
Linear Classifiers:
SVM

1

Classification

• Given a bunch of +ve and –ve training instances
– Find a rule that correctly assigns a new test instance

to one of the two classes

2

Each dot represents a feature
vector of one training instance

Blue: positive class,
Red: -ve class

Linear Classifier

• Initially assume that the classes are separable by a hyperplane
– A linear classifier

• Also that the training data are perfectly separable by the hyperplane
• We will fix these assumptions later

3

Each dot represents a feature
vector of one training instance

Blue: positive class,
Red: -ve class

The equation for a hyperplane

• is the equation representing the
set of all vectors that are orthogonal to

4

்

ଷ

ଶ
ଵ

The equation for a hyperplane

• is the equation representing plane that is
orthogonal to and a distance from origin

– The set of all vectors that are a distance ௕

ௐ
from the blue plane

5

்

ଷ

ଶ
ଵ

்

𝑏

𝑊

The equation for a hyperplane

• On the red plane any

•
೅

మ 6

ଷ

ଶ
ଵ

𝑏

𝑊

Trivial proof:

𝑝

Any vector that is a distance 𝑑 from
the blue plane can be written as

𝑋 = 𝑋௣ + 𝑑
𝑊

𝑊
𝑋௣ is the projection of the vector
on the blue plane

ௐ

ௐ
is a unit vector in the direction of 𝑊

Distance from a hyperplane

• The distance of any ௧௘௦௧ from the plane
் is ௐ೅௑೟೐ೞ೟ି௕

ௐ

• This can be positive (in the direction of) or negative (opposite to)
7

ଷ

ଶ
ଵ

௧௘௦௧

௣௟௔௡௘

𝑑
𝑊

𝑊 ௧௘௦௧ ௣௟௔௡௘

௧௘௦௧ଶ

௣௟௔௡௘ଶ

−𝑑
𝑊

𝑊

௧௘௦௧ ௣௟௔௡௘ଶ

Poll 1

• The plane WT X – b = 0 is the equation of a
plane orthongal to W and a distance b from
the origin
– True
– False

8

Poll 1

• The plane WT X – b = 0 is the equation of a
plane orthongal to W and a distance b from
the origin
– True
– False

9

Sign of distance from hyperplane

• The sign of signifies which side of
the plane the point is on

10

ଷ

ଶ
ଵ

௧௘௦௧

௣௟௔௡௘

𝑑
𝑊

𝑊

்
௧௘௦௧

௧௘௦௧ଶ

௣௟௔௡௘ଶ

−𝑑
𝑊

𝑊

்
௧௘௦௧ଶ

Linear Classifier

• The plane is a linear classifier
– The class is given by

11

ଷ

ଶ
ଵ

௧௘௦௧

௣௟௔௡௘

𝑑
𝑊

𝑊

்
௧௘௦௧

௧௘௦

௣௟௔௡௘ଶ

−𝑑
𝑊

𝑊

்
௧௘௦௧ଶ

Linearly separable data

• Data where the two classes are separated by a hyperplane
– And classification can be performed by ்

௧௘௦௧ for
any separating hyperplane

12

ଷ

ଶ
ଵ

2D illustration, linearly separable data

• Classes are linearly separable
• Dots represent “training” instances
• Training problem: Given these training instances find a separating hyperplane

13

The separating hyperplane

• Problem: Given these training instances find a separating
hyperplane

• Many ways of finding this hyperplane
– Any number of solution algorithms are possible

14

Enter: Support Vector Machines

• Find a classifier that is maximally distant from
the closest instances from either class

15

A Better Approach

• Any linear classifier has some closest instances
• These instances will be at some distance from the boundary
• Changing the classifier will change both, the closest instance, and their

distance from the boundary
16

A Better Approach

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

17

A Better Approach

18

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

A Conservative Approach

19

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

Support Vector Machine

20

• Search through all classifiers such that the distance to the closest points is
maximized
– Very conservative
– Focuses on worst-case scenario
– Maximizes the chance that the classifier will work well on new unseen data

Support Vector Machine

• Find the classifier such that the distance to the closest points is maximized
• I.e. solve two problems: find the closest points, and the classifier, such that the

distance is maximum
– Position the classifier in the middle so that the distance to the closest green = distance to the

closest red

• Is this a combinatorial optimization problem?? 21

Solution Approach

• For any hyperplane (linear classifier)
• Choose two hyperplanes and

– The distance of these hyperplanes from the classifier is 1/
– The total distance between the hyperplanes is 2/

22

்

்

்

1/

Solution Approach

• Constraint: Perfect classification with a margin
• Choose the hyperplanes such that

