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How expectation maximization solves all our
problems



What is a generative model

A model for the probability distribution of a data
X

— E.g. a multinomial, Gaussian etc.

seed

 Computational equivalent: a model that can be
used to “generate” data with a distribution
similar to the given data x



Some “simple” generative models

P2 P4

* The multinomial PMF
P(x=v)=P(v)
— For discrete data
* v belongs to a discrete set

— Can be expressed as a table of probabilities if
the set of possible vs is finite

— Else, requires a parametric form, e.g. Poisson
ko2

k!

* Ais the Poisson parameter

P(x =k) = fork =0

e The Gaussian PDF
P(x =v)

;Dexp(—O.S(x — W2 (x — W)
V21| Z|

— For continuous-valued data
— uis the mean of the distribution
— XY is the Covariance matrix
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Learning a generative model for data

* You are given some set of observed data X = {x}.

* You choose a model P(x; @) for the distribution of x

— 0 are the parameters of the model

* Estimate the theta such that P(x; 8) best “fits” the
observations X = {x}

— Hoping it will also represent data outside the training set.



Defining “Best Fit”: Maximum likelihood

* Assumption: The world is a boring place

— The data you have observed are very typical of the
process

* Consequent assumption: The distribution has a
high probability of generating the observed data

— Not necessarily true

e Select the distribution that has the highest
probability of generating the data



Maximum likelihood

The maximum likelihood principle:
— argmax P(X; 8) = argmax log(P(X;0))
6 6

For the histogram

N4

— argmax  ),; n;log(p;) <
{P1,02,03,P4,P5.D6}

= p; = % (N is the total number of observations)

1 23 45 6

For the Gaussian

— argmax ),,ecxlog Gaussian(x; U, 02) «
TN

1 1
zM:ﬁZxEXx; o* :NZxEX(x_.u)Z




The missing-info challenge

* |In some estimation problems
there is often some information
missing

e |f this information were
available, estimation would’ve
been trivial




Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process



Examples of incomplete data:
missing data
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Blacked-out components are missing from data

Objective: Estimate a Gaussian distribution from a collection of
vectors

Problem: Several of the vector components are missing

Must estimate the mean and covariance of the Gaussian with these
incomplete data

— What would be a good way of doing this?
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Maximum likelihood estimation with
incomplete data

— — — — . _ —  — N
/«/ A
_— Y
— AN
7 ™

X1 X3 X3 X4 X5 Xg X7 Xg Xg X10X11X12 XN

e Maximum likelihood estimation: Maximize the likelihood of the observed data

argmaxlog(P(())) = argmaxz logf P(o,m)dm

0€0

* This requires the maximization of the log of an integral!
— Noclosed form
— Challenging on a good day, impossible on a bad one



Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process



Let’s Look at Missing Information

Missing Information
about Underlying Data

Missing Information
about Underlying Process

b N

Shooting Dice  General Mixtures



Our dice rolling gamblers

63154124 .. 44163212 ..

 Two persons shoot loaded dice repeatedly
— The dice are differently loaded for the two of them

 We observe the series of outcomes for both persons

* How to determine the probability distributions of the two dice?

11755/18797 14



The Mixture Gaussian

A N(o; uq,%q) ‘ P(0)
g 0

P (k) :
N N(O, ,le,zl) J\_/\\/
/. >
J\ sl O \/\ >0
A N(o; p3,%3) & P(o) = ZP(k)N(o;,uk,Zk)
R
T~ }N(O; Ha, 24) ; Mixture Gaussian

* The generative model randomly selects a Gaussian
 Then it draws an observation from the selected Gaussian

* Given only a collection of observations, how to estimate
the parameters of the individual Gaussians, and the
probability of selecting Gaussians?

