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Estimating distribution, an example: 
Multinomials

• A dice roller rolls dice and you plot the histogram of outcomes
– Shown to the right

• The distribution is a multinomial
– More precisely, a category distribution
– Parameters to be learned:  ଵ ଶ ଷ ସ ହ ଺

• Estimate the distribution
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Estimating distributions: An example

• The left figure shows the histogram of a collection of 
observations

• We decide to model the distribution as Gaussian
– Parameters:  Mean and variance 

• Estimate the parameters
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Agenda

• Generative Models
• Fitting models to data
• Where’d the closed forms go?
• Dealing with missing information
• How expectation maximization solves all our 

problems
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The story of generative models

• What are generative models
• How to estimate them

– Expectation maximization
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What is a generative model

• A model for the probability distribution of a data 
– E.g. a multinomial, Gaussian etc.

• Computational equivalent: a model that can be used to “generate” 
data with a distribution similar to the given data 
– Typical setting: a box that takes in random seeds and outputs random 

samples like 

– Question: how do we generate the random seeds…

magic box

seed
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Its turtles all the way down (kinda)…

7



Some “simple” generative models
• The multinomial PMF

𝑃(𝑥 = 𝑣) ≡ 𝑃(𝑣)

– For discrete data
• 𝑣 belongs to a discrete set

– Can be expressed as a table of probabilities if 
the set of possible vs is finite

– Else, requires a parametric form, e.g. Poisson

𝑃 𝑥 = 𝑘 =
𝜆௞𝑒ିఒ

𝑘!
  𝑓𝑜𝑟 𝑘 ≥ 0

• 𝜆 is the Poisson parameter

• The Gaussian PDF
𝑃 𝑥 = 𝑣

=
1

2𝜋 Σ
஽ exp −0.5(𝑥 − 𝜇)்Σିଵ(𝑥 − 𝜇)

– For continuous-valued data
– 𝜇 is the mean of the distribution
– Σ is the Covariance matrix
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Learning a generative model for data

• You are given some set of observed data .

• You choose a model for the distribution of 
– are the parameters of the model

• Estimate the theta such that best “fits” the 
observations 
– Hoping it will also represent data outside the training set.
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An example: Multinomials

• A dice roller rolls dice and you plot the histogram of outcomes
– Shown to right

• The distribution is a multinomial
– Parameters to be learned:  𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ, 𝑝ହ, 𝑝଺

• Which of the two multinomial PDFs shown to the right is more likely to be the PDF 
for the dice?

– Why?
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An example

• The left figure shows the histogram of a collection of observations
• We decide to model the distribution as Gaussian

– Parameters:  Mean and variance ଶ

• Which of the three Gaussians shown in the right figure is most likely 
to be the actual PDF of the RV?
– Why?
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Defining “Best Fit”: Maximum likelihood
• The data are generated by draws from the distribution

– I.e. the generating process draws from the distribution

• Assumption: The world is a boring place
– The data you have observed are very typical of the process

• Consequent assumption: The distribution has a high probability of 
generating the observed data
– Not necessarily true

• Select the distribution that has the highest probability of generating 
the data
– Should assign lower probability to less frequent observations and vice 

versa
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Maximum Likelihood Estimation: 
Multinomial

• Probability of generating (n1, n2, n3, n4, n5, n6)

• Find p1,p2,p3,p4,p5,p6 so that the above is maximized
• Alternately maximize

– Log() is a monotonic function
– argmaxx f(x) =  argmaxx log(f(x))

• Solving for the probabilities gives us
– Requires constrained optimization to 

ensure probabilities sum to 1
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Maximum Likelihood: Gaussian
 Given a collection of observations (X1, X2,…), 

estimate mean m and covariance Q
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Maximum Likelihood: Gaussian
 Given a collection of observations (X1, X2,…), 

estimate mean m and covariance Q

• Maximizing w.r.t m and Q gives us
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Laplacian

• Parameters: Median m, scale b (b > 0)
– m is also the mean, but is better viewed as the median
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Maximum Likelihood: Laplacian
 Given a collection of observations (x1, x2,…), estimate 

mean m and scale b

• Maximizing w.r.t m and b gives us
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• Parameters are as
– Determine mode and curvature

• Defined only for probability vectors
– X = [x1 x2 .. xK], Si xi = 1,  xi >= 0 for all i
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Maximum Likelihood: Dirichlet
 Given a collection of observations (X1, X2,…), 

estimate a

• No closed form solution for as.
– Needs gradient ascent

• Several distributions have this property: the ML 
estimate of their parameters have no closed form 
solution
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Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௫∈௑

