

Maximum Likelihood Estimation and **Maximum Likelihood Estimation
and
Expectation Maximization – P2**

Bhiksha Raj

Agenda

- Generative Models
- Fitting models to data
- Where'd the closed forms go?
- Dealing with missing information
- How expectation maximization solves all our problems

What is a generative model

- A model for the probability distribution of a data $\mathcal X$
	- E.g. a multinomial, Gaussian etc.

• Computational equivalent: a model that can be used to "generate" data with a distribution similar to the given data x

Some "simple" generative models (**COVERT) THE UPPER CONSERVED A PREPARE CONSERVANCE PREPARENT PREPARENT**

• The multinomial PMF

- - v belongs to a discrete set
- Can be expressed as a table of probabilities if the set of possible vs is finite multinomial PMF
 $P(x = v) \equiv P(v)$

For discrete data
 $\cdot v$ belongs to a discrete set

Can be expressed as a table of probabilities if

the set of possible vs is finite

Else, requires a parametric form, e.g. Poisson
 $P(x = k) =$
- Else, requires a parametric form, e.g. Poisson

$$
P(x = k) = \frac{\lambda^k e^{-\lambda}}{k!} \text{ for } k \ge 0
$$

- λ is the Poisson parameter
- The Gaussian PDF

$$
P(x=v)
$$

\n- For discrete data\n
	\n- v belongs to a discrete set
	\n- Can be expressed as a table of probabilities if the set of possible vs is finite
	\n- Else, requires a parametric form, e.g. Poisson
	\n- $$
	P(x = k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad \text{for } k \geq 0
	$$
	\n
	\n- λ is the Poisson parameter
	\n\n
\n- the Gaussian PDF
\n- $$
P(x = v)
$$
\n
\n- $$
= \frac{1}{\sqrt{2\pi |\Sigma|}} \exp(-0.5(x - \mu)^T \Sigma^{-1} (x - \mu))
$$
\n
\n

-
-
- Σ is the Covariance matrix

Learning a generative model for data

- You are given some set of observed data $X = \{x\}.$
- You choose a model $P(x; \theta)$ for the distribution of x θ are the parameters of the model
- Estimate the theta such that $P(x; \theta)$ best "fits" the observations $X = \{x\}$

– Hoping it will also represent data outside the training set.

Defining "Best Fit": Maximum likelihood

- Assumption: The world is a boring place
	- The data you have observed are very typical of the process
- Consequent assumption: The distribution has a high probability of generating the observed data

– Not necessarily true

• Select the distribution that has the *highest* probability of generating the data

Maximum likelihood

- The maximum likelihood principle:
	- $-$ argmax $P(X; \theta) = \argmax log(P(X; \theta))$ θ and θ
- For the histogram

$$
- \mathop{\rm argmax}_{\{p_1, p_2, p_3, p_4, p_5, p_6\}} \sum_i n_i \log(p_i) \leftarrow
$$

 $i = \frac{1}{N}$ (IV IS L n_i (N is the tot N $(N$ is the total number of observations)

• For the Gaussian

$$
- \mathop{\arg\max}\limits_{\mu,\sigma^2} \sum_{x \in X} \log Gaussian(x;\mu,\sigma^2) \longleftarrow
$$

$$
\Rightarrow \mu = \frac{1}{N} \sum_{x \in X} x; \qquad \sigma^2 = \frac{1}{N} \sum_{x \in X} (x - \mu)^2
$$

 n_4

 n_3

 $n₅$

 $n₆$

 $n₂$

 n_1

7

The missing-info challenge

• In some estimation problems there is often some information missing

• If this information were available, estimation would've been trivial

Let's Look at Missing Information

Missing Information about Underlying Data

Missing Information about Underlying Process

Examples of incomplete data: missing data

Blacked-out components are missing from data

- Objective: Estimate a Gaussian distribution from a collection of vectors
- Problem: Several of the vector components are missing
- Must estimate the mean and covariance of the Gaussian with these incomplete data
	- What would be a good way of doing this?