– All positive points are on the positive side of the positive hyperplane
– All negative points are on the negative side of the negative hyperplane

23

்

2/

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

24

்

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

25

Expanding the gap by
decreasing the length of

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

26

Expanding the gap by
changing the direction of

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Find the (and) such that this is maximized, while maintaining the
constraint that all training points are on the “outside” of the appropriate
hyperplane

27

Solution Approach

• The distance between the hyperplanes is

• Maximize this distance. I.e. ..
• Minimize such that

– all training points are on the “outside” of the appropriate hyperplane 28

Solution Approach

• The distance between the hyperplanes is ଶ

ௐ

• Maximize this distance. I.e. ..
• Minimize 𝟐 such that

– all training points are on the “outside” of the appropriate hyperplane
29

Decreasing the length of
will expand the gap between
the boundary planes

Rotating it will also provide
scope to increase this gap

Must find a formalism that
explores both options
simultaneously

Let’s formalize this

• Constraint: Ensuring that all training instances
are on the proper side of their respective
hyperplanes

• For positive training instances :

• For negative instances

• Generically stated, for all instances we want

30

Solution Formalism

• Minimize such that
• For all training instances

• Formally

31

Solving the optimization

• This is a quadratic programming problem!

• A variety of techniques can be applied
– Interior point methods, active set methods, gradient descent,

conjugate gradient
– The objective function is convex, QP will find the (near) optimal

solution

• Most useful solution is based on Lagrangian duals
– Later..

32

The solution

• Maximizes the margin
• This is a max-margin classifier
• The boundary samples are called support vectors

– All the information about the classifier is in these support vectors
33

Poll 2

• An SVM can only handle data that are linearly
separable, i.e. data perfectly separable by
some hyperplane
– True
– False

34

Poll 2

• An SVM can only handle data that are linearly
separable, i.e. data perfectly separable by
some hyperplane
– True
– False

35

Challenges

• What if the classes are not linearly separable

• What if the classes are not linearly separable?

• What if the classes are not linearly separable?

36

What if they are not separable?

• What if the data are not separable?

37

Original Problem

• This is a quadratic programming problem!

• Maximize the distance between the planes

• Subject to the constraint that all training data instances
are on the “correct” side of the plane

• When data are not linearly separable, this constraint
can never be satisfied

38

Introducing the slack variable

• What if the data are not separable?

39

Introducing the slack variable

• For every training instance, introduce a slack variable
• The slack variable is the maximum distance you have to

shift the boundary plane to move the point to the
“correct” side

40

Introducing the slack variable

• For every training instance, introduce a slack variable
• The slack variable is the reverse distance from the margin

plane of the training instance
– This will be non-zero only for some instances
– Ideally this should be minimum 41

1

2

Introducing the slack variable

• The total length of slack variables varies with the boundary
• If you push the boundaries too far you will have a greater

length of slack variable
– Which contradicts our desire that they should be minimum

42

Introducing the slack variable

• If they are very close, only the inseparable points
will have non-zero slack variable
– The minimum slack value is when the margin planes

coincide with the linear classifier
43

Introducing the slack variable

• If they are very close, only the inseparable points will have non-zero
slack variable
– The minimum slack value is when the margin planes coincide with the

linear classifier

• For linearly separable classes, if the boundary planes are close
enough, the total slack length will be 0 44

Introducing the slack variable

• Problem: If they are too close, the planes
violate our desire to maximize the margin

45

Introducing the slack variable

• Contradicting requirements..

46

But this contradicts our objective
that the distance between the
planes must be maximized

Need: Push the margin planes close
together to minimize total slack

New Objective

• Simultaneously
– Maximize distance between planes

– Minimize total slack length
47

Quantifying Slack Length

• We need a formula for the total slack length
first..

48

Quantifying Slack Length

• The positive margin plane is given by

• ்

• This plane is at a distance is ଵ

ௐ
from the decision boundary on the

positive side of the decision plane (in the direction of)
– Ideally all positive training points would be to the right of it

49

்

Quantifying Slack Length

• The (unnormalized) distance of any from this plane

• This will be negative for instances on the “wrong” side (in
the direction away from), but positive for those on the
“right” side 50

்

Quantifying Slack Length

• The negated (unnormalized) distance of any from this plane

• This will be positive for instances on the wrong side of the margin
plane, but negative for instances on the right side of it 51

்

்

்

Quantifying Slack Length

• We do not care about the actual distance of instances
to the right of the plane

• So the slack value of any point is

52

்

்

்

Quantifying Slack Length

• The negative margin plane is given by

– Ideally all negative training points would be to the left
of it 53

்

Quantifying Slack Length

• The (unnormalized) distance of any from this plane

• This will be positive for vectors on the “wrong” side,
but negative for vectors on the right side