15



The general form of the problem

 The “presence” of missing data or variables requires them to be
marginalized out of your probability

— By summation or integration

e This results in a maximum likelihood estimate of the form

6 = argmaxz logz P (h,o0;0)
6
0 h

— The inner summation may also be an integral in some problems

— Explicitly introducing 6 in the RHS to show that the probability is computed by
a model with parameter 6 which must be estimated

 The log of a sum (or integral) makes estimation challenging
— No closed form solution
— Need efficient iterative algorithms



Expectation Maximization for
Maximum Likelihood Estimation

Objective: Estimate

0* = argmaxz logz P(h,o0;0)

0€0

Solution: Iteratively perform the following optimization instead

ORT1 argmaxz ZP(h|o 6")log P(h, 0; 8)

0€0

This maximizes an Empirical Lower Bound (ELBO) and guarantees
increasing log likelihood with iterations

— Giving you a local maximum log likelihood estimate for 8*



Expectation Maximization for
Maximum Likelihood Estimation

Objective: Estimate

0* = argmaxz logz P(h,o0;0)

0€0

Solution: Iteratively perform the following optimization instead

ORT1 argmaxz ZP(h|o 6")log P(h, 0; 8)

0€0

This maximizes an Empirical Lower Bound (ELBO) and guarantees
increasing log likelihood with iterations

— Giving you a local maximum log likelihood estimate for 8*

18



Expectation Maximization

e |nitialize 6°
e k=0

* |terate (over k) until log P(0; 6) converges:

— Expectation Step
Compute P(h|o; 8%) for all 0 € O for all h

— Maximization step

ORt1 argmaxz ZP(h|o 6%)1log P(h, 0; 8)

0€0

19



Expectation Maximization

e |nitialize 90 _
e k=0

* |terate (over k) until log P(0; 6) converges:
— Expectation

Step
Compute P(h|o; 8%) for all 0 € O for all h

— Maximization step

ZZP(MO 6%y log P(h, 0; 0)

0e0

6%t1 «— argma
0

20



Our dice rolling gamblers

63154124 .. 44163212 ..

P(k,0) = P(k)P,(0)  P(0) = Z P (k)P,(0)
k

11755/18797
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Our dice rolling gamblers

63154124 .. 44163212 ..

P(k,0) = P(OP(0)  P(0)= ) P(K)P(0)
k

P(k)P(olk) P (k)P (0)

P(klo) = ——5 3 Pklo) =5 b )Py (0)

11755/18797
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Expectation Maximization

* Initialize 90 _
e [ =0
* |terate (over [) until log P(O; 8) converges:

— Expectation

Step
Compute P(k|o; 8%) forall o € O for all k

_ P(k)P(o)
Feur (ko) = Y .+ P(k")Py:(0)

Using the current set of estimated parameters

23



Expectation Maximization

e |nitialize 90 _
e [ =0

* |terate (over [) until log P(O; 8) converges:
— Expectation

Step
Compute P(k|o; 8%) forall o € O for all k

— Maximization step

ZZP(MO 6') log P(h, 0; )

0e0

6't1 «— argma
0

24



Our dice rolling gamblers

63154124 .. 44163212 ..

argmaxz z P(h|o; 8%)log P(h, 0; 0)
0

0€EO h

arggnax z z P...-(k|o)log P(k)Py(0)

0€E0 k

11755/18797

25



Our dice rolling gamblers

63154124 .. 44163212 ..

argmaxz z P(h|o; 8%)log P(h, 0; 0)
0

0€EO h

0€0 k

argmax z z P....(k|o)log P(k)P,(0) + A (Z P(k) — 1) + z A (Z P, (0) — 1)
k k 0

Differentiate and equate to 0
11755/18797 26



P.ur(klo) =

Our dice rolling gamblers

63154124 . 44163212 ..
P, (0) = Ny Peur (k|0)
P(k)P,(0) “ ZO’NO’ cur (k[0")
2yt P(k") Py (0)
b = Zo NoPeur (K1)

11755/18797

Zk' Zo NoPcur(kllo)

27




Our dice rolling gamblers

63154124 .. 44163212 ..