– ௜
௡೔

ே
( is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑
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Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௫∈௑

– ௜
௡೔

ே
( is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑

Can be grouped by value (every instance of has the same probability)

This probability is a Gaussian

23



Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram
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Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}
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Poll 1:  tinyurl.com/mlsp23-20231102-1

• The true model that generates any dataset is always 
the most likely model (i.e. the one with the highest 
probability to generate the dataset
– True
– False

• Maximum likelihood estimation reduces to simple 
counting-like solutions in many cases
– True
– False
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Poll 1

• The true model that generates any dataset is always 
the most likely model (i.e. the one with the highest 
probability to generate the dataset
– True
– False

• Maximum likelihood estimation reduces to simple 
counting-like solutions in many cases
– True
– False
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But now for something 
somewhat different

• Caller rolls a dice and flips a coin
• He calls out the number rolled if the coin shows head
• Otherwise, he calls the number+1
• Can we estimate p(heads) and p(number) for the dice from a 

collection of outputs

28



But now for something somewhat 
different

• Roller rolls two dice
• He calls out the sum
• Determine P(dice) from a collection of outputs

29



Your friendly neighborhood gamblers

• Two gamblers shoot dice in a closed room
– The dice are differently loaded for the two of them

• A crazy crier randomly select one of the them and calls out his number
– But doesn’t mention whose number he chose

• You only see the numbers
– But do not know which of them rolled the number

• How to determine the probability distributions of the two dice?
11755/18797 30
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Your friendly Gaussian gambler…

• Your friendly neighborhood Gaussian gambler has a collection of Gaussian 
generators

• In each trial he randomly selects a Gaussian, and draws a number from it
• He calls out that number
• From only the numbers he calls out, can you estimate all of the Gaussians?

31
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The challenge

• In each of these problems
there was some information
missing

• If this information were 
available, estimation would’ve
been trivial
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Let’s Look at Missing Information

Missing Information 
about Underlying Data
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Let’s Look at Missing Information

Missing Information 
about Underlying Data
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Examples of incomplete data: 
missing data

• Objective:  Estimate a Gaussian distribution from a collection of 
vectors

• Problem:  Several of the vector components are missing
• Must estimate the mean and covariance of the Gaussian with these 

incomplete data
– What would be a good way of doing this?

Blacked-out components are missing from data

?
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Maximum likelihood estimation with 
incomplete data

• Original problem:  Estimate the Gaussian given a collection of 
complete vectors

ఓ,ஊ

ఓ,ஊ
௫∈௑

• Unfortunately,  many components of each vector are missing in our data

Blacked-out components are missing from data

?

where P() is a Gaussian

where X is the entire data
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Maximum likelihood estimation with 
incomplete data

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Maximum likelihood estimation with 
incomplete data

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ
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Maximum likelihood estimation with 
incomplete data

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing) 

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Maximum likelihood estimation with 
incomplete data

• Maximum likelihood estimation: Maximize the likelihood of the observed data
– That is all we really have

ఓ,ஊ ఓ,ஊ
௢∈ை

• Unfortunately, the Gaussian is defined on the complete vector :
– 𝑃 𝑥 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥; 𝜇, Σ)

– In order to compute 𝑃 𝑜 we must derive it from 𝑃 𝑥

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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The log likelihood of incomplete data

• The probability of any vector with observed and missing parts 
and 

• Compute the probability of the observed components by 
marginalizing out the missing components

• The log probability of the entire observed training data:
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Maximum likelihood estimation with 
incomplete data

• Maximum likelihood estimation: Maximize the likelihood of the observed data

ఓ,ஊ ఓ,ஊ

ஶ

ିஶ௢∈ை

• This requires the maximization of the log of an integral!
– No closed form
– Challenging on a good day,  impossible on a bad one

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Let’s Look at Missing Information

Missing Information 
about Underlying Data
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Let’s Look at Missing Information

Missing Information 
about Underlying Data
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Our dice rolling gamblers

• Two persons shoot loaded dice repeatedly
– The dice are differently loaded for the two of them

• We observe the series of outcomes for both persons

• How to determine the probability distributions of the two dice?

