
1

Introduction to the course &

The pairwise sequence alignment problem

12/24/2023 Algorithms in Computational Biology CS3571 RUNI Fall, 2023/4

Lecture 1

2

Computational biology

12/24/2023 Algorithms in Computational Biology CS3571

Using computational and statistical tools in biological research

• Algorithms

• Mathematical modeling

• Statistics

3

Computational biology

12/24/2023 Algorithms in Computational Biology CS3571

Molecular sequence

data in the past two
decades

4

This course

We will cover classical topics in computational biology, focusing on
sequence analysis:

• Sequence alignment

• Hidden Markov Models (HMMs)

• Phylogenetic reconstruction – studying evolution and history

Emphasis will be on algorithmic aspects – design and proof of properties

We will also address the problem of modeling complex problems

12/24/2023 Algorithms in Computational Biology CS3571

512/24/2023 Algorithms in Computational Biology CS3571

This course

What do you need to know?

• Algorithms

• Probability

The biological background required will be provided throughout the
course. For a basic introduction of the main concepts, see video
uploaded to Panoptro + slides on Piazza. Feel free to ask me questions
and consult your best friend – Google.

https://runi.cloud.panopto.eu/Panopto/Pages/Sessions/List.aspx?folderID=89184385-d34d-4dc6-967d-b08900c331ee
https://piazza.com/runi.ac.il/fall2023/cs3571/resources

612/24/2023 Algorithms in Computational Biology CS3571

This course

Material

• The course doesn’t follow a specific text book, but the following can be
useful if you are looking for a reference:
▪ Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.

Richard Durbin (Editor), S. Eddy, A. Krogh, G. Mitchison (Contributor),

Cambridge University Press, Cambridge, UK.
http://books.google.co.il/books/about/Biological_sequence_analysis.html?id=R5P2GlJvigQC&redir_esc=y

▪ Inferring Phylogenies.

Joseph Felsenstein,

Sinauer Associates, Sunderland, Massachusetts, USA.
http://www.sinauer.com/inferring-phylogenies.html

712/24/2023 Algorithms in Computational Biology CS3571

Administration

Lectures:

• Core material will be summarized in slides

• Lectures recorded via Zoom

812/24/2023 Algorithms in Computational Biology CS3571

Administration

Lectures:

• Core material will be summarized in slides

• Lectures recorded via Zoom

Homework:

• Counts for 70% of the final grade

• 4 assignments. Each assignment will contain theory/ algorithms questions
and a practical component involving implementation in code and analysis

• Submit in pairs! But do think about problems individually

• Concluding assignment – 30% of the final grade. Details will be given later

912/24/2023 Algorithms in Computational Biology CS3571

Administration

Communication:

• Through the piazza website: https://piazza.com/runi.ac.il/fall2023/cs3571/info

• Office hours: Tuesday @ 17:00 in my office C127 in CS building, or via Zoom

• Contact through piazza or by e-mail: ilan.gronau@runi.ac.il

https://piazza.com/runi.ac.il/fall2023/cs3571/info

10

Lecture overview

•Formulation of the alignment problem

•An efficient algorithm for global alignment

•An efficient algorithm for local alignment

•Other variants of the alignment problem

Brief background in molecular biology
[see video lecture on Panoptro]

11

Lecture overview

•Formulation of the alignment problem 

•An efficient algorithm for global alignment

•An efficient algorithm for local alignment

•Other variants of the alignment problem

Brief background in molecular biology
[see video lecture on Panoptro]

12

Pairwise sequence alignment

12/24/2023

Genome Browser Example: looking up the promoter region of a mouse gene in the human

genome (the 1 kb sequence before the start of a gene is typically involved in regulation of gene expression)

1. Open Mouse genome browser on the region around gene PAX9:
http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=mm10&position=chr12%3A56694766-56724210

2. Click on gene (blue line with changing widths)

3. Under ‘Sequence and Links to Tools and Databases’ table click on ‘Genomic sequence’

4. Select only ‘promoter / Upstream 1000 bp’ and press ’submit’ and then Copy all text of sequence

5. Open Blast webpage in the National Center for Bioinformatics (NCBI): http://blast.ncbi.nlm.nih.gov/Blast.cgi

6. Click on ‘nucleotide blast’

7. Paste sequence under ‘Query Sequence’

8. Under ‘Database’ select Genomic + transcript database and then ‘Human genomic plus transcript
(Human G+T)’

9. BLAST away…

Algorithms in Computational Biology CS3571

http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=mm10&position=chr12:56694766-56724210
http://blast.ncbi.nlm.nih.gov/Blast.cgi

13

Pairwise sequence alignment

12/24/2023

Genome Browser Example:
• Query sequence is the 1000 bases

before the PAX9 gene in the Mouse
genome.