Maximum likelihood estimation with incomplete data

• Maximum likelihood estimation: Maximize the likelihood of the *observed* data

$$
\underset{\mu,\Sigma}{\text{argmax}} \log(P(O)) = \underset{\mu,\Sigma}{\text{argmax}} \sum_{o \in O} \log \int_{-\infty}^{\infty} P(o,m) dm
$$

- This requires the maximization of the log of an integral!
	- No closed form
	- Challenging on a good day, impossible on a bad one

Let's Look at Missing Information

Missing Information about Underlying Data

Missing Information about Underlying Process

Let's Look at Missing Information

Missing Information about Underlying Data

- Two persons shoot loaded dice repeatedly – The dice are differently loaded for the two of them
- We observe the series of outcomes for both persons
- How to determine the probability distributions of the two dice?

- The generative model randomly selects a Gaussian
- Then it draws an observation from the selected Gaussian
- Given only a collection of observations, how to estimate the parameters of the individual Gaussians, and the probability of selecting Gaussians?

The general form of the problem

- The "presence" of missing data or variables requires them to be marginalized out of your probability
	- By summation or integration
- This results in a maximum likelihood estimate of the form

$$
\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{o} \log \sum_{h} P(h, o; \theta)
$$

- The inner summation may also be an integral in some problems
- $-$ Explicitly introducing θ in the RHS to show that the probability is computed by a model with parameter θ which must be estimated
- The log of a sum (or integral) makes estimation challenging
	- No closed form solution
	- Need efficient iterative algorithms

Expectation Maximization for Maximum Likelihood Estimation

• Objective: Estimate

$$
\theta^* = \underset{\theta}{\operatorname{argmax}} \sum_{o \in O} \log \sum_{h} P(h, o; \theta)
$$

• Solution: Iteratively perform the following optimization instead

$$
\theta^{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta)
$$

- This maximizes an Empirical Lower Bound (ELBO) and guarantees increasing log likelihood with iterations
	- Giving you a local maximum log likelihood estimate for θ^*

Expectation Maximization for Maximum Likelihood Estimation

• Objective: Estimate

$$
\theta^* = \underset{\theta}{\operatorname{argmax}} \sum_{o \in O} \log \sum_{h} P(h, o; \theta)
$$

• Solution: Iteratively perform the following optimization instead

$$
\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta)
$$

- This maximizes an Empirical Lower Bound (ELBO) and guarantees increasing log likelihood with iterations
	- Giving you a local maximum log likelihood estimate for θ^*

Expectation Maximization

- Initialize θ^0
- $k=0$
- Iterate (over k) until $\log P(O;\theta)$ converges:
	- Expectation Step

Compute $P(h|o; \theta^k)$ for all $o \in O$ for all h

– Maximization step

$$
\theta^{k+1} \leftarrow \operatorname*{argmax}_{\theta} \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta)
$$

Expectation Maximization

• Initialize θ^0

Let's put this to work

- $k=0$
- Iterate (over k) until $\log P(O;\theta)$ converges:
	- Expectation Step

Compute $P(h|o; \theta^k)$ for all $o \in O$ for all h

$$
P(k, o) = P(k)Pk(o) \qquad P(o) = \sum_{k} P(k)Pk(o)
$$

$$
P(k, o) = P(k)Pk(o) \qquad P(o) = \sum_{k} P(k)Pk(o)
$$

$$
P(k|o) = \frac{P(k)P(o|k)}{P(o)} \qquad P(k|o) = \frac{P(k)P_k(o)}{\sum_{k'} P(k')P_{k'}}
$$

 $\bm{\left(o \right)}$

Expectation Maximization

• Initialize θ^0

Let's put this to work

- $l=0$
- Iterate (over l) until $\log P(O;\theta)$ converges:
	- Expectation Step

Compute $P(k|o; \theta^l)$ for all $o \in O$ for all k

$$
P_{cur}(k|o) = \frac{P(k)P_k(o)}{\sum_{k'} P(k')P_{k'}(o)}
$$

Using the current set of estimated parameters

Expectation Maximization

• Initialize θ^0

Let's put this to work

- $l=0$
- Iterate (over l) until $\log P(O;\theta)$ converges:
	- Expectation Step