Nopcur(klo)
ZO' No’ cur(klal)

Py (0) =

P.ur(klo) =

P(k)Pc(0) Wy
-

2t P(k")Py(0)

b0 — 2o NoPeur (KI0)

Zk' Zo NoPcur(kllo)

E M

11755/18797 28



Examples of incomplete data:
missing information in Gaussian mixtures

N(O;.ubzl) ‘
VAN P(0)
Nl N(os o, 3
/ \ (03 f2, 21) J\/\/\/\

J o\ :»0 o
A |N(o; 3, 23) & P(o) = ZP(k)N(o;,uk,Zk)
k
e }N(O; My 24) & Mixture Gaussian

-----------------------------------------------------------------------------------------

29



Examples of incomplete data:
missing information in Gaussian mixtures

P(o)

NI

P(0) = ) PUON(0; e, 20)
k

-----------------------------------------------------------------------------------------

P(k,0) = P(k)N(0; px, )

Mixture Gaussian

P(k)N(0; ty, Zx)

P(klo) =

Dt P(kN (05 pyer, Zier)

30



Expectation Maximization

e |nitialize Y _
e [ =0

* |terate (over ) until log P(0O; @) converges:
— Expectation

Step
Compute P(k|o; 8%) forall o € O forall k

P (k)N (0; pf, Zx,)
2.t PH(k")N (o; uf(,,Z,l(,)

Using the current set of estimated parameters

P(k‘o;@l) =

31



The Mixture Gaussian

N(o; uy,21) k
VAN P(0)
" | N(o; g, =
// \\ (03 12, 24) g /\/\/\/\

J o\ :»0 >0
A N(o; p3,%3) & P(o) = ZP(k)N(o;,uk,Zk)

— K

T~ }N(O; Ha 24) ; Mixture Gaussian

-----------------------------------------------------------------------------------------

argmaxzzP(Mo 6 1og P(h, 0; 6)

0€0
argmax ZZP(HO 0')(log P(k) + log N (0; 1, Zx)) + 2 ZP(k)— 1
{P(k) HiZk} £=5

Differentiate and equate to 0
11755/18797 32



The Mixture Gaussian

N(o; uq,%q)

///\\ N(O, /,12,21)

v

PN N (o; u3, X3)

-----------------------------------------------------------------------------------------

1
" 3, P(kJo; 1y 2. (klos@')o

0;0")(0 — ptH (o — witM”

11755/18797

P(o)

N

\
Q

P(0) = ) PUON(0; e, 20)
k

Mixture Gaussian

33



The Mixture Gaussian

A N(o; uy,%1)

///\\ N(O, /,12,21)

2

P(o)

N

\
Q

PN N (o; u3, X3)

. P =) PUONi kT
k

-----------------------------------------------------------------------------------------

P(k|0;6?l) =

P (k)N (o; pf,, 2t
Zk’ Pl(k’)N(O; lflll(/; le(/)

o
1
1+1
AN .
f ZOP(k|0;91) -

1

Zl+1 — ZP k
< =S e 2

11755/18797

Mixture Gaussian

0;6')o

0;0")(0 — utH) (o — wiM”
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Poll 1: tinyurl.com/mlsp23-20231109-1

e Select all true statements

— The E step in the EM algorithm computes the a posteriori
probability distribution of missing variables

— The E step in EM maximizes the expectation over missing
variables of the log of the probability of the complete data

— The M step in the EM algorithm computes the a posteriori
probability distribution of missing variables

— The M step in EM maximizes the expectation over missing
variables of the log of the probability of the complete data



Poll 1

Select all true statements

— The E step in the EM algorithm computes the a posteriori
probability distribution of missing variables

— The E step in EM maximizes the expectation over missing
variables of the log of the probability of the complete data

— The M step in the EM algorithm computes the a posteriori
probability distribution of missing variables

— The M step in EM maximizes the expectation over missing
variables of the log of the probability of the complete
data

36



That’s so much math, but what does
it really do?