• A segment of length 411 of the query
sequence (positions 298-708) is
matched against a segment of length
416 on Chromosome 14 of the Human
genome.

• This matching also includes
mismatched bases (e.g. C–T), and gaps
(base matched to nothing).

Algorithms in Computational Biology CS3571

14

Pairwise sequence alignment

12/24/2023

The objective: find and quantify similarities between sequences (DNA / RNA / protein)

The premise: sequence similarity indicates shared ancestry (homology) and related function.

Example:
AGTTCTTGCGC-ATCGATTCCGAGCAGGCGTAAT

AGTCCTTGCGCCAT-GAT---GAACAGGCTTAAT

Alignment:
• Expand sequences to be the same length by adding gap symbols (-)
• Each column of the alignment is either a pair of letters or a letter mapped to a gap symbol,

indicating sequence insertion or deletion (indel)
• Maximize matches and minimize mismatches and gaps (also called indels – insertion/deletion)

Algorithms in Computational Biology CS3571

15

Global alignment – formulation

12/24/2023

Input: two sequences S1..n, T1..m over the same alphabet 

Valid alignment: two sequences S’ and T’ over the alphabet {-} that satisfy:

• Removing the gap labels (‘-’) from S’ and T’ gives S and T, respectively
• S’ and T’ have the same length L ≥ max{m,n})

➔The alignment is represented by a sequence of pairs (columns) (𝑆′
𝑙 , 𝑇′

𝑙) 𝑖=1
𝐿 , each

belonging to the Cartesian product ({-}) x ({-})

Scoring alignments:
• The score is the sum of scores across columns (additivity)
• The score of each column is given by a pre-specified scoring scheme

 : ({-}) x ({-}) → R

Algorithms in Computational Biology CS3571

16

Example

12/24/2023

Input: S = AGTTCTTGCGCATCGATTCCGAGCAGGCGTAAT

 T = AGTCCTTGCGCCATGATGAACAGGCTTAAT

Valid alignments: A1 : S’ = AGTTCTTGCGCATCGATTCCGAGCAGGCGTAAT

 T’ = AGTCCTTGCGCCAT---GATGAACAGGCTTAAT

 A2 : S’ = AGTTCTTGCGC-ATCGATTCCGAGCAGGCGTAAT

 T’ = AGTCCTTGCGCCAT-GAT---GAACAGGCTTAAT

Scoring alignments:
(x,x) = 2 match

(x,y) = -2 (x≠y) mismatch (substitution)

(x,-) = (-x) = -3 insertion/deletion (indel)

(A1) = 23x2 + 8x(-2) + 3x(-3) = 21
(A2) = 26x2 + 3x(-2) + 5x(-3) = 31

Algorithms in Computational Biology CS3571

17

Alignment scores

12/24/2023

We will discuss how scores are determined in Lecture #9

The scoring scheme should capture biochemical features of interest

• The idea is typically to try to maximize the matches and penalize for mutations

• Point mutations (base substitutions) are more common than insertions / deletions and
are thus typically penalized less

• Some substitutions are more common than others
• transitions (A→G and C→T) vs. transversions ({A,G}→{C,T}) in DNA
• similarities between amino acids (e.g., size, charge) in protein sequences

• Most scoring schemes are symmetric (because direction of operation is typically unknown)

Algorithms in Computational Biology CS3571

18

Alignment with maximum score

12/24/2023

The number of possible alignments of
two sequences of length m and n is

2

(,)
m n m n

A m n
m m

   
   
   

+ +
 

(left as self exercise)

