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Lecture overview

•Sequence annotation using HMMs

•Decoding problems in probabilistic models and HMMs

•Recap of multi-variate probability distributions

•Viterbi algorithm for most probable path



3

Lecture overview

•Sequence annotation using HMMs

•Decoding problems in probabilistic models and HMMs

•Recap of multi-variate probability distributions

•Viterbi algorithm for most probable path
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Sequence annotation

1/2/2024 Algorithms in Computational Biology CS3571

Many problems in sequence analysis can be casted as annotation problems, which aim to 
mark a given sequence of symbols with meaningful labels.

A G C T G A C T C A C C T A G A G T C A G
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Sequence annotation

1/2/2024 Algorithms in Computational Biology CS3571

Many problems in sequence analysis can be casted as annotation problems, which aim to 
mark a given sequence of symbols with meaningful labels.

A G C T G A C T C A C C T A G A G T C A G

Examples:

• Finding sequence patterns and local alignment

genomepattern

match match match



6

Sequence annotation

1/2/2024 Algorithms in Computational Biology CS3571

Many problems in sequence analysis can be casted as annotation problems, which aim to 
mark a given sequence of symbols with meaningful labels.

A G C T G A C T C A C C T A G A G T C A G

Examples:

• Finding genomic segments with specific features

genome
Gene 
model

exon exon exonintronintronpromoter
regulatory 
element
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Sequence annotation using hidden Markov models (HMMs)

1/2/2024

Annotation problems can be solved efficiently if you consider the labels as hidden 
(unobserved) states in a stochastic finite state machine (FSM).

Hidden labels / states

Directed edges weighted 
with probabilities
(sum of outgoing weights is 
1 for each state)

alphabet ()

st
at

e
s

Each state has a different 
distribution over possible 
emissions 

The stochastic FSM: Emission probabilities:

s1 s4

s3s2

A G C T G A C T C A C C T A G A G T C A G

s2 s2 s2 s2 s3 s3 s1 s1 s1s1s1 s1 s1 s3 s3 s3 s4 s4 s4 s4s3

Annotation as a Markov chain over hidden states:

Algorithms in Computational Biology CS3571
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Hidden Markov models - history

1/2/2024

• Work on non-linear filtering and smoothing done in the late 1950’s by Ruslan Stratonovich laid 
out much of the techniques used in HMM decoding

• HMMs were formally defined and algorithms proposed in the 1960’s, mostly by Leonard Baum

• Viterbi’s algorithm for most probable path proposed in 1967, three years before Needleman-
Wunsch’s algorithm for most probable alignment

• Widely used in applications in speech/writing recognition and signal analysis  

A G C T G A C T C A C C T A G A G T C A G

s2 s2 s2 s2 s3 s3 s1 s1 s1s1s1 s1 s1 s3 s3 s3 s4 s4 s4 s4s3

Algorithms in Computational Biology CS3571
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Examples of HMMs – sequence motifs

1/2/2024

What are sequence motifs?

Algorithms in Computational Biology CS3571

Credit: www.khanacademy.org

• Transcription factors are proteins that bind to DNA in specific sequence patterns (motifs), 
and regulate transcription

• The binding motif is typically represented by a probabilistic sequence pattern, e.g. 
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Examples of HMMs – sequence motifs
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Sequence motif HMM

1 2 3 4 5 6 7 8 9B

1 2 3 4 5 6 7 8 9

A 0.33 0.01 0.01 0.97 0.01 0.01 0.01 0.97 0.01 qA

G 0.33 0.01 0.97 0.01 0.49 0.01 0.01 0.01 0.01 qG

C 0.33 0.01 0.01 0.01 0.49 0.01 0.97 0.01 0.49 qC

T 0.01 0.97 0.01 0.01 0.01 0.97 0.01 0.01 0.49 qT

B

Emission probabilities: Transition probabilities:

i i+1 9 B p =1

B 1 p = pstart

B B p = 1-pstart

qX     – background probability for base X

Algorithms in Computational Biology CS3571
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Examples of HMMs – sequence motifs

A G C T G A C T C A C C T A G A G T C A G

1 2 3 4 5 6 7 8 9B

1 2 3 4 5 6 7 8 9BB 1 2 3 4 5 6 7 8 9B

Algorithms in Computational Biology CS3571

Detecting sequence motifs using the HMM:
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Examples of HMMs – sequence alignment
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HMM for local alignment with insertions
T = AGGCCTTGC