* What does EM practically do when we have
missing data?

— What is the intuition behind how it resolves the
problem?



Let’s Look at Missing Information
again

11755/18797

38



Let’s Look at Missing Information
again

Missing Information
about Underlying Data

Missing Information
about Underlying Process



Let’s Look at Missing Information
again

Missing Information
about Underlying Data

Missing Information
about Underlying Process



Recall this: Gaussian estimation with
incomplete vectors

X1 X2 X3 Xg X5 Xg X7 Xg X9 X10X11X12 XN

These are the actual data we have: Aset O = {04, ..., oy} of incomplete vectors
— Comprising only the observed components of the data

We are missing the data M = {m4, ..., my}

— Comprising the missing components of the data

The complete data includes both the observed and missing components
X o {xlr '")xN}r xi — (Oi’ ml)

— Keep in mind that at the complete data are not available (the missing components are missing)




Let’s look at a single vector

— — — — _— — ~ .

X1 X2 X3 Xg X5 Xg X7 Xg X9 X10X11X12 XN

* These are the actual data we have: Aset O = {04, ..., o5} of incomplete vectors
— Comprising only the observed components of the data

* We are missing the data M = {my, ..., my}

— Comprising the missing components of the data

* | The complete data includes both the observed and missing components
X o {xly "')xN}l xi — (Oi’ ml)

— Keep in mind that at the complete data are not available (the missing components are missing)
42




Let’s look at a single vector

—

/

0 -

™

 We will try to complete the vector by filling in the missing
value with plausible values that match the observed
components

¢ Fill this value somehow

I [

* Plausible: Values that “go with” the observed values,
according to the distribution of the data

43



Let’s look at a single vector

|
|

o

1
|
|

|
|

|
|

[

/

0 -

™

 Question: If we have a very large number of vectors from
the Gaussian, all with the same observed components o,
what would their missing components be?

»

[ ) [
[ I N

[ O [

T

[ [

44



Let’s look at a single vector

|
|

—

|
|

[ 5 ) [

|
|

|
|

/

0 -

™

 Question: If we have a very large number of vectors from
the Gaussian, all with the same observed components o,
what would their missing components be?

»

[

[

I [
= [
= [

* We would see every possible value, but in proportion to
their probability: P(m|o) (conditioned on the observations)

45



Completing incomplete vectors

1

|

»

[

[ O [ [
[ O [ [
[ [
[ [

T
]

Complete vector by filling up the missing components with every
possible value

— l.e. make many complete “clones” of the incomplete vector

But assign a proportion to each value
— Proportion is P(m|o)
* Which can be computed if we know P(x) = P(o,m)

46



Gaussian estimation with incomplete vectors

 “Expand” every incomplete vector out into all possibilities
— In appropriate proportions P(m|o)
— For already complete observations, there is no expansion

* Estimate the statistics from the expanded data



Gaussian estimation with incomplete vectors

 “Expand” every incomplete vector out into all possibilities

— In appropriate proportio From a previous estimate of the model

— For already complete observations, there is no expansion

* Estimate the statistics from the expanded data

48



Estimating the Gaussian Parameters

*  Compute the statistics from the (proportionately) expanded set

* Let x;(m) be the “completed” version of the observation 0;, when the missing components are

filled with value m

x;(m) = (m, 0;)

— There will be one such vector for every value of m

*  Estimate the statistics from the expanded data

pktl = %Z[ P(m|o; 0%)x;(m)dm

0€0

Zk+1 — %Z jmp(mlo; Hk)(xi(m) _ /,tk“)(xi(m) _ Mk+1)Tdm

0€0

49



EM for computing the Gaussian Parameters

L]
1
L
|

HHE HEEEE &
S IR S I (N Ry N gy B:.
E §= ] = o 06 o =§ - - Bl | [ I B _E
Initial 8° = (u%,29)
Until P(0; 8) converges:
ket _ 1 " k
u =N2 P(m|o; 6%)x;(m)dm
0€0 "~ %
1 (0 e]
k1l — NE j P(m|o; 0%)(x;(m) — p**1) (x;(m) — p** )T dm