Compute $P(k|o; \theta^l)$ for all $o \in O$ for all k

$$
\underset{\theta}{\operatorname{argmax}} \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta)
$$

$$
\underset{\theta}{\text{argmax}} \sum_{o \in O} \sum_{k} P_{cur}(k|o) \log P(k) P_k(o)
$$

$$
\underset{\theta}{\operatorname{argmax}} \sum_{o \in O} \sum_{k} P(h|o; \theta^k) \log P(h, o; \theta)
$$
\n
$$
\underset{\theta}{\operatorname{argmax}} \sum_{o \in O} \sum_{k} P_{cur}(k|o) \log P(k) P_k(o) + \lambda \left(\sum_{k} P(k) - 1\right) + \sum_{k} \lambda_k \left(\sum_{o} P_k(o) - 1\right)
$$

Differentiate and equate to 0

11755/18797 26

$$
P_{cur}(k|o) = \frac{P(k)P_k(o)}{\sum_{k'} P(k')P_{k'}(o)} \qquad \frac{\left| P_k(o) = \frac{N_o P_{cur}(k|o)}{\sum_{o'} N_{o'} P_{cur}(k|o')}\right|}{P(k) = \frac{\sum_{o} N_o P_{cur}(k|o)}{\sum_{k'} \sum_{o} N_{o} P_{cur}(k'|o)}}
$$

 $21₁$

 \blacksquare

$$
P_{cur}(k|o) = \frac{P(k)P_k(o)}{\sum_{k'} P(k')P_{k'}(o)}
$$
\n
$$
P(k) = \frac{P(k)P_k(o)}{\sum_{k'} P(k')P_{k'}(o)}
$$
\n
$$
P(k) = \frac{\sum_o N_o P_{cur}(k|o')}{\sum_{k'} \sum_o N_o P_{cur}(k'|o)}
$$
\n
$$
P(k) = \frac{\sum_o N_o P_{cur}(k|o)}{M}
$$
\n
$$
P(k) = \frac{\sum_o N_o P_{cur}(k'|o)}{M}
$$

Examples of incomplete data: missing information in Gaussian mixtures

Examples of incomplete data: missing information in Gaussian mixtures

$$
P(k, o) = P(k)N(o; \mu_k, \Sigma_k)
$$

$$
P(k|o) = \frac{P(k)N(o; \mu_k, \Sigma_k)}{\sum_{k'} P(k')N(o; \mu_{k'}, \Sigma_{k'})}
$$

Expectation Maximization

• Initialize θ^0

Let's put this to work

- $l=0$
- Iterate (over l) until $\log P(O;\theta)$ converges:
	- Expectation Step

Compute $P(k|o; \theta^l)$ for all $o \in O$ for all k

$$
P(k|o; \theta^l) = \frac{P^l(k)N(o; \mu_k^l, \Sigma_k^l)}{\sum_{k'} P^l(k')N(o; \mu_{k'}^l, \Sigma_{k'}^l)}
$$

Using the current set of estimated parameters

Differentiate and equate to 0

11755/18797 32

$$
P^{l+1}(k) = \frac{1}{N} \sum_{o} P(k|o; \theta^l)
$$

$$
\mu_k^{l+1} = \frac{1}{\sum_o P(k|o; \theta^l)} \sum_o P(k|o; \theta^l) o
$$

$$
\Sigma_k^{l+1} = \frac{1}{\sum_o P(k|o; \theta^l)} \sum_o P(k|o; \theta^l) (o - \mu_k^{l+1}) (o - \mu_k^{l+1})^T
$$

$$
P(k|o; \theta^{l}) = \frac{P^{l}(k)N(o; \mu_{k}^{l}, \Sigma_{k}^{l})}{\sum_{k'} P^{l}(k')N(o; \mu_{k'}^{l}, \Sigma_{k'}^{l})}
$$

$$
\frac{P^{l+1}(k) = \frac{1}{N} \sum_{o} P(k|o; \theta^{l})}{p^{l+1}(k) = \frac{1}{N} \sum_{o} P(k|o; \theta^{l})}
$$
\n
$$
\frac{P^{l+1}(k) = \frac{1}{N} \sum_{o} P(k|o; \theta^{l})}{k')N(o; \mu_{k'}^{l}, \Sigma_{k'}^{l})}
$$
\n
$$
\mu_{k}^{l+1} = \frac{1}{\sum_{o} P(k|o; \theta^{l})} \sum_{o} P(k|o; \theta^{l}) (o - \mu_{k}^{l+1}) (o - \mu_{k}^{l+1})^T
$$
\nE\nM