1 2 3 4 5 6 7 8 9

A pM pMMpMMpMMpMM pMM pMMpMMpMM qA qA

G pMM pM pM pMMpMM pMM pMM pM pMM qG qG

C pMMpMMpMM pM pM pMM pMMpMM pM qC qC

T pMMpMMpMMpMMpMM pM pM pMMpMM qT qT

B Ii

qX     – background probability for base X
pM    – probability of a match pMM – probability of a mismatch (1-pM)/3

Emission probabilities: Transition probabilities:

i i+1 p =1-pgap-pend

B i p = pstart

B B p = 1-9pstart

i Ii p =pgap

i B p =pend

Ii

i+1

Ii

Ii

p = pelong

p = 1-pelong
deletions (gaps in S) can be 
accommodated by adding an 
other series of states D1…D8

1 2 3 4 5 6

I5

B

I1 I2 I3 I4

7 8 9

I6 I7 I8

Algorithms in Computational Biology CS3571

start / end alignment at any 
point in T

allow insertions (gaps in T)
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Examples of HMMs – sequence alignment

1 2 3 4 5 6

I5

B

I1 I2 I3 I4

7 8

I6 I7

A G C T G A C T C A C C T A G A G T C A G

B B B B B B 2 3 I3BB 4 5 6 7 B B B B BI3

Algorithms in Computational Biology CS3571

Inferring local alignment using the HMM:

G C A - - T T G A TT =
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Examples of HMMs – CpG islands

Algorithms in Computational Biology CS3571

What are CpGs and what is their significance?
• CpG represents the C-G di-nucleotide chain  5’–C–(phosphate)–G–3’  

(as opposed to a CG base pair)

• A common mechanism for silencing of genes
(prevention of transcription) in vertebrate species is based on 
methylation of the C in CpGs in a gene body

• Spontaneous de-amination of a methylated C turns it to a T

• A methylated CpG can mutate into:
• TpG (C→T)
• CpA (C→T opposite to G, and this leads to G→A)

C C’ T

Images from https://en.wikipedia.org/wiki/CpG_site

C G

p

5’. . .–C–G–. . .3’

3’. . .–G–C–. . .5’

https://en.wikipedia.org/wiki/CpG_site
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Examples of HMMs – CpG islands

Algorithms in Computational Biology CS3571

What are CpG islands?

• In evolutionary timescales, CpGs get depleted from the genome.

• Roughly 0.8% of pairs are CpG, which is ~5x smaller than
the expected frequency of q(C) x q(G) = 4.4%

• Genomic segments where we see relatively high concentrations 
of CpGs are called CpG islands.

• CpG islands occur around the start of genes, because these 
regions do not tend to get methylated.

• Detecting CpG islands played a central role in finding new genes 
in the human genome.

C C’ T

Images from https://en.wikipedia.org/wiki/CpG_site

C G

p

https://en.wikipedia.org/wiki/CpG_site
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CpG island HMM:

A+

A 1 0 0 0 1 0 0 0

G 0 1 0 0 0 1 0 0

C 0 0 1 0 0 0 1 0

T 0 0 0 1 0 0 0 1

Emission probabilities:

Transition probabilities:

Dinucleotide frequencies 
in CpG islands

G+ C+ T+ A- G- C- T-

(deterministic emissions)

A+ G+ C+ T+ A- G- C- T-

A+

G+

C+ 0.27

T+

A-

G-

C- 0.05

T-

Dinucleotide frequencies 
outside of CpG islands

Transition in / 
out of CpG 
islandsA+ G+

C+T+

A- G-

C-T-

Examples of HMMs – CpG islands

Algorithms in Computational Biology CS3571
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Examples of HMMs – CpG islands

A G C T G A C G G A C G T A G A G T C A G

C- T- G- A- C+ G+ G+ A+ C+G-A- T+ A- G- A- G- T- C- A- G-G+

A+ G+

C+T+

A- G-

C-T-

Algorithms in Computational Biology CS3571

Detecting CpG islands using the HMM:
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Examples of HMMs – noisy bit transmission

A B A pA0 1-pA0

1-pB1 pB1B

1-pAA

1-pBB

pAA pBB Emissions:

Simple two-state HMM used in class demonstrations:

pAB = pAB = 0.8 pA0 = pB1 = 0.9

Algorithms in Computational Biology CS3571

Transitions:
A B 0 1

pAA 1-pAA

1-pBB pBB

A

B
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Examples of HMMs – noisy bit transmission

Generating random sequences using the HMM:
➔ ./hmm-run G 20 (randomly generate a sequence of length 20)

Generated sequence = 00001011111011000111

Generated path = 

 - A - A - A - A - B - B - B - B - B - B - B - B - B - B - A - A - A - B - B - B

   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

   0   0   0   0   1   0   1   1   1   1   1   0   1   1   0   0   0   1   1   1

Probability: 1.68992e-07

➔ ./hmm-run G 20 (re-generate another sequence)

