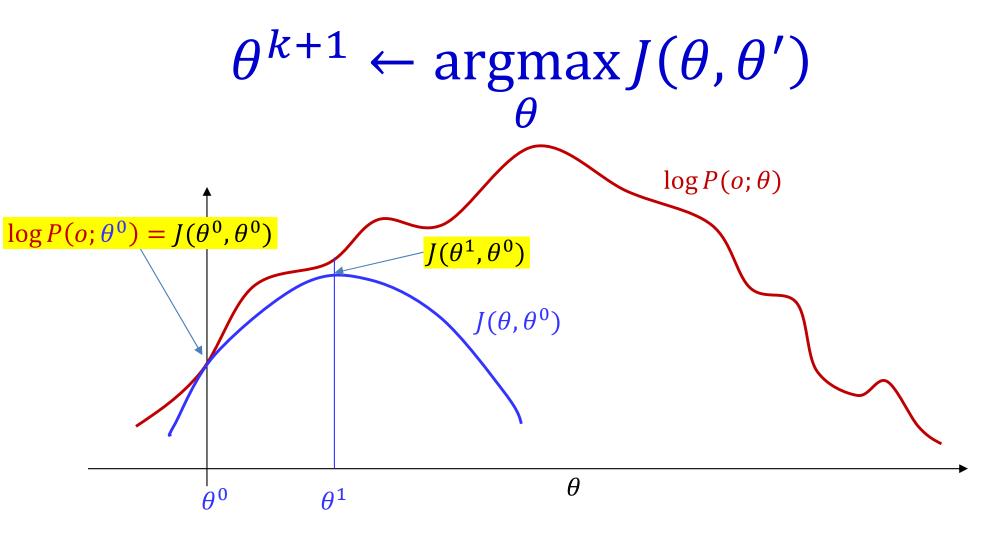
 This gives us the following iterative algorithm that guarantees nondecreasing P(o; θ) with iterations:

$$\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} J(\theta, \theta^k)$$

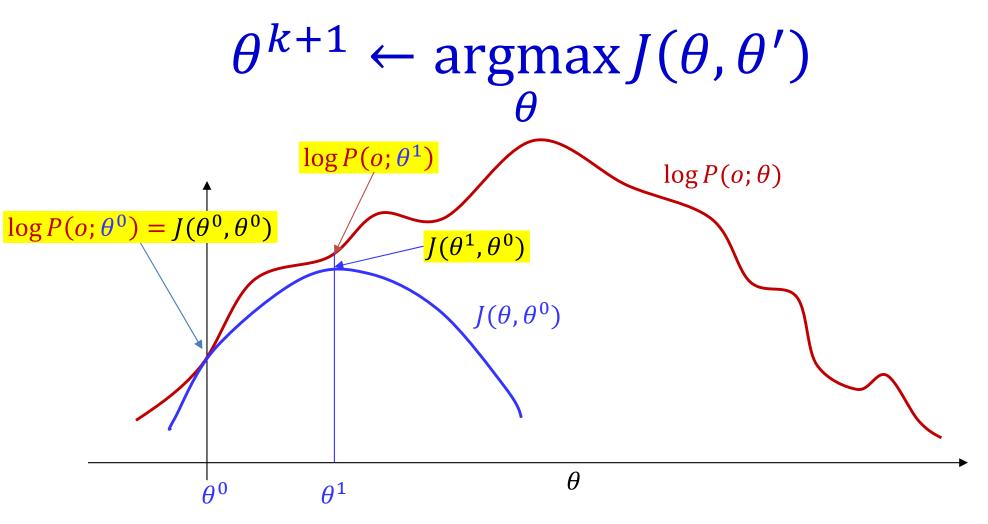


- Initialize θ^0
- Construct $J(\theta, \theta^0)$

- It touches $\log P(o; \theta)$ at θ^0 because $\log P(o; \theta^0) = J(\theta^0, \theta^0)$