11755/18797 34

Poll 1: tinyurl.com/mlsp23-20231109-1

- Select all true statements
	- The E step in the EM algorithm computes the a posteriori probability distribution of missing variables
	- The E step in EM maximizes the expectation over missing variables of the log of the probability of the complete data
	- The M step in the EM algorithm computes the a posteriori probability distribution of missing variables
	- The M step in EM maximizes the expectation over missing variables of the log of the probability of the complete data

Poll 1

- Select all true statements
	- The E step in the EM algorithm computes the a posteriori probability distribution of missing variables
	- The E step in EM maximizes the expectation over missing variables of the log of the probability of the complete data
	- The M step in the EM algorithm computes the a posteriori probability distribution of missing variables
	- The M step in EM maximizes the expectation over missing variables of the log of the probability of the complete data
That's so much math, but what does it really do?

- What does EM practically do when we have missing data?
	- What is the intuition behind how it resolves the problem?

Missing Information about Underlying Data

Missing Information about Underlying Process

Missing Information about Underlying Data

Missing Information about Underlying Process

Recall this: Gaussian estimation with incomplete vectors

- These are the actual data we have: A set $O = \{o_1, ..., o_N\}$ of *incomplete* vectors
	- Comprising only the observed components of the data
- We are *missing* the data $M = \{m_1, ..., m_N\}$
	- Comprising the missing components of the data
- The complete data includes both the observed and missing components $X = \{x_1, ..., x_N\}, \qquad x_i = (o_i, m_i)$ Keep in mind that at the complete data are not available (the missing components are missing)

41

Let's look at a single vector

- These are the actual data we have: A set $O = \{o_1, ..., o_N\}$ of *incomplete* vectors
	- Comprising only the observed components of the data
- We are *missing* the data $M = \{m_1, ..., m_N\}$
	- Comprising the missing components of the data
- The complete data includes both the observed and missing components $X = \{x_1, ..., x_N\}, \qquad x_i = (o_i, m_i)$ Keep in mind that at the complete data are not available (the missing components are missing)

42

- We will try to complete the vector by filling in the missing value with *plausible* values that match the observed components
- Plausible: Values that "go with" the observed values, according to the distribution of the data

• Question: If we have a very large number of vectors from the Gaussian, all with the same observed components o , what would their missing components be?

- Question: If we have a very large number of vectors from the Gaussian, all with the same observed components o , what would their missing components be?
- We would see every possible value, but in proportion to their probability: $P(m|o)$ (conditioned on the observations)

Completing incomplete vectors

- Complete vector by filling up the missing components with every possible value
	- I.e. make many complete "clones" of the incomplete vector
- But assign a *proportion* to each value
	- Proportion is $P(m|o)$
		- Which can be computed if we know $P(x) = P(o, m)$

Gaussian estimation with incomplete vectors

- "Expand" every incomplete vector out into all possibilities
	- In appropriate proportions $P(m|o)$
	- For already complete observations, there is no expansion
- Estimate the statistics from the expanded data

Gaussian estimation with incomplete vectors

- "Expand" every incomplete vector out into all possibilities
	- In appropriate proportions $P(m|o)$ \longleftarrow From a previous estimate of the model
	- For already complete observations, there is no expansion
- Estimate the statistics from the expanded data

Estimating the Gaussian Parameters

- Compute the statistics from the (proportionately) expanded set
- Let $x_i(m)$ be the "completed" version of the observation o_i , when the missing components are filled with value m

$$
x_i(m)=(m,o_i)
$$

-
- Estimate the statistics from the expanded data

statistics from the (proportionately) expanded set
\nthe "complete" version of the observation
$$
o_i
$$
, when the missing components are
\nue *m*
\n
$$
x_i(m) = (m, o_i)
$$
\n1 be one such vector for every value of *m*
\nstatistics from the expanded data
\n
$$
\mu^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^k) x_i(m) dm
$$
\n
$$
\Sigma^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^k) (x_i(m) - \mu^{k+1}) (x_i(m) - \mu^{k+1})^T dm
$$