0€0

Where x;(m) = (m, 0;) and the parameters of P(m|o; Hk) are derived from the P(x; 9") =
Gaussian(x; u*, %)

50



Let’s Look at Missing Information
again

Missing Information
about Underlying Data

Missing Information
about Underlying Process



The GMM problem of incomplete data:
missing information

ko ®o®0o 0006 00 o
VLT OLLOC0L I P(0)

* Problem : We are not given the actual Gaussian for each
observation

— Our data are incomplete

 Whatwe want: (04,kq), (04, k), (03,k3) ...
* What we have: 04,05, 05 ...

52



Consider a single vector

k®

P(o)

* FEvery Gaussian is capable of generating this vector
— With different probabilities

53



Consider a single vector

k@ 000000

O

P(o)

| I [ [

$

[ I [ [ [ I I I

| I I I I I I I
[
[ I I I I [ [ [ 1

[ [ [

* FEvery Gaussian is capable of generating this vector
— With different probabilities

* |f we saw a large number of these vectors, how many
of these would have come from each Gaussian?

54



Con5|der a smgle vector

9 ¢

P(o)

| I [ [ ] (

=

I

k®

I — — — — — — —
IIIIIIIIIQ

[ I I I I [ [ [ 1 “\

[ [ [

Every Gaussian is capable of generating this vector
— With different probabilities

If we saw a large number of these vectors, how many of
these would have come from each Gaussian

All of them, but in proportion to P(k|o)

55



Completing incomplete vectors

k@ @00

=

I I I I | I I
I I I | [ I I
[ I I [ 1 [ | L

Complete the data by attributing to every Gaussian
— l.e. make many complete “clones” of the data

But assign a proportion to each completed vector
— Proportionis P(k|o)

* Which can be computed if we know P (k) and P(o|k)

Then estimate the parameters using the complete data



Completing incomplete vectors

ke 000

=

I I I I | I I I

Complete the data by attributing to every Gaussian From previous estimate

— l.e. make many complete “clones” of the data of model

But assign a proportion to each completed vec
— Proportionis P(k|o)

* Which can be computed if we knon

Then estimate the parameters using the complete data .



EM for GMMs

1IN0 rnnr I P(0)
0_________000_
I T . L 0>

*  “Complete” each vector in every possible way:
— assign each vector to every Gaussian

— In proportion P (k|o; 6%) (computed from current model estimate)

*  Compute statistics from “completed” data >8



EM for GMMs

In proportionto P(k|oy;0Y) P(kloy;08Y) P(k|os;0Y) P(klog;0%)  P(k|os; 6Y)

o

*  Now you can segregate the vectors by Gaussian

— The number of segregated complete vectors from each observation will be in proportion to P(k|o; 6%) 59



EM for GMMs

B ZOP(k|0;

1 - J 0L ULl
Zl+1 — Z P(k ,el o+ L+ B L U LU
k Zop(kl();el) - ( |0 )(O 125% )(O Ui | IR

S S N o 0 N A o

Now you can segregate the vectors by Gaussian

—  The number of segregated complete vectors from each observation will be in proportion to P(k|o; 6%) 60



EM for GMMs

In proportionto P(klo;;6Y) P(kloy;0") P(k|os;0")  P(klog; 6%) P(k|05,9)

@00 @00 @00 900 i@ O 0

— - — = — — — — — — — — — — —
— - - — — — — — | — — — — — —
o o0
— - — — — — — — - — — - — — —
— - — — — —_ — — — — — — — — —

* Initialize up and X)) for all k

* |[terate (over l):
— Compute P(k|o; 8% for all o
* Compute the proportions by which o is assigned to all Gaussians