11755/18797 45
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Examples of incomplete data: 
missing information in multinomial mixtures

• The generative model characterizes the data as the outcome of a two-level process
– In the first step the process chooses a Multinomial from a collection
– In the second, it draws the observation 𝑜 from the chosen multinomial
– The overall model is a mixture Multinomial

• Objective: Learn the parameters of all the multinomials from training data
– The probabilities of the individual outcomes
– And also the probability with which each multinomial is selected for the draw

௞  
௞

Mixture Multinomial
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• Note, the process actually draws two variables for each observation, 𝑘 and 𝑜.

• The probability of a particular draw is actually the joint probability of both variables
𝑃 𝑘, 𝑜 = 𝑃 𝑘 𝑃 𝑜 𝑘 = 𝑃(𝑘)𝑃௞ (𝑜)

• To compute the probability of obtaining any observation o, we are marginalizing out the multinomial 
index variable

𝑃 𝑜 = ෍ 𝑃(𝑘, 𝑜)

௞

= ෍ 𝑃(𝑘)𝑃௞ (𝑜)

௞
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Examples of incomplete data: 
missing information in multinomial mixtures
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• Ideal training data: Each number
comes with information about 
which dice rolled it
– As indicated by the colors, we 

know who rolled what number
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Estimating probabilities with complete data
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Estimating probabilities with complete data

rolls observed ofnumber  total

rolled number was  timesof no.
)( numberP
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• Ideal training data: Each number
comes with information about 
which dice rolled it
– As indicated by the colors, we 

know who rolled what number

• Segregate numbers by “color”

• Estimate individual 
distributions from the 
separated counts



• We are not given information 
about which dice rolled what 
number
– Our data are incomplete

• What we want :  

• What we have:  
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ML estimation with only observed data
• The maximum likelihood estimation problem: 

– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … }, 
– estimate 𝑃௞(𝑜) – the parameters of all the multinoials

௉ೖ(௢),∀௞ ௉ೖ(௢),∀௞
௢∈ை

• The probability of an individual vector:

௞ ௞
ଶ  

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ  

௞௢∈ை

• This includes the log of a sum, which defies direct optimization
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• The maximum likelihood estimation problem: 
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … }, 
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ML estimation with only observed data
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• The maximum likelihood estimation problem: 
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … }, 
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ML estimation with only observed data
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• The maximum likelihood estimation problem: 
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … }, 
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ML estimation with only observed data
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Let’s Look at Missing Information

Missing Information 
about Underlying Data
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Examples of incomplete data: 
missing information in Gaussian mixtures

• The generative model characterizes the data as the outcome of a two-level process
– In the first step the process chooses a Gaussian from a collection
– In the second, it draws the vector 𝑜 from the chosen Gaussian
– The overall model is a mixture Gaussian

• Objective: Learn the parameters of all the Gaussians from training data
– Learn the means and variances of the individual Gaussians

• And also the probability with which each Gaussian is selected for the draw

57

௞ ௞  
௞
Mixture Gaussian

ଵ ଵ

ଶ ଵ

ଷ ଷ

ସ ସ



The Gaussian Mixture generative model

• Note, the process actually draws two variables for each observation, 𝑘 and 𝑜.

• The probability of a particular draw is actually the joint probability of both variables
𝑃 𝑘, 𝑜 = 𝑃 𝑘 𝑃 𝑜 𝑘 = 𝑃(𝑘)𝑁(𝑜; 𝜇௞, Σ௞)

• To compute the probability of obtaining any observation o, we are marginalizing out the Gaussian 
index variable

𝑃 𝑜 = ෍ 𝑃(𝑘, 𝑜)

௞

= ෍ 𝑃(𝑘)𝑁(𝑜; 𝜇௞, Σ௞) 
௞
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The complete data needed to 
precisely learn the model

• Ideal data:  Each training instance includes both the 
data vector and the Gaussian it was drawn from
– In order to estimate the parameters of any Gaussian, you 

only need to segregate the training instances from that 
Gaussian, and compute the mean and variance from them 
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Learning a GMM with “complete” data

𝜇௕௟௨௘, Σ௕௟௨௘ 𝜇௥௘ௗ, Σ௥௘ௗ 𝜇௚௥௘௘௡, Σ௚௥௘௘௡
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The GMM problem of incomplete data: 
missing information

• Problem : We are not given the actual Gaussian for each 
observation
– Our data are incomplete

• What we want :  
• What we have:  
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ML estimation with only observed data
• The maximum likelihood estimation problem: 

– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … }, 
– estimate 𝜇௞, Σ௞ , ∀𝑘 – the parameters of all the Gaussians 

ఓೖ,ஊೖ ,∀௞ ఓೖ,ஊೖ ,∀௞
௢∈ை

• The probability of an individual vector:

௞ ௞
ଶ  

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ  

௞௢∈ை

• This includes the log of a sum, which defies direct optimization
62



• The maximum likelihood estimation problem: 
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … }, 
– estimate 𝜇௞, Σ௞ , ∀𝑘 – the parameters of all the Gaussians 

ఓೖ,ஊೖ ,∀௞ ఓೖ,ஊೖ ,∀௞
௢∈ை

• The probability of an individual vector:

௞ ௞  
௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ  

௞௢∈ை
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ML estimation with only observed data
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• The maximum likelihood estimation problem: 
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The general form of the problem 
• The “presence” of missing data or variables requires them to be 

marginalized out of your probability
– By summation or integration

• This results in a maximum likelihood estimate of the form

ఏ
௛௢

– The inner summation may also be an integral in some problems
– Explicitly introducing in the RHS to show that the probability is computed by 

a model with parameter which must be estimated

• The log of a sum (or integral) makes estimation challenging
– No closed form solution
– Need efficient iterative algorithms
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Poll 2: tinyurl.com/mlsp23-20231102-2

• Select all that are true
– MLE with missing data yields problems that have closed-

form solutions

– There are no closed form solutions due to the integral 
inside the log, but if there were a sum inside the log, there 
would be a closed form solution

– MLE with missing data maximizes the likelihood of  the 
observations only

– The likelihood of the observed data is derived from the 
complete data by marginalizing out the missing data
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Poll 2

• Select all that are true
– MLE with missing data yields problems that have closed-

form solutions

– There are no closed form solutions due to the integral 
inside the log, but if there were a sum inside the log, there 
would be a closed form solution

– MLE with missing data maximizes the likelihood of  the 
observations only

– The likelihood of the observed data is derived from the 
complete data by marginalizing out the missing data
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The general form of the problem 
• The “presence” of missing data or variables requires them to be 

marginalized out of your probability
– By summation or integration

• This results in a maximum likelihood estimate of the form

ఏ
௛௢

– The inner summation may also be an integral in some problems

• The log of a sum (or integral) makes estimation challenging
– No closed form solution
– Need efficient iterative algorithms

Can we get an approximation to this that is more tractable? 
(i.e without a summation or integral within the log)
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The variational lower bound

• We can rewrite

– Where is some function such that and ௛

• I.e. a probability distribution 

• The logarithm is a concave function, therefore

௛ ௛
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The logarithm is a concave function

• For any 𝑥ଵand 𝑥ଶ, for any 0 ≤ 𝑞 ≤ 1, 
log 𝑞𝑥ଵ + 1 − 𝑞 𝑥ଶ ≥ 𝑞 log (𝑥ଵ) + (1 − 𝑞)log (𝑥ଶ)

• More generally for any set of {𝑥௜},  and any weights {𝑞௜} s.t. 𝑞௜ ≥ 0 and ∑ 𝑞௜௜ = 1

log ෍ 𝑞௜𝑥௜

௜

≥ ෍ 𝑞௜log (𝑥௜)

௜

𝑓
𝑥

=
lo

g
 (𝑥

)

ଵ ଶ

log (𝑥ଵ)

log (𝑞𝑥ଵ + (1 − 𝑞)𝑥ଶ)

log (𝑥ଶ)

𝑞𝑥ଵ + (1 − 𝑞)𝑥ଶ

𝑞 log (𝑥ଵ) + (1 − 𝑞)log (𝑥ଶ)
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The variational lower bound

• By the concavity of the log function

– For any and 
– Note, the LHS is exactly equal to 

• This is the variational lower bound on 
– Also called the Evidence Lower BOund, or ELBO
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Or more explicitly
• By the concavity of the log function

– Explicitly showing that the probability is computed by 
a model with parameter 

• We must maximize w.r.t 

• This is the variational lower bound or ELBO on 
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The (variational) lower bound

• The lower bound is always at or below the original function

• If it is a tight lower bound, the max of the lower bound can 
be expected to be near the max of the function

ᇱ

74



The (variational) lower bound

• The lower bound is always at or below the original function

• If it is a tight lower bound, the max of the lower bound can be 
expected to be near the max of the function
– To make the lower bound tight, we need to choose properly

ᇱ
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Choosing a good 
• Let ᇱ

ᇱ  
ᇱ  

௛

• Let

ᇱ ᇱ
ᇱ

௛

• We get
ᇱ

• And
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Choosing a good 
• Let ᇱ