An exhaustive approach is unfeasible

The challenge is to decide when to open gaps, and this often requires
“looking ahead” to see whether this ends up paying off

Algorithms in Computational Biology CS3571

19

Lecture overview

•Formulation of the alignment problem

•An efficient algorithm for global alignment 

•An efficient algorithm for local alignment

•Other variants of the alignment problem

20

Recursive formulation

12/24/2023

Consider the last column of an alignment of S1..n and T1..m
and distinguish between 3 cases:

******************Sn

******************Tm

match / mismatch
******************Sn

******************-

Insertion in S
******************-

******************Tm

Insertion in T

Key observation: if an alignment of S1..n and T1..m has maximum score, then one of the
following must hold:
• Last column (Sn ,Tm) preceded by a max-score alignment of S1..n-1 and T1..m-1

• Last column (Sn ,-) preceded by a max-score alignment of S1..n-1 and T1..m

• Last column (- ,Tm) preceded by a max-score alignment of S1..n and T1..m-1

Algorithms in Computational Biology CS3571

alignment of S1..n-1 and T1..m-1 alignment of S1..n-1 and T1..m alignment of S1..n and T1..m-1

21

Recursive argument – proof

12/24/2023 Algorithms in Computational Biology CS3571

Claim: if an alignment of S1..n and T1..m has maximum score, then one of the following must hold:

• Last column (Sn ,Tm) preceded by a max-score alignment of S1..n-1 and T1..m-1

• Last column (- ,Tm) preceded by a max-score alignment of S1..n and T1..m-1

• Last column (Sn ,-) preceded by a max-score alignment of S1..n-1 and T1..m

Proof: Let A be a max-score alignment of S1..n and T1..m. Its last column must be one of the
following: (Sn ,Tm), (Sn ,-), or (- ,Tm). We prove the claim case by case

22

Recursive argument – proof

12/24/2023 Algorithms in Computational Biology CS3571

Proof: Let A be a max-score alignment of S1..n and T1..m. Its last column
must be one of the following: (Sn ,Tm), (Sn ,-), or (- ,Tm).

Case I: If the last column of A is (Sn ,Tm), then the remaining columns
represent an alignment A’ of S1..n-1 and T1..m-1.

We will prove that for any alignment A’’ of S1..n-1 and T1..m-1 we have
  (A’’) ≤  (A’)

Consider the alignment A’’’ obtained by adding column (Sn ,Tm) to A’’

This is an alignment of S1..n and T1..m, so by optimality of A, we have
  (A’’’) ≤  (A)

So:  (A’’) =  (A’’’) -  (Sn ,Tm) ≤  (A) -  (Sn ,Tm) =  (A’)

➔ The other two cases are proven similarly

A’

A’’

A

Sn

Tm

A’’’

Sn

Tm

Q.E.D

23

Recursive formulation

12/24/2023

Recursive algorithm:

• Find maximum score alignments for

• Determine max{ A[n-1,m-1]+(Sn ,Tm) ; A[n-1,m] +(Sn ,-) ; A[n,m-1] +(- ,Tm) }

• The case resulting in maximum implies the maximum score alignment

A[n,m]

A[n-1,m] A[n-1,m-1] A[n,m-1]

• S1..n-1 and T1..m-1 (score A[n-1,m-1])
• S1..n-1 and T1..m (score A[n-1,m])
• S1..n and T1..m-1 (score A[n,m-1])

Algorithms in Computational Biology CS3571

24

Recursive formulation – complexity

12/24/2023

Recursion tree:

• Each recursion instance calls 3 daughter instances

• Depth of recursion tree is between max{m,n} and m+n

• Time complexity of naïve implementation is Ω(3n)

A[n,m]

A[n-1,m] A[n-1,m-1] A[n,m-1]

Algorithms in Computational Biology CS3571

25

Recursive formulation – complexity

12/24/2023

A[n,m]

A[n-1,m]

A[n-1,m-1]

A[n,m-1]

Recursion tree:

• Each recursion instance calls 3 daughter instances

• Depth of recursion tree is between max{m,n} and m+n

• Time complexity of naïve implementation is Ω(3n)

Notice:

• The paths in the recursion tree intersect

• There are only mxn distinct nodes in tree

Algorithms in Computational Biology CS3571

26

Recursive formulation – intersecting call tree

12/24/2023

A[n,m]

A[n,m-1]

A[n-1,m-1]

A[n-1,m]

A[n-2,m-2]

A[n-2,m-1]

A[n-2,m]

A[n-1,m-2]

A[n-1,m-2]

• Recursion tree can be represented by an m x n matrix

• The values can be computed using dynamic programming in O(mn) time and space

• Pay in space to save in time

Algorithms in Computational Biology CS3571

27

Needleman-Wunsch algorithm for optimal global alignment

12/24/2023

Input: two sequences S1..n, T1..m over the same alphabet 
 scoring function: : ({-}) x ({-}) → R

Objective: Compute a matrix A s.t. A[i,j] holds the max score alignment
of S1..i and T1..j

Initialization:
• Create empty matrix A with rows indexed -1..n and columns indexed -1..m
• Row/column 0 correspond to alignments with all-gaps in one sequence
• Row/column -1 are used to deal with edge cases and are initialized to -∞
• Initialize score of empty alignment: A[0,0] = 0

Needleman, S.B. and Wunsch, C.D.
(Jour Mol Biol 1970)
Sankoff D., (PNAS 1972)

-∞

-∞

0

Algorithms in Computational Biology CS3571

28

Needleman-Wunsch algorithm for optimal global alignment

12/24/2023

Input: two sequences S1..n, T1..m over the same alphabet 
 scoring function: : ({-}) x ({-}) → R

Objective: Compute a matrix A s.t. A[i,j] holds the max score alignment
of S1..i and T1..j

Initialization:
• Create empty matrix A with rows indexed -1..n and columns indexed -1..m
• Initialize A[0,0] = 0 and for each i=-1..n and j=-1.. n, A[i,-1] = A[-1, j] = -∞

Needleman, S.B. and Wunsch, C.D.
(Jour Mol Biol 1970)
Sankoff D., (PNAS 1972)

-∞

-∞

0

Algorithms in Computational Biology CS3571

Main loop: (ascending order of columns/rows)

• For each i=0..n and j=0..m compute A[i,j] as follows:

 A[i,j] = max{ A[i-1,j-1]+(Si ,Tj) ; A[i-1,j] +(Si ,-) ; A[i,j-1] +(- ,Tj) }

Keep a pointer to the cell that results in max value A[i,j]

A[i-1,j]A[i-1,j-1]

A[i,j-1]

Output: trace back alignment from final cell A[n,m]

29

Needleman-Wunsch algorithm example

12/24/2023

A:

Update step:
A[i,j] = max{

 A[i-1,j-1]+(Si ,Tj)
 A[i-1,j] +(Si ,-)
 A[i,j-1] +(- ,Tj)

}

Score function:
(x,x) = 2

(x,y) = -2 (x≠y)

(x,-) = (-x) = -3

0

G C C A T G A T G A A C

G
C
A
T
C
G
A
T
T
C
C
G
A
G
C

Input: S = GCATCGATTCCGAGC T = GCCATGATGAAC

-3 -6 -9 -12

-3
-6
-9

-12

2

30

Needleman-Wunsch algorithm example

12/24/2023

A:

Update step:
A[i,j] = max{

 A[i-1,j-1]+(Si ,Tj)
 A[i-1,j] +(Si ,-)
 A[i,j-1] +(- ,Tj)

}

Score function:
(x,x) = 2

(x,y) = -2 (x≠y)