— Update:
~ M= e 2o P (Ko 6o

1
— Zl+1 O_QI)ZOP(k O;Hl)(O l+1)(0 l+1 T

61



Ty

General EM principle

 “Complete” the data by considering every possible value for
missing data/variables

— In proportion to their posterior probability, given the
observation, P(m|o) (or P(k|0))

* Reestimate parameters from the “completed” data

62



General EM principle

Ty

. ﬂ’CompIete” the data by considering every possible value for
missing data/variables

— In proportion to their posterior probability, given the
\_  observation, P(m|o) (or P(k|o0)) Y,

* Reestimate parameters from the “completed” data

63



General EM principle

S
N = :
Ty

. ﬂ’CompIete” the data by considering every possible value for
missing data/variables

— In proportion to their posterior probability, given the
\_  observation, P(m|o) (or P(k|o0)) Y,

Sufficient to "complete” the data by sampling missing values from the posterior
P(mlo) (or P(k|o)) instead

64



Alternate EM principle

e = B

 “Complete” the data by sampling possible value for
missing data/variables from P(m|o) (or P(k|0))

* Reestimate parameters from the “completed” data

65



Overall EM principle: Remember this

* Initially, some data/information are missing

66



Overall EM principle: Remember this

* Initially, some data/information are missing
* Initialize model parameters

67



Overall EM principle: Remember this

- e A

* Initially, some data/information are missing

* |Initialize model parameters

* [terate:

68



Overall EM principle: Remember this

OO0 00000 0O0 @)
- P(0)

I T T T T T T T
I T T I I T I I

R = R

FIE = [

* Initially, some data/information are missing
* |Initialize model parameters

* |terate

— Complete the data according to the posterior probabilities P (1m|o) computed by the current model
* By explicitly considering every possible value, with its posterior-based proportionality
* Or by sampling the posterior probability distribution P(m|o)

69



Overall EM principle: Remember this

ONONONONONONONONGC) O
* P(0)
CLITIIT .

.......... P Mo S

el = L

e =
Ty

* Initially, some data/information are missing
* |Initialize model parameters
* |terate

— Complete the data according to the posterior probabilities P(m|o) computed by the current model
* By explicitly considering every possible value, with its posterior-based proportionality
* Or by sampling the posterior probability distribution P(m|o)
— Reestimate the model
70



S

Ty

Overall EM principle: Remember this

EE - e

000000000 o
r P(0)
JLTIIIEIE - [ ¢m
.......... PR S s ﬁ
900 (903 908 (900 900

Initially, some data/information are missing

Initialize model parameters

/ lterate

— Reestimate the model

— Complete the data according to the posterior probabilities P(m|o) computed by the current model
By explicitly considering every possible value, with its posterior-based proportionality
Or by sampling the posterior probability distribution P (m|o)

7/




Poll 2: tinyurl.com/mlsp23-20231109-2

 EM attempts to “complete” the data, and estimate the model parameters with the
now completed data
— True
— False

* It completes the data by drawing missing values in proportion to P(m|o), where o
are the observed data
— True
— False

* Instead of attempting to complete the data with every possible value of the
missing variables, we can complete them by sampling P(m]|o) and reestimate the
parameters with the completed data

— True
— False



Poll 2

EM attempts to “complete” the data, and estimate the model parameters with the
now completed data

— True

— False

It completes the data by drawing missing values in proportion to P(m|o), where o
are the observed data

— True

— False

Instead of attempting to complete the data with every possible value of the
missing variables, we can complete them by sampling P(m]|o) and reestimate the
parameters with the completed data

— True

— False



Lets try it out...



Your friendly neighborhood gamblers

63154124 .. 44163212 ..

Two gamblers shoot dice in a closed room

— The dice are differently loaded for the two of them

A crazy crier randomly select one of the them and calls out his number

— But doesn’t mention whose number he chose

You only see the numbers

— But do not know which of them rolled the number

How to determine the probability distributions of the two dice?