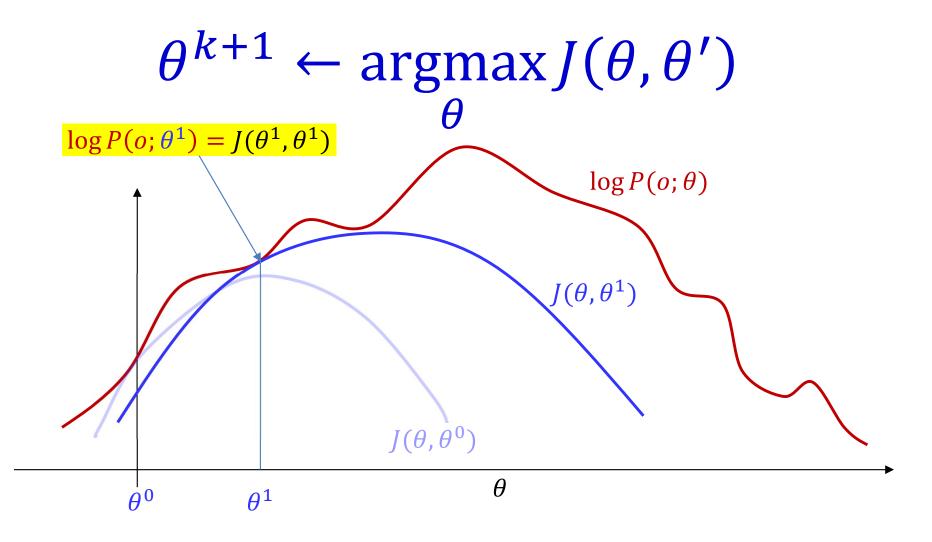
• Find $\theta^1 = \underset{\theta}{\operatorname{argmax}} J(\theta, \theta^0)$ - $J(\theta^1, \theta^0) \ge J(\theta^0, \theta^0)$ (since you're maximizing $J(\theta, \theta^0)$ w.r.t θ)



• Find $\theta^1 = \underset{\theta}{\operatorname{argmax}} J(\theta, \theta^0)$

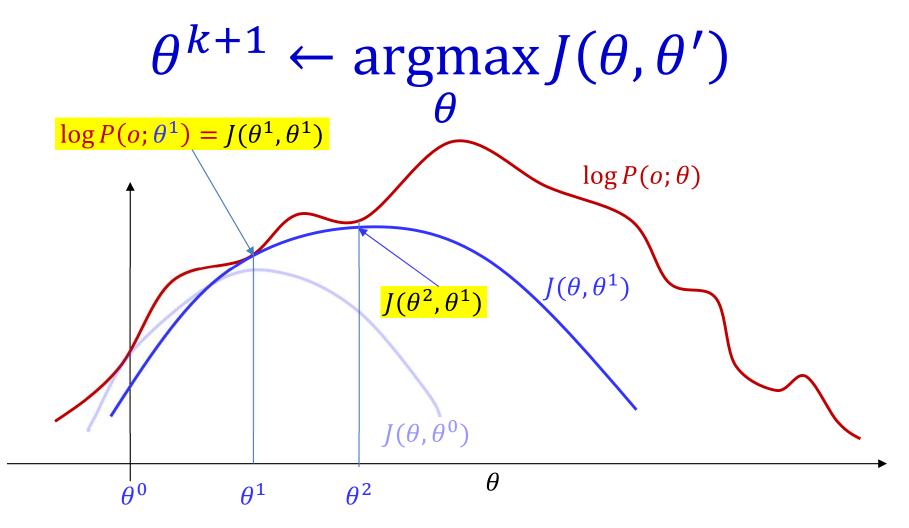
 $- J(\theta^1, \theta^0) \ge J(\theta^0, \theta^0) \text{ (since you're maximizing } J(\theta, \theta^0) \text{ w.r.t } \theta)$

- $\log P(o; \theta^1) \ge J(\theta^1, \theta^0)$
 - since $J(\theta, \theta^0)$ is a lower bound on $\log P(o; \theta)$
- So the iteration increases $\log P(o; \theta)$