(x,-) = (-x) = -3

0 -3 -6 -9 -12 -15 -18 -21 -24 -27 -30 -33 -36

-3 2 -1 -4 -7 -10 -13 -16 -19 -22 -25 -28 -31

-6 -1 4 1 -2 -5 -8 -11 -14 -17 -20 -23 -26

-9 -4 1 2 3 0 -3 -6 -9 -12 -15 -18 -21

-12 -7 -2 -1 0 5 2 -1 -4 -7 -10 -13 -16

-15 -10 -5 0 -3 -2 3 0 -3 -6 -9 -12 -11

-18 -13 -8 -3 -6 -5 0 1 -2 -1 -4 -7 -10

-21 -16 -11 -6 -1 -4 -7 2 -1 -4 1 -2 -5

-24 -19 -14 -9 -4 1 -2 -5 4 1 -2 -1 -4

-27 -22 -17 -12 -7 -2 -1 -4 1 2 -1 -4 -3

-30 -25 -20 -15 -10 -5 -4 -3 -2 -5 0 -3 -2

-33 -28 -23 -18 -13 -8 -7 -6 -5 -8 -7 -2 -1

-36 -31 -26 -21 -16 -11 -10 -9 -8 -3 -6 -5 -4

-39 -34 -29 -24 -19 -14 -13 -8 -5 -6 -1 -4 -7

-42 -37 -32 -27 -22 -17 -16 -11 -8 -3 -6 -3 -6

-45 -40 -35 -30 -25 -20 -19 -14 -11 -6 -5 -6 -1

G
C
A
T
C
G
A
T
T
C
C
G
A
G
C

Input: S = GCATCGATTCCGAGC T = GCCATGATGAAC
There is an error
in this matrix 

G C C A T G A T G A A C

31

Needleman-Wunsch algorithm example

12/24/2023

A: 0 -3 -6 -9 -12 -15 -18 -21 -24 -27 -30 -33 -36

-3 2 -1 -4 -7 -10 -13 -16 -19 -22 -25 -28 -31

-6 -1 4 1 -2 -5 -8 -11 -14 -17 -20 -23 -26

-9 -4 1 2 3 0 -3 -6 -9 -12 -15 -18 -21

-12 -7 -2 -1 0 5 2 -1 -4 -7 -10 -13 -16

-15 -10 -5 0 -3 -2 3 0 -3 -6 -9 -12 -11

-18 -13 -8 -3 -6 -5 0 1 -2 -1 -4 -7 -10

-21 -16 -11 -6 -1 -4 -7 2 -1 -4 1 -2 -5

-24 -19 -14 -9 -4 1 -2 -5 4 1 -2 -1 -4

-27 -22 -17 -12 -7 -2 -1 -4 1 2 -1 -4 -3

-30 -25 -20 -15 -10 -5 -4 -3 -2 -5 0 -3 -2

-33 -28 -23 -18 -13 -8 -7 -6 -5 -8 -7 -2 -1

-36 -31 -26 -21 -16 -11 -10 -9 -8 -3 -6 -5 -4

-39 -34 -29 -24 -19 -14 -13 -8 -5 -6 -1 -4 -7

-42 -37 -32 -27 -22 -17 -16 -11 -8 -3 -6 -3 -6

-45 -40 -35 -30 -25 -20 -19 -14 -11 -6 -5 -6 -1

G
C
A
T
C
G
A
T
T
C
C
G
A
G
C

Input: S = GCATCGATTCCGAGC T = GCCATGATGAAC

Optimal alignments:

S’ = GCATCGATTCCGAGC

T’ = GC--C-ATGATGAAC

S’ = GCATCGATTCCGAGC

T’ = GCCATGAT---GAAC

There is an error in
this matrix 
There is a better
alignment !!

Paths in the DP matrix
correspond to alignments

G C C A T G A T G A A C

32

Needleman-Wunsch algorithm – complexity

12/24/2023

Time:
O(mn) – computing the value in each cell involves three arithmetic operations and
maximization. The traceback operation at the end (recovering the path in the matrix) takes
O(m+n) additional steps.

Space:
O(mn) – matrix A has mn cells and for each cell we hold a number and a pointer

Algorithms in Computational Biology CS3571

33

Food for thought:

12/24/2023

How does the scoring scheme affect the global alignment:

1. Does scaling all scores by a positive multiplicative factor change the optimal alignment?
’(x,y) = a x (x,y) (a > 0)

No. The score of alignments is just multiplied by a constant factor of a:

𝜎′ A = ෍

𝑖=1

𝑙𝑒𝑛 A

𝜎′ A𝑖 = ෍

𝑖=1

𝑙𝑒𝑛 A

𝑎 × 𝜎 A𝑖 = 𝑎 × ෍

𝑖=1

𝑙𝑒𝑛 A

𝜎 A𝑖 = 𝑎 × 𝜎(A)