EM for computing the Gaussian Parameters

- $)$
-

$$
\mathbf{u}_{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) x_{i}(m) dm
$$
\nwhere $x_{i}(m) = (m, o_{i})$ and the parameters of $P(m|o; \theta^{k})$ are derived from the $P(x; \theta^{k})$.\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) (x_{i}(m) - \mu^{k+1}) (x_{i}(m) - \mu^{k+1})^{T} dm
$$
\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) (x_{i}(m) - \mu^{k+1}) (x_{i}(m) - \mu^{k+1})^{T} dm
$$
\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) (x_{i}(m) - \mu^{k+1}) (x_{i}(m) - \mu^{k+1})^{T} dm
$$
\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) (x_{i}(m) - \mu^{k+1}) (x_{i}(m) - \mu^{k+1})^{T} dm
$$
\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) (x_{i}(m) - \mu^{k+1}) (x_{i}(m) - \mu^{k+1})^{T} dm
$$
\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) (x_{i}(m) - \mu^{k+1}) (x_{i}(m) - \mu^{k+1})^{T} dm
$$
\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m|o; \theta^{k}) (x_{i}(m) - \mu^{k+1}) (x_{i}(m) - \mu^{k+1})^{T} dm
$$
\n
$$
u^{k+1} = \frac{1}{N} \sum_{o \in O
$$

 $)$

Missing Information about Underlying Data

Missing Information about Underlying Process

The GMM problem of incomplete data: missing information

- Problem : We are not given the actual Gaussian for each observation
	- Our data are incomplete
- What we want : (o_1, k_1) , (o_2, k_2) , (o_3, k_3) ...
- What we have: o_1 , o_2 , o_3 ...

• Every Gaussian is capable of generating this vector – With different probabilities

- Every Gaussian is capable of generating this vector – With different probabilities
- If we saw a large number of these vectors, how many of these would have come from each Gaussian?

- Every Gaussian is capable of generating this vector
	- With different probabilities
- If we saw a large number of these vectors, how many of these would have come from each Gaussian
- All of them, but in proportion to $P(k|o)$

Completing incomplete vectors

- Complete the data by attributing to every Gaussian
	- I.e. make many complete "clones" of the data
- But assign a *proportion* to each completed vector
	- Proportion is $P(k|o)$
		- Which can be computed if we know $P(k)$ and $P(o|k)$
- Then estimate the parameters using the complete data $_{56}$

Completing incomplete vectors

- Complete the data by attributing to every Gaussian
	- I.e. make many complete "clones" of the data

From previous estimate of model

- But assign a *proportion* to each completed vector
	- Proportion is $P(k|0)$
		- Which can be computed if we know $(P(k))$ and $P(o|k)$
- Then estimate the parameters using the complete data

EM for GMMs

- "Complete" each vector in every possible way:
	- assign each vector to every Gaussian
	-
-

EM for GMMs

- Now you can segregate the vectors by Gaussian
	- The number of segregated complete vectors from each observation will be in proportion to $P(k|o;\theta^l)$ $\binom{l}{1}$ 59 59