54

்

Quantifying Slack Length

• We do not care about the actual distance of instances to
the left of the plane

• So the slack value of any point is

55

் ்

்

Quantifying Slack Length

• Combining the following for negative
instances

56

்

Quantifying Slack Length

• And the following for positive instances

57

்

Quantifying Slack Length

• Generic Slack length for any point

• This is also called a hinge loss
58

்

்

Total Slack Length

• Total slack length for all training instances

• This must be minimized

59

Overall Optimization

• Minimize to maximize the distance
between margin planes

• Minimize total slack length to minimize the
distance of misclassified instances to margin
planes

– This will make the margin planes closer

• The two objectives must be traded off..
60

Support Vector Machine for
Inseparable data

• Minimize

• is a “regularization” parameter that decides the
relative importance of the two terms

• This is just a regular optimization problem that can be
solved through gradient descent

61

Support Vector Machine for
Inseparable data

• is typically set using held-out training data
– Train the classifier for various values of

– Test each of these classifiers on some held-out portion of
the training data that was not included in training the SVM

– Pick the for which the classifier gave best performance

– Retrain the SVM using the entire training data and this

• Frequently, instead of a single held-out set, is set
through K-fold cross validation

62

Equivalent Slack Formalism

• Subject to

• This is a quadratic programming problem
• Slack parameter is determined through

held-out data as earlier (or through K-fold
cross-validation)

63

Poll 3

• Mark all that are true
– We must use the information from all the vectors in the training samples to calculate the

support vectors to get the hyperplane for classification
– A classifier can be represented by sign(w^T x – b) for any separating hyperplane
– SVM can find the classifier that has the maximal distance from the closest instances of either

class, so that it may maximize the chance that the classifier will work on new, unseen data
– We can turn the problem of finding w^T x – b = 0 to a quadratic programming problem, so that

we can use all kinds of convex optimization algorithms on constrained sets, to solve it

64

• Mark all that are true
– We can use SVM with slack variables for the case where the data are linearly separable except

for some outlier instances
– We need to maximize the margin, as well as the slack variables in this case
– We can also use convex optimization methods such as Lagrangian duals to solve it, even when

introducing slack variables
– We can use K-fold cross-validation to determine the parameter C which is the parameter for

the slack variable in the quadratic programming loss function

Poll 3

• Mark all that are true
– We must use the information from all the vectors in the training samples to calculate the

support vectors to get the hyperplane for classification
– A classifier can be represented by sign(w^T x – b) for any separating hyperplane
– SVM can find the classifier that has the maximal distance from the closest instances of either

class, so that it may maximize the chance that the classifier will work on new, unseen data
– We can turn the problem of finding w^T x – b = 0 to a quadratic programming problem, so that

we can use all kinds of convex optimization algorithms on constrained sets, to solve it

65

• Mark all that are true
– We can use SVM with slack variables for the case where the data are linearly separable except

for some outlier instances
– We need to maximize the margin, as well as the slack variables in this case
– We can also use convex optimization methods such as Lagrangian duals to solve it, even when

introducing slack variables
– We can use K-fold cross-validation to determine the parameter C which is the parameter for

the slack variable in the quadratic programming loss function

How to deal with non-linear
boundaries?

• First some math..

66

Recall: The Lagrange Method

• Optimize subject to

11-755/18-797 67

to maximize :

to minimize :

Optimization with inequality
constraints

• Optimization problem with constraints

• Lagrange multipliers

• The optimization problem

11-755/18-797 68

L(x,l,n) = f (x)+ ligi

i=1

k

å (x)+ n jhj (x)
j=1

l

å
li ³ 0,n Î Â

 
 ljxh

kixgts

xf

j

i

x

,...,1 ,0)(

,...,1 ,0)(..

)(min

==
=

Revisiting the linearly separable case

• This is a quadratic programming problem!