So, if A and A’ are two alignments and A has higher score under 𝜎: 𝜎 A > 𝜎 A′ ,

then and A also has higher score under 𝜎′: 𝜎′ A = 𝑎 × 𝜎 A > 𝑎 × 𝜎 A′ = 𝜎′(A′)

Algorithms in Computational Biology CS3571

34

Food for thought:

12/24/2023

How does the scoring scheme affect the global alignment:

2. Does shifting all scores by an additive factor change the optimal alignment?
’(x,y) = a + (x,y)

[See Problem 2 in HW #1]

Algorithms in Computational Biology CS3571

36

Food for thought:

12/24/2023

How does the scoring scheme affect the global alignment:

3. In biologically-motivated scoring schemes, it is common to assume that the gap score
is smaller than half of the mismatch score: (x,-) < ½(x,y) .
Why does this make sense?

[See Problem 2 in HW #1]

Algorithms in Computational Biology CS3571

39

Lecture overview

•Formulation of the alignment problem

•An efficient algorithm for global alignment

•An efficient algorithm for local alignment 

•Other variants of the alignment problem

40

Global vs. local alignment

12/24/2023

Global alignment:
• Find the best scoring alignment between two sequences
• Allows us to quantify the level of evolutionary match

(homology) between sequences

However, in many cases we are interested in finding segments
of the two sequences that have a good match

Recall the demonstration we did for the 1000 base promoter
of the PAX9 gene:

S

Algorithms in Computational Biology CS3571

T

41

Global vs. local alignment

Global alignment:
• Find the best scoring alignment between two sequences
• Allows us to quantify the level of evolutionary match

(homology) between sequences

Local alignment:
• Find the best scoring alignment of subsequences of two

given sequences
• Allows us to detect possible regions of homology between

two (long) sequences

S

S

T

T

42

Local alignment

Local alignment:
• Find the best scoring alignment of subsequences of two

given sequences
• Allows us to detect possible regions of homology between

two (long) sequences

S

T

Formulation:
Input: two sequences S1..n , T1..m over the same alphabet 

Output: two sequences S’ and T’ over the alphabet {-} that satisfy:

• Removing the gap labels (‘-’) from S’ and T’ gives Sk..i and Tl..j

for some 1≤ k ≤ i ≤n and 1≤ l ≤ j ≤m.

• S’ and T’ have the same length.

k i

jl

43

Maximum score local alignment

12/24/2023

(x,x) = 2

(x,y) = -2 (x≠y)

(x,-) = (-x) = -3

GAGCAGGCGTAAT

GAACAGGCTTAAT

AGTTCTTGCGC

AGTCCTTGCGC

(S’1,11 ,T’1,11) = 18

C-ATCGATTCCG

CCAT-GAT---G

(S’11,21 ,T’11,17) = -1 (S’21,33 ,T’17,29) = 18

Input: two sequences S1..n, T1..m over the same alphabet 

 + score function : ({-}) x ({-}) → R

Output: local alignment (S’k..i ,T’l..j) with maximum score (sum of column scores)

Example:
 S = AGTTCTTGCGCATCGATTCCGAGCAGGCGTAAT

 T = AGTCCTTGCGCCATGATGAACAGGCTTAAT

Possible local alignments:

Algorithms in Computational Biology CS3571

44

Maximum score local alignment

12/24/2023

Input: two sequences S1..n, T1..m over the same alphabet 

 + score function : ({-}) x ({-}) → R

Output: local alignment (S’k..i ,T’l..j) with maximum score (sum of column scores)

1st try: local alignment is like global alignment for sub-sequences

• Run the NW algorithm for global alignment for every two subsequences of S and T
(¼m(m+1)n(n+1) times)

• Return the alignment with maximum score

• Complexity: O(m3n3)

Algorithms in Computational Biology CS3571

45

Maximum score local alignment

12/24/2023

Input: two sequences S1..n, T1..m over the same alphabet 

 + score function : ({-}) x ({-}) → R

Output: local alignment (S’k..i ,T’l..j) with maximum score (sum of column scores)

2nd try: the NW DP matrix represents optimal alignments for all prefixes of S and T

• Run NW for all suffixes Sk..n and Tl..m (mn times)

• In each run (k, l) keep the alignment starting from the
cell (i, j) in the DP matrix with highest score (of Sk..k+i and Tl..l+j)

• Return the alignment with highest score across all runs

• Complexity: O(m2n2)

Can we do better by defining a DP matrix for max score alignment of suffixes?