EM for GMMs l_1 $p(k|_{Q_1} \cdot \theta^l)$ l_1 $p(k|_{Q_1} \cdot \theta l_1)$ l_1 $p(l_2) \cdot \theta^{k}$ k) $p(k|\rho_{-} \cdot \theta^{l})$ In proportion to $P(k|o_1;\theta^l)$ $P(K|U_2, \sigma)$ $P(K|U_3, \sigma)$ $P(K|U_4, \sigma)$ 2, σ $P(K|0, \sigma)$ $P(K|0, \sigma)$ $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $P(K|0_4, 0)$ $P(0_5, 0)$ $\begin{array}{cc} 4, 0 \end{array}$ $\begin{array}{cc} P(K|0, 0, 0) \end{array}$ $5.07.2$ $\overline{}$ $l+1$ – $\frac{1}{l+1}$ – $\frac{1}{l+1}$ \mathbb{Z}_a \Box $k = \frac{1}{\sum_{i} p(i | \Omega_i)} \sqrt{r}$ $l\sum_{i}$ ($n|0,0$) $O(P(K|U; \sigma))$ $\overline{\mathbf{Q}}$, and the set of $\overline{\mathbf{Q}}$, and $\overline{\mathbf{Q}}$ $l+1$ – $\frac{1}{l+1}$ – $\frac{1}{l+1}$ $l+1$) $(a - \mu^{l+1})$ $l+1\gamma T$ is in the set of $l+1$ $l(c) = u^{l+1}(c)$ $k = \frac{\nabla h(l_{\text{max}})}{\nabla h(l_{\text{max}})}$ k $\int_0^b e^{-\mu} h \, d\mu$) k) - HFH $l\sum_{i}^{l}$ ($n\vert v, v \rangle$) $_0P(K|0; \sigma^2)$ $\overline{\boldsymbol{O}}$ and $\overline{\boldsymbol{O}}$ a

- Now you can segregate the vectors by Gaussian
	- The number of segregated complete vectors from each observation will be in proportion to $P(k|o;\theta^l)$ $\binom{l}{0}$ 60 60

EM for GMMs

- Initialize μ_k^0 and Σ_k^0 for all k
- \bullet Iterate (over l):
	- $-$ Compute $P(k|o;\theta^l)$ for all o
		- Compute the proportions by which o is assigned to all Gaussians
	- Update:

$$
-\mu_k^{l+1} = \frac{1}{\sum_o P(k|o;\theta^l)} \sum_o P(k|o;\theta^l) o
$$

- $\sum_k^{l+1} = \frac{1}{\sum_o P(k|o;\theta^l)} \sum_o P(k|o;\theta^l) (o - \mu_k^{l+1}) (o - \mu_k^{l+1})^T$

General EM principle

- "Complete" the data by considering every possible value for missing data/variables • Reestimate parameters from the "completed" data
	- In proportion to their posterior probability, given the observation, $P(m|o)$ (or $P(k|o)$)
-

General EM principle

- 'Complete" the data by considering every possible value for missing data/variables **•** ("Complete" the data by considering every possible value for missing data/variables

- In proportion to their posterior probability, given the observation, $P(m|o)$ (or $P(k|o)$)

• Reestimate parameters from the "compl
	- In proportion to their posterior probability, given the observation, $P(m|o)$ (or $P(k|o)$)
-

General EM principle

- Complete" the data by considering every possible value for missing data/variables **EXAMPLE FOR ALLEADER (FOR THE SET OF PERDUCED AT A proportion to their posterior probability, given the deservation,** $P(m|o)$ **(or** $P(k|o)$ **)

Fficient to "complete" the data by** *s*
	- In proportion to their posterior probability, given the observation, $P(m|o)$ (or $P(k|o)$)

Sufficient to "complete" the data by sampling missing values from the posterior $P(m|o)$ (or $P(k|o)$) instead

Alternate EM principle

- "Complete" the data by sampling possible value for missing data/variables from $P(m|o)$ (or $P(k|o)$)
-

• Initially, some data/information are missing htially, some data/information are missing

- Initially, some data/information are missing Fitally, some data/information are missing
Fitalize model parameters
- Initialize model parameters

- Initially, some data/information are missing Finally, some data/information are missing
Finalize model parameters
Finalize:
Finalize:
The model parameters
 $\frac{d\mathbf{r}}{dt}$ and the model parameters
- Initialize model parameters
- Iterate:

- Initially, some data/information are missing
- Initialize model parameters
- Iterate
	- Complete the data according to the posterior probabilities $P(m|o)$ computed by the current model
		- By explicitly considering every possible value, with its posterior-based proportionality
		- Or by sampling the posterior probability distribution $P(m|o)$

- Initially, some data/information are missing
- Initialize model parameters
- Iterate
	- Complete the data according to the posterior probabilities $P(m|o)$ computed by the current model
		- By explicitly considering every possible value, with its posterior-based proportionality
		- Or by sampling the posterior probability distribution $P(m|o)$
	-