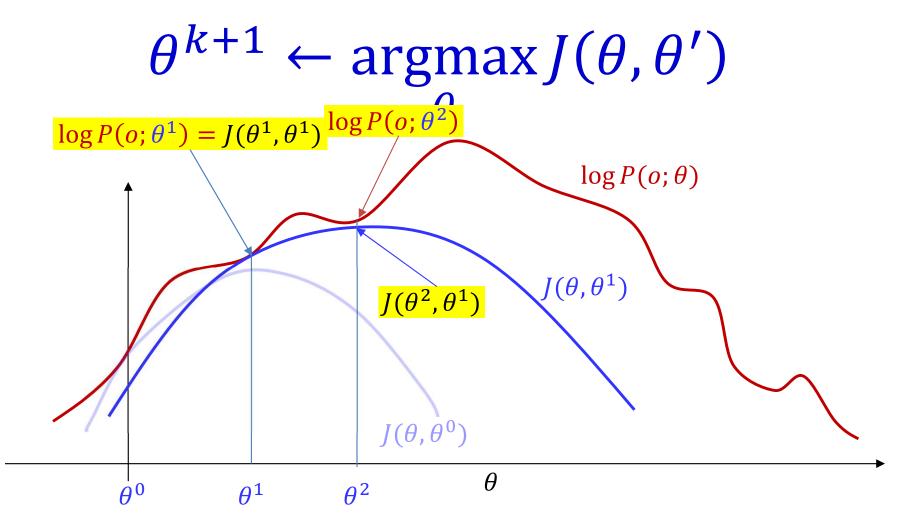


• Construct $J(\theta, \theta^1)$

- It touches $\log P(o; \theta)$ at θ^1 because $\log P(o; \theta^1) = J(\theta^1, \theta^1)$



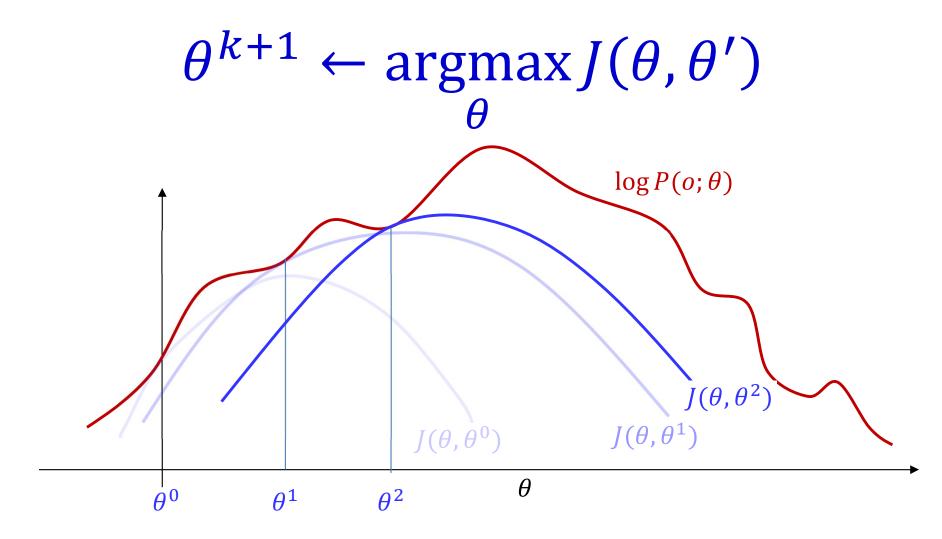
• Find $\theta^2 = \underset{\theta}{\operatorname{argmax}} J(\theta, \theta^1)$ - $J(\theta^2, \theta^1) \ge J(\theta^1, \theta^1)$ (since you're maximizing $J(\theta, \theta^1)$ w.r.t θ)



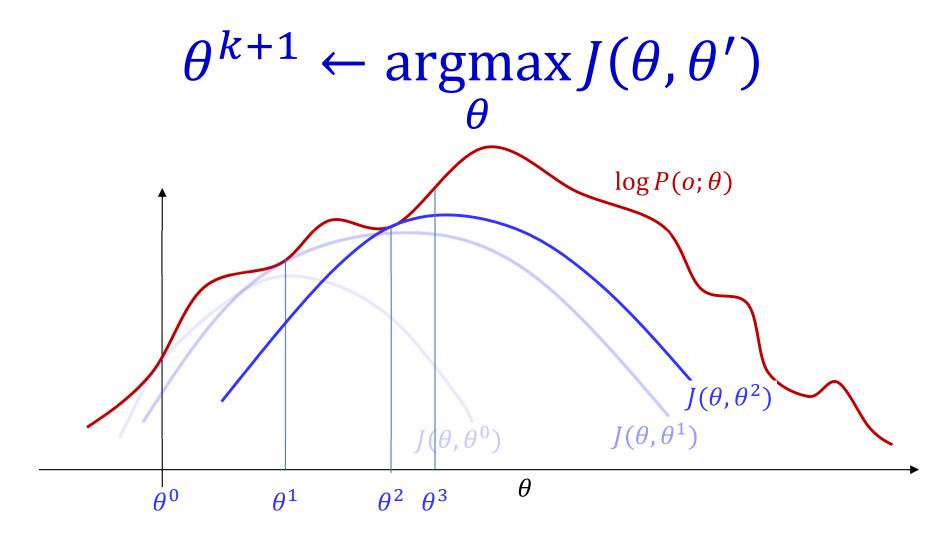
• Find $\theta^2 = \operatorname{argmax} J(\theta, \theta^1)$