ᇱ  
ᇱ  

௛

• Let

ᇱ ᇱ
ᇱ

௛

• We get
ᇱ

• And
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Expectation Maximization
• We have

• where

• And

• This gives us the following iterative algorithm that guarantees non-
decreasing with iterations:
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• Initialize 
• Construct 

– It touches at because 

଴

଴

଴ ଴ ଴
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• Find ଵ

ఏ

଴

– ଵ ଴ ଴ ଴ (since you’re maximizing ଴ w.r.t )

• ଵ ଵ ଴ (since ଴ is a lower bound on )
• So the iteration increases 

଴

଴

଴ ଴ ଴

ଵ

ଵ ଴
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• Find ଵ

ఏ

଴

– ଵ ଴ ଴ ଴ (since you’re maximizing ଴ w.r.t )

• ଵ ଵ ଴

– since ଴ is a lower bound on 

• So the iteration increases 

଴

଴

଴ ଴ ଴

ଵ

ଵ ଴

ଵ
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• Construct 
– It touches at because 

– s

଴ ଵ

଴

ଵ

ଵ ଵ ଵ
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• Find ଶ

ఏ

ଵ

– 𝐽 𝜃ଶ, 𝜃ଵ ≥ 𝐽 𝜃ଵ, 𝜃ଵ (since you’re maximizing 𝐽 𝜃, 𝜃ଵ  w.r.t 𝜃)

• ଵ ଵ ଴ (since ଴ is a lower bound on )
• So the iteration increases 

଴ ଵ

଴

ଵ

ଵ ଵ ଵ

ଶ

ଶ ଵ
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• Find ଶ

ఏ

ଵ

– 𝐽 𝜃ଶ, 𝜃ଵ ≥ 𝐽 𝜃ଵ, 𝜃ଵ (since you’re maximizing 𝐽 𝜃, 𝜃ଵ  w.r.t 𝜃)

• ଶ ଶ ଵ

– Since 𝐽 𝜃, 𝜃ଵ  is a lower bound on log 𝑃(𝑜; 𝜃)

• So the iteration increases 

଴ ଵ

଴

ଵ

ଵ ଵ ଵ

ଶ

ଶ ଵ

ଶ
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• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing

଴ ଵ

଴ ଵ

ଶ

ଶ
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• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing

଴ ଵ ଶ ଷ
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• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing

଴ ଵ

଴ ଵ

ଶ

ଶ

ଷ ସ

ଷ
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Expectation Maximization

• Initialize 
•
• Iterate (over ) until converges:

– Construct ELBO function

– Maximization step

• Let’s simplify a bit

90



Expectation Maximization

• Initialize 

•

• Iterate (over ) until converges:
– Construct ELBO function

௞ ௞

௛௢∈ை

௞ ௞

௛௢∈ை

– Maximization step
௞ାଵ

ఏ

௞
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Expectation Maximization

• Initialize 

•

• Iterate (over ) until converges:
– Construct ELBO function

௞ ௞

௛௢∈ை

௞ ௞

௛௢∈ை

– Maximization step
௞ାଵ

ఏ

௞

Not a function of 

Can be ignored for maximization

92



Expectation Maximization

• Initialize 
•
• Iterate (over ) until converges:

– Expectation Step:  
Compute for all for all 

– Maximization step

93



Expectation Maximization for 
Maximum Likelihood Estimation

• Objective: Estimate

• Solution: Iteratively perform the following optimization instead

• This maximizes an Empirical Lower Bound (ELBO) and guarantees 
increasing log likelihood with iterations
– Giving you a local maximum log likelihood estimate for ∗
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Expectation Maximization: In 
summary

• Construct an Empirical Lower Bound function 

• Iteratively maximize the ELBO fucntion
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Expectation Maximization

• Initialize 

•

• Iterate (over ) until converges:
– Expectation Step:  

Compute for all for all 

– Maximization step
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Poll 3: tinyurl.com/mlsp23-20231102-3

• EM iteratively estimates a tight “variational lower 
bound” to the likelihood function and maximizes it 
with respect to the parameters
– True
– False

• We could alternately compute a tight upper bound to 
the likelihood and minimize it
– True
– False
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Poll 3:

• EM iteratively estimates a tight “variational lower 
bound” to the likelihood function and maximizes it 
with respect to the parameters
– True
– False

• We could alternately compute a tight upper bound to 
the likelihood and minimize it
– True
– False
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That’s so much math, but what does 
it really do?

• What does EM practically do when we have 
missing data?
– What is the intuition behind how it resolves the 

problem?

• Next class…
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