• Can be stated using Lagrangians as

69

Constraint: must be -ve
For convenience

Linearly separable case: Lagrangian
formalism

• Can be stated using Lagrangians as

• The optimum satisfies the Karush Kuhn-Tucker
conditions, hence we can rewrite it as

70

Linearly separable case: Lagrangian
formalism

• Under the KKT conditions

• Taking the deriviative w.r.t and setting to 0, we
get

71

Linearly separable case: Lagrangian
formalism

• Under the KKT conditions

• Taking the deriviative w.r.t and setting to 0, we
get

72

Linearly separable case:

• Restating (and ignoring the factor of 2)

• Since the last term is 0

=0
73

Large margin linear classifier

• Solve for

=0

• will turn out to be non-zero only for the support
vectors (and 1 for the support vectors)

74

Large margin linear classifier with
slack

• Solve for

=0

• Note upper bound on
• will turn out to be non-zero only for the support vectors

(and 1 for the support vectors)
75

The usual simple SVM can also be
solved through the ugly form

• This is for the linear case. Note that the optimization is in terms of

• Also
• So the classifier on any test instance has the form:

76

ఈ
௜

௜

௜ ௝ ௜ ௝ ௜
்

௝

௜,௝

௜

௜ ௜

௜

=0

The SVM as KNN classification

• This is for the linear case. Note that the optimization is in terms of

• Also
• So the classifier on any test instance has the form:

77

ఈ
௜

௜

௜ ௝ ௜ ௝ ௜
்

௝

௜,௝

௜

௜ ௜

௜

=0

Weighted-nearest neighbor classifier

The SVM as KNN classification

• This is for the linear case. Note that the optimization is in terms of

• Also
• So the classifier on any test instance has the form:

78

ఈ
௜

௜

௜ ௝ ௜ ௝ ௜
்

௝

௜,௝

௜

௜ ௜

௜

=0

Weighted-nearest neighbor classifier

Total weighted accuracy on training data

L1 norm of a

The Kernel Trick

• This is for the linear case. Note that the optimization is in terms of

• Also
• So the classifier on any test instance has the form:

79

ఈ
௜

௜

௜ ௝ ௜ ௝ ௜
்

௝

௜,௝

௜

௜ ௜

௜

=0

The Kernel Trick

• For classification:

80

ఈ
௜

௜

௜ ௝ ௜ ௝ ௜ ௝

௜,௝

௜

௜ ௜

௜

=0

The Kernel Trick

• For classification:

81

ఈ
௜

௜

௜ ௝ ௜ ௝ ௜ ௝

௜,௝

௜

௜ ௜

௜

=0

This is a quadratic
programming
problem

Poll 4

• We can deal with non-linear decision boundaries using Kernel
functions
– True
– False

• The KKT condition is an extension of the Lagrange multiplier
method. We can apply it to the Lagrangian dual of any primal
optimization problem to obtain the modified equation that the
optimal solution must satisfy (if KKT is satisfied)
– True
– False

82

Poll 4

• We can deal with non-linear decision boundaries using Kernel
functions
– True
– False

• The KKT condition is an extension of the Lagrange multiplier
method. We can apply it to the Lagrangian dual of any primal
optimization problem to obtain the modified equation that the
optimal solution must satisfy (if KKT is satisfied)
– True
– False

83

Nonlinear SVMs: The Kernel Trick

 Linear kernel:

2

2
(,) exp()

2
i j

i jK



= 
x x

x x

(,) T
i j i jK =x x x x

(,) (1)T p
i j i jK = +x x x x

0 1(,) tanh()T
i j i jK  = +x x x x

 Examples of commonly-used kernel functions:

 Polynomial kernel:

 Gaussian (Radial-Basis Function (RBF)) kernel:

 Sigmoid:

 In general, functions that satisfy Mercer’s condition can be
kernel functions.

84

Nonlinear SVM: Optimization
 Formulation: (Lagrangian Dual Problem)

1 1 1

1
maximize (,)

2

n n n

i i j i j i j
i i j

y y Ka a a
= = =

å åå x x

such that 0 i Ca 

1

0
n

i i
i

ya
=

=å

 The solution of the discriminant function is

SV

() (,)i i
i

g K ba
Î

= +åx x x

 The optimization technique is the same.

85

Support Vector Machine: Algorithm

• 1. Choose a kernel function

• 2. Choose a value for C

• 3. Solve the quadratic programming problem
(many software packages available)

• 4. Construct the discriminant function from the
support vectors

86

Some Issues
• Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity

measures

• Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a

validation set or cross-validation to set such parameters.

• Optimization criterion – Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are tested

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt 87

Summary: Support Vector Machine

• 1. Large Margin Classifier
– Better generalization ability & less over-fitting

• 2. The Kernel Trick
– Map data points to higher dimensional space in

order to make them linearly separable.
– Since only dot product is used, we do not need to

represent the mapping explicitly.

88

Multi-class generalization Pairwise

89

Multi-class generalization One-vs-all

90

Linear Classifiers: Conclusion

• Simple linear classifiers can be surprisingly
effective
– Particularly when trained to maximize a margin

• Whereupon the “simple” arithmetic magically becomes
complicated

• Kernel trick enables classification of even non-
linear problems

• Most commonly used classifier, still

91