 $- J(\theta^2, \theta^1) \ge J(\theta^1, \theta^1) \text{ (since you're maximizing } J(\theta, \theta^1) \text{ w.r.t } \theta)$

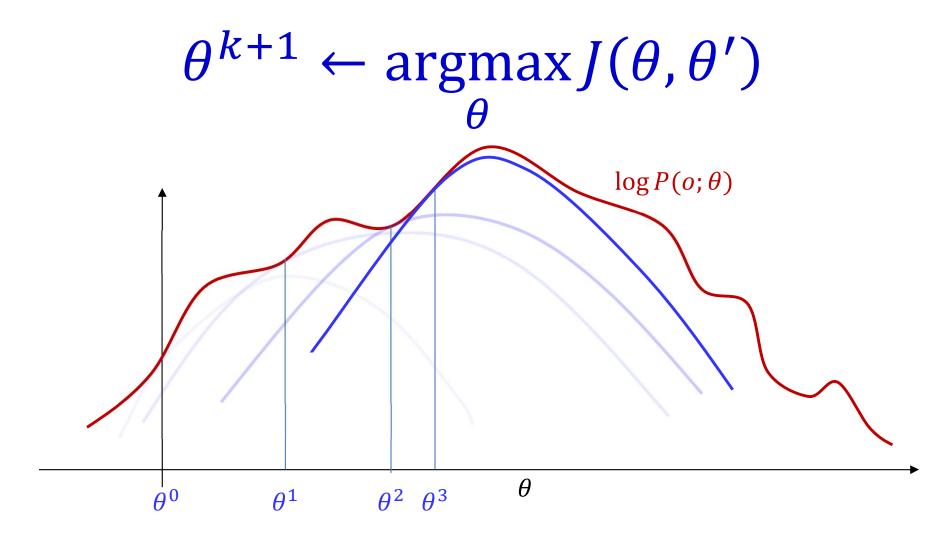
- $\log P(o; \theta^2) \ge J(\theta^2, \theta^1)$
 - Since $J(\theta, \theta^1)$ is a lower bound on $\log P(o; \theta)$
- So the iteration increases $\log P(o; \theta)$



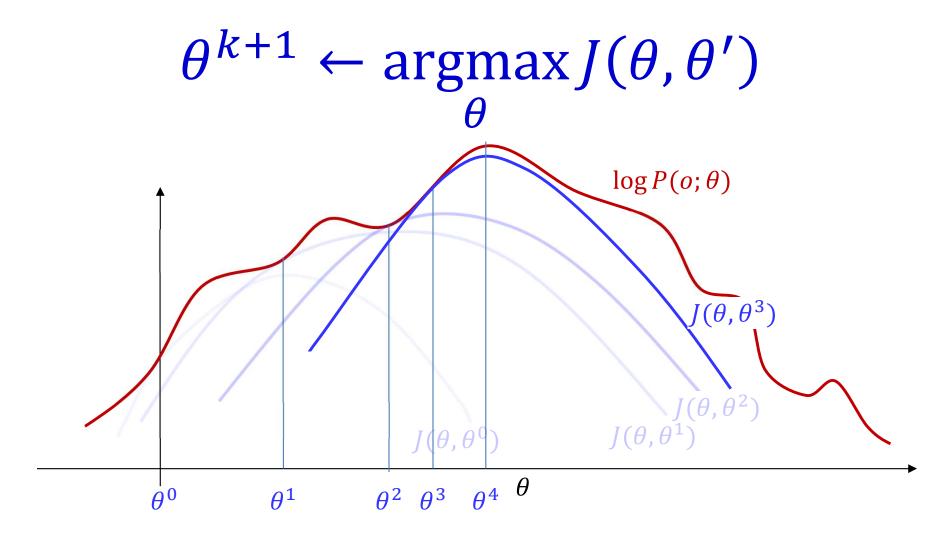
- Repeat the steps:
 - Compose $J(\theta, \theta^k)$ to "touch" $\log P(o; \theta)$ at the current estimate θ^k
 - Set $\theta^{k+1} \leftarrow \underset{\rho}{\operatorname{argmax}} J(\theta, \theta^k)$
- Each step is guaranteed to increase (or at least not decrease) $\log P(o; \theta)$
 - Stop when $\log P(o; \theta)$ stops increasing