11755/18797 75



EM for multinomial mixture

0000000 épk
0] 63414135.. <m

T

 The “color” of the dice (multinomial) is missing

76



EM for multinomial mixture

 The “color” of the dice (multinomial) is missing
 “Complete” each observation in every possible way:
— assign each vector to every multinomial
— In proportion P(k|o; 8Y) (computed from current model estimate)

 Compute statistics from “completed” data
77



EM for multinomial mixture

0

63414135 .. i%i:ﬂﬂﬁ

P(k)Py(0)
Y.+ P(k")Py:(0)

P(klo) =

78



EM for multinomial mixture

O
63414135 ..

b (o) — N,P(k|o)
Plklo) = — L (OP(0) T Bg NorP(k|0")
Yt P(K")Pyr(0) Y, N,P(k|o)

P(k) =

Zk' Zo Nop(klla) 79




But now for something
somewhat different

Caller rolls a dice and flips a coin
He calls out the number rolled if the coin shows head
Otherwise he calls the number+1

Can we estimate p(heads) and p(number) for the dice from a
collection of outputs

80



The dice and the coin

00000000
O 67414735..

 The “face” of the coin is missing

81



The dice and the coin

e0000000
67414735 ..

The “face” of the coin is missing

“Complete” each observation in every possible way:
— assign each vector to every face

— In proportion P(f|o; %) (computed from current model estimate)

Compute statistics from “completed” data
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The dice and the coin

e0000000
67414735 ..

P(heads|o) =

P(o)P(heads)

P(o)P(heads) + P(o — 1)P(tails)
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The dice and the coin

e0000000
67414735 ..

P(o)P(heads)
P(heads|o) = P(o)P(heads) + P(o — 1)P(tails)
, P(o — 1)P(tails)
P(tails|o) = P(o)P(heads) + P(o — 1)P(tails)
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The dice and the coin

e0000000
67414735 ..

P(o)P(heads)
P(heads|o) = P(o)P(heads) + P(o — 1)P(tails)
, P(o — 1)P(tails)
P(tails|o) = P(o)P(heads) + P(o — 1)P(tails)

P(o) «x N,P(heads|o) + N, ,P(tails|o + 1)
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The dice and the coin

67414735 ..

P(heads|o) =

P(o)P(heads)

P(o)P(heads) + P(o — 1)P(tails)

P(tails|o) =

P(o — 1)P(tails)

P(o)P(heads) + P(o — 1)P(tails)

P(o) <« N,P(heads|o) + N,,.{P(tails|o + 1)
P(heads) « z N,P(heads|o)
(0)
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But now for something somewhat
different

Roller rolls two dice
He calls out the sum

Determine P(dice) from a collection of outputs



The sum of dice

“first” dice info is missing

e The
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D@6 | |DDEO@E 6

10 9

* The “first” dice info is missing
e Assign it to every value for the first dice

— But note what happens to the second
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DDEH@®GE

10 9

P(nlo) = P(n,0 — nlo) =

P ()P, (0 —n)

16n=1 P;(m)P;(0 —m)
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D 2

10

9

D@6 | |®@E®@6E

Pi(n)P,(0 —n)
76n=1 P;(m)Py(0 —m)

P(n,0 —nlo) =

12
Pi(n) x z N,P(n,o0 —n|o)
0=2
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Poll 3: tinyurl.com/mlsp23-20231109-3

* The EM algorithm can be applied in any problem with
missing data
— True
— False

* EM can also be applied when the observed data are drawn
from the distribution obtained through the convolution of
two component distributions which must be estimated

— True
— False



Poll 3

* The EM algorithm can be applied in any problem with
missing data
— True
— False

* EM can also be applied when the observed data are drawn
from the distribution obtained through the convolution of
two component distributions which must be estimated

— True
— False



In closing

 Have seen a method for learning the parameters of
generative models when some components of the data
(or the underlying drawing process) are not observed

 The technique operates by “completing” incomplete
data by filling in missing values in proportion to their
posterior probabilities

 Coming up : apply this concept to various problems