- Initially, some data/information are missing
- Initialize model parameters
- **Iterate**
	- Complete the data according to the posterior probabilities $P(m|o)$ computed by the current model
		- By explicitly considering every possible value, with its posterior-based proportionality
		- Or by sampling the posterior probability distribution $P(m|o)$
	-

Poll 2: tinyurl.com/mlsp23-20231109-2

- EM attempts to "complete" the data, and estimate the model parameters with the now completed data
	- True
	- False
- It completes the data by drawing missing values in proportion to $P(m|o)$, where o are the observed data
	- True
	- False
- Instead of attempting to complete the data with every possible value of the mow completed data

- True

- False

It completes the data by drawing missing values in proportion to P(m|o), where o

are the observed data

- True

- False

Instead of attempting to complete the data with every possible parameters with the completed data
	- True
	- False
Poll 2

- EM attempts to "complete" the data, and estimate the model parameters with the now completed data
	- True
	- False
- It completes the data by drawing missing values in proportion to $P(m|o)$, where o are the observed data
	- True
	- False
- Instead of attempting to complete the data with every possible value of the mow completed data

- True

- False

It completes the data by drawing missing values in proportion to P(m|o), where o

are the observed data

- True

- False

Instead of attempting to complete the data with every possible parameters with the completed data
	- **True**
	- False

Lets try it out…

Your friendly neighborhood gamblers

- Two gamblers shoot dice in a closed room
	- The dice are differently loaded for the two of them
- A crazy crier randomly select one of the them and calls out his number
	- But doesn't mention whose number he chose
- You only see the numbers
	- But do not know which of them rolled the number
- How to determine the probability distributions of the two dice?

• The "color" of the dice (multinomial) is missing

- The "color" of the dice (multinomial) is missing
- "Complete" each observation in every possible way:
	- assign each vector to every multinomial
	- $-$ In proportion $P(k|o;\theta^{l})$ (computed from current model estimate)
- Compute statistics from "completed" data

$$
P(k|o) = \frac{P(k)P_k(o)}{\sum_{k'} P(k')P_{k'}(o)}
$$

But now for something somewhat different

- Caller rolls a dice and flips a coin
- He calls out the number rolled if the coin shows head
- Otherwise he calls the number+1
- Can we estimate p(heads) and p(number) for the dice from a collection of outputs

• The "face" of the coin is missing

- The "face" of the coin is missing
- "Complete" each observation in every possible way:
	- assign each vector to every face
	- $-$ In proportion $P(f|o;\theta^{l})$ (computed from current model estimate)
- Compute statistics from "completed" data

 $|P(o) \propto N_o P(heads|o) + N_{o+1} P(tails|o+1)|$

But now for something somewhat different

- Roller rolls two dice
- He calls out the sum
- Determine P(dice) from a collection of outputs

• The "first" dice info is missing

- The "first" dice info is missing
- Assign it to every value for the first dice

– But note what happens to the second

$$
P(n|o) = P(n, o - n|o) = \frac{P_1(n)P_2(o - n)}{\sum_{m=1}^{6} P_1(m)P_2(o - m)}
$$

$$
P(n, o - n | o) = \frac{P_1(n)P_2(o - n)}{\sum_{m=1}^{6} P_1(m)P_2(o - m)}
$$

$$
P_1(n) \propto \sum_{o=2}^{12} N_k P(n, o - n|o)
$$

Poll 3: tinyurl.com/mlsp23-20231109-3

- The EM algorithm can be applied in any problem with missing data
	- True
	- False
- EM can also be applied when the observed data are drawn from the distribution obtained through the convolution of two component distributions which must be estimated
	- True
	- False

Poll 3

- The EM algorithm can be applied in any problem with missing data
	- True
	- False
- EM can also be applied when the observed data are drawn from the distribution obtained through the convolution of two component distributions which must be estimated
	- True
	- False

In closing

- Have seen a method for learning the parameters of generative models when some components of the data (or the underlying drawing process) are not observed
- The technique operates by "completing" incomplete data by filling in missing values in proportion to their posterior probabilities
- Coming up : apply this concept to various problems