- Repeat the steps:
 - Compose $J(\theta, \theta^k)$ to "touch" $\log P(o; \theta)$ at the current estimate θ^k
 - Set $\theta^{k+1} \leftarrow \underset{\rho}{\operatorname{argmax}} J(\theta, \theta^k)$
- Each step is guaranteed to increase (or at least not decrease) $\log P(o; \theta)$
 - Stop when $\log P(o; \theta)$ stops increasing



- Repeat the steps:
 - Compose $J(\theta, \theta^k)$ to "touch" $\log P(o; \theta)$ at the current estimate θ^k
 - Set $\theta^{k+1} \leftarrow \underset{\rho}{\operatorname{argmax}} J(\theta, \theta^k)$
- Each step is guaranteed to increase (or at least not decrease) $\log P(o; \theta)$
 - Stop when $\log P(o; \theta)$ stops increasing



- Repeat the steps:
 - Compose $J(\theta, \theta^k)$ to "touch" $\log P(o; \theta)$ at the current estimate θ^k
 - Set $\theta^{k+1} \leftarrow \underset{\rho}{\operatorname{argmax}} J(\theta, \theta^k)$
- Each step is guaranteed to increase (or at least not decrease) $\log P(o; \theta)$
 - Stop when $\log P(o; \theta)$ stops increasing

- Initialize θ^0
- k = 0
- Iterate (over k) until $\log P(0; \theta)$ converges:
 - Construct ELBO function

$$J(\theta, \theta^k) = \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log \frac{P(h, o; \theta)}{P(h|o; \theta^k)}$$

Maximization step

$$\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} J(\theta, \theta^k)$$

• Let's simplify a bit

- Initialize θ^0
- k = 0
- Iterate (over k) until $\log P(O; \theta)$ converges:
 - Construct ELBO function

$$J(\theta, \theta^k) = \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta) - \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h|o; \theta^k)$$

- Maximization step

$$\theta^{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} J(\theta, \theta^k)$$

- Initialize θ^0
- k = 0
- Iterate (over k) until $\log P(0; \theta)$ converges:
 - Construct ELBO function

$$J(\theta, \theta^k) = \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta) - \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h|o; \theta^k)$$

- Maximization step

Can be ignored for maximization

Not a function of θ

$$\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} J(\theta, \theta^k)$$

- Initialize θ^0
- k = 0
- Iterate (over k) until $\log P(O; \theta)$ converges:
 - Expectation Step:

Compute $P(h|o; \theta^k)$ for all $o \in O$ for all h

Maximization step

$$\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} \sum_{o \in O} \sum_{h} P(h|o; \theta^{k}) \log P(h, o; \theta)$$

Expectation Maximization for Maximum Likelihood Estimation

• Objective: Estimate

$$\theta^* = \operatorname*{argmax}_{\theta} \sum_{o \in O} \log \sum_{h} P(h, o; \theta)$$

• Solution: Iteratively perform the following optimization instead

$$\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} \sum_{o \in O} \sum_{h} P(h|o; \theta^{k}) \log P(h, o; \theta)$$

- This maximizes an Empirical Lower Bound (ELBO) and guarantees increasing log likelihood with iterations
 - Giving you a local maximum log likelihood estimate for θ^*

Expectation Maximization: In summary

• Construct an *Empirical Lower Bound* function $J(\theta, \theta^k)$

$$= \sum_{o \in O} \sum_{h} P(h|o; \theta^{k}) \log P(h, o; \theta)$$
$$- \sum_{o \in O} \sum_{h} P(h|o; \theta^{k}) \log P(h|o; \theta^{k})$$

• Iteratively maximize the ELBO fucntion

 $J(\theta, \theta^k)$

$$\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} J(\theta, \theta^k)$$

- Initialize θ^0
- k = 0
- Iterate (over k) until $\sum_{o \in O} \log P(o; \theta)$ converges:
 - Expectation Step:

Compute $P(h|o; \theta^k)$ for all $o \in O$ for all h

Maximization step

$$\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta)$$

Poll 3: <u>tinyurl.com/mlsp23-20231102-</u>3

- EM iteratively estimates a tight "variational lower bound" to the likelihood function and maximizes it with respect to the parameters
 - True
 - False
- We could alternately compute a tight upper bound to the likelihood and minimize it
 - True
 - False

Poll 3:

• EM iteratively estimates a tight "variational lower bound" to the likelihood function and maximizes it with respect to the parameters

- True

- False
- We could alternately compute a tight upper bound to the likelihood and minimize it
 - True
 - False

That's so much math, but what does it really do?

- What does EM practically do when we have missing data?
 - What is the intuition behind how it resolves the problem?
- Next class...