Algorithms in Computational Biology CS3571

0

46

Revisiting the Needleman-Wunsch DP matrix:

12/24/2023

We would like to redefine the DP matrix s.t. A[i,j] represents the max-score of any
alignment of a suffix of S1..i and a suffix of T1..j (denote as alignment ending at [i,j])

To do that we have to modifying the recursive claim:

If an alignment has maximum score of all alignments that end at [i,j], then one of the
following must hold:
• Last column (Si ,Tj) preceded by a max-score alignment ending at [i-1 , j-1]
• Last column (- ,Tj) preceded by a max-score alignment ending at [i , j-1]
• Last column (Si ,-) preceded by a max-score alignment ending at [i-1 , j]

• The alignment is empty (score 0)  added case !!

➔ A[i,j] = max{ A[i-1,j-1]+(Si ,Tj) ; A[i-1,j] +(Si ,-) ; A[i,j-1] +(- ,Tj) }

Algorithms in Computational Biology CS3571

47

Revisiting the Needleman-Wunsch DP matrix:

12/24/2023

We would like to redefine the DP matrix s.t. A[i,j] represents the max-score of any
alignment of a suffix of S1..i and a suffix of T1..j (denote as alignment ending at [i,j])

To do that we have to modifying the recursive claim:

If an alignment has maximum score of all alignments that end at [i,j], then one of the
following must hold:
• Last column (Si ,Tj) preceded by a max-score alignment ending at [i-1 , j-1]
• Last column (- ,Tj) preceded by a max-score alignment ending at [i , j-1]
• Last column (Si ,-) preceded by a max-score alignment ending at [i-1 , j]

• The alignment is empty (score 0)  added case !!

Proof: similar to proof of recursive claim for global alignment [left as self exercise]

➔ A[i,j] = max{ 0 ; A[i-1,j-1]+(Si ,Tj) ; A[i-1,j] +(Si ,-) ; A[i,j-1] +(- ,Tj) }

Algorithms in Computational Biology CS3571

48
12/24/2023

Input: two sequences S1..n, T1..m over the same alphabet 
 scoring function: : ({-}) x ({-}) → R

Objective: Compute a matrix A s.t. A[i,j] holds the max score alignment of a
suffix of S1..i and a suffix of T1..j

Initialization:
• Create empty matrix A with rows indexed 0..n and columns indexed 0..m
• Initialize A[i,0] = A[0, j] = 0 and for each i=0..n and j=0.. n

(assuming non-positive scores for gaps)

Algorithms in Computational Biology CS3571

Main loop: (ascending order of columns/rows)

• For each i=1..n and j=1..m compute A[i,j] as follows:

 A[i,j] = max{ 0 ; A[i-1,j-1]+(Si ,Tj) ; A[i-1,j] +(Si ,-) ; A[i,j-1] +(- ,Tj) }

Keep a pointer to the cell that results in max value

Output: find cell A[i,j] with maximum score and trace back from there

Smith-Waterman algorithm for optimal local alignment
Smith , T. F. and Waterman, M.S.
(Jour Mol Biol 1970)

A[i,j]

A[i-1,j]A[i-1,j-1]

A[i,j-1]

0 0 0 0 0

0

0

0

0

49

Smith-Waterman algorithm – example

12/24/2023

A:

Update step:
A[j,l] = max{

 0
 A[j-1,l-1]+(Sj ,Tl)
 A[j-1,l] +(Si ,-)
 A[j,l-1] +(- ,Tl)

}

Score function:
(x,x) = 2

(x,y) = -2 (x≠y)

(x,-) = (-x) = -3

0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 2 0 0 2 0 0 0

0 0 4 2 0 0 0 0 0 0 0 0 2

0 0 1 2 4 1 0 2 0 0 2 2 0

0 0 0 0 1 6 3 0 4 1 0 0 0

0 0 2 2 0 3 4 1 1 2 0 0 2

0 2 0 0 0 0 5 2 0 3 0 0 0

0 0 0 0 2 0 2 7 4 1 5 2 0

0 0 0 0 0 4 1 4 9 6 3 3 0

0 0 0 0 0 2 2 1 6 7 4 1 1

0 0 2 2 0 0 0 0 3 4 5 2 3

0 0 2 4 1 0 0 0 0 1 2 3 4

0 2 0 1 2 0 2 0 0 2 0 0 1

0 0 0 0 3 0 0 4 1 0 4 2 0

0 2 0 0 0 1 2 1 2 3 1 2 0

0 0 4 2 0 0 0 0 0 0 1 0 4

G C C A T G A T G A A C

G
C
A
T
C
G
A
T
T
C
C
G
A
G
C

50

Smith-Waterman algorithm – example

12/24/2023

A: • Find top score in matrix
• Trace back path and alignment

0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 2 0 0 2 0 0 0

0 0 4 2 0 0 0 0 0 0 0 0 2

0 0 1 2 4 1 0 2 0 0 2 2 0

0 0 0 0 1 6 3 0 4 1 0 0 0

0 0 2 2 0 3 4 1 1 2 0 0 2

0 2 0 0 0 0 5 2 0 3 0 0 0

0 0 0 0 2 0 2 7 4 1 5 2 0

0 0 0 0 0 4 1 4 9 6 3 3 0

0 0 0 0 0 2 2 1 6 7 4 1 1

0 0 2 2 0 0 0 0 3 4 5 2 3

0 0 2 4 1 0 0 0 0 1 2 3 4

0 2 0 1 2 0 2 0 0 2 0 0 1

0 0 0 0 3 0 0 4 1 0 4 2 0

0 2 0 0 0 1 2 1 2 3 1 2 0

0 0 4 2 0 0 0 0 0 0 1 0 4

G C C A T G A T G A A C

G
C
A
T
C
G
A
T
T
C
C
G
A
G
C

S’ = CATCGAT

T’ = CAT-GAT

51

Smith-Waterman algorithm – complexity

12/24/2023

Time:
O(mn) – computing the value in each cell involves three arithmetic operations and
maximization. The traceback operation at the end (recovering the path in the matrix)
takes O(m+n) additional steps.

Same as Needleman-Wunsch algorithm for global alignment

Space:
O(mn) – matrix A has mn cells and for each cell we hold a number and a pointer

Algorithms in Computational Biology CS3571

52

Food for thought (II):

12/24/2023

How does the scoring scheme affect the local alignment:

1. Does scaling all scores by a positive multiplicative factor change the optimal
alignment? ’(x,y) = a x (x,y) (a > 0)

No. The score of alignments is just multiplied by a constant factor of a

(same arguments for global alignment apply here)

Algorithms in Computational Biology CS3571

53

Food for thought (II):

12/24/2023

How does the scoring scheme affect the local alignment:

2. Does shifting all scores by an additive factor change the optimal alignment?
’(x,y) = a + (x,y)

[See Problem 2 in HW #1]

Algorithms in Computational Biology CS3571

55

Food for thought (II):

12/24/2023

How does the scoring scheme affect the local alignment:

3. In scoring schemes for local alignment, it’s typically assumed that some pairs have a
positive score and others have a negative score. Why does this make sense?

• If all pairs have a negative score, then the optimal local alignment is an empty
alignment (with score 0). Any other alignment has a negative score.

• If all pairs have a positive score, then the optimal local alignment is a global alignment.
This is because we never discard “overhangs”, since they can be arbitrarily aligned and
contribute positively to the score.

Algorithms in Computational Biology CS3571

56

Lecture overview

•Formulation of the alignment problem

•An efficient algorithm for global alignment

•An efficient algorithm for local alignment

•Other variants of the alignment problem 

 to be continued… next week!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Lecture overview
	Slide 11: Lecture overview
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Lecture overview
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 39: Lecture overview
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56: Lecture overview