Generated sequence = 00000011000110010001

Generated path = 

 - A - A - A - A - A - A - B - B - A - A - A - B - A - A - A - B - A - A - A - B

   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

   0   0   0   0   0   0   1   1   0   0   0   1   1   0   0   1   0   0   0   1

Probability: 5.94111e-09

➔ ./hmm-run G 20 (re-generate another sequence)

Generated sequence = 00011100001110000110

Generated path = 

 - A - A - A - B - B - B - A - A - A - B - B - B - B - A - A - A - A - B - B - A

   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

   0   0   0   1   1   1   0   0   0   0   1   1   1   0   0   0   0   1   1   0

Probability: 2.37644e-08

1/2/2024 Algorithms in Computational Biology CS3571

A B

1-pAA

1-pBB

pAA pBB

A pA0 1-pA0

1-pB1 pB1B

Emissions:

pA0 = pB1 = 0.9

0 1

pAB = pAB = 0.8

Transitions:

A B

pAA 1-pAA

1-pBB pBB

A

B



20

1/2/2024

Examples of HMMs – noisy bit transmission

Sequence annotation:

Algorithms in Computational Biology CS3571

➔ ./hmm-run G 20 (randomly generate a sequence of length 20)

Generated sequence = 00001011111011000111

Generated path = 

 - A - A - A - A - B - B - B - B - B - B - B - B - B - B - A - A - A - B - B - B

   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

   0   0   0   0   1   0   1   1   1   1   1   0   1   1   0   0   0   1   1   1

Probability: 1.68992e-07

➔ ./hmm-run V 00001011111011000111 (infer the most probable annotation for seq)

Viterbi path = 

 - A - A - A - A - A - A - B - B - B - B - B - B - B - B - A - A - A - B - B - B

   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

   0   0   0   0   1   0   1   1   1   1   1   0   1   1   0   0   0   1   1   1

Probability: 1.68992e-07

A B

1-pAA

1-pBB

pAA pBB

A pA0 1-pA0

1-pB1 pB1B

Emissions:

pA0 = pB1 = 0.9

0 1

pAB = pAB = 0.8

Transitions:

A B

pAA 1-pAA

1-pBB pBB

A

B
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Lecture overview

•Sequence annotation using HMMs

•Decoding problems in probabilistic models and HMMs

•Recap of multi-variate probability distributions

•Viterbi algorithm for most probable path
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Probabilistic Models

1/2/2024 Algorithms in Computational Biology CS3571

Probabilistic model consist of two main components:
• Structural model assumptions  Markov model on states (bounded memory)

(e.g., hidden/observed random variables and dependencies)

• Model parameters   Transition / emission probabilities

Three main tasks:

• Decoding: given data and complete model with parameter values, infer 
hidden components of the model   (e.g., finding best HMM path 
explaining a given sequence of observations )

• Model comparison: given data and two (or more) models (with or without 

model parameters), decide which model fits the data better (which HMM out 
of a given set provides best explanation of given sequence)

• Parameter inference: given data and a model without parameter values, 
infer parameter values that maximize model fit (compute transition and 
emission probabilities that best explain a given set of sequences)

Data X

Model M

Parameters  = {1,..,N}

“Annotated” version of 
data X’

Data likelihood as measure of 
model fit:  P(X|M,)
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A given HMM and observed sequence of symbols X imply a 
probability distribution over annotations S. Decoding questions
ask questions about this distribution, such as:

• What is the most probable annotation?

• What is the most probable state assignment at a given position?

• What is the data likelihood under the assumed model?

1/2/2024

Decoding HMMs

Algorithms in Computational Biology CS3571

HMM

?
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Distribution of annotations / paths in the HMM

X1 X2 X3 X4 … Xn

S3 S4 SnS2S1

• Treat the observed data X = X1… Xn and unobserved (hidden) annotation S = S1… Sn 
as a collection of 2n random variables (RVs).

• Answer questions about the joint probability distribution of X and S given the model

P(X,S|HMM) = ? 

Algorithms in Computational Biology CS3571
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Lecture overview

•Sequence annotation using HMMs

•Decoding problems in probabilistic models and HMMs

•Recap of multi-variate probability distributions

•Viterbi algorithm for most probable path
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Consider a joint probability distribution over three random variables A, B, and C

Marginal distribution:  P(A=a, B=b) = ∑c P(A=a, B=b,C=c) 

Conditional distribution: P(A=a, B=b | C=c) = P(A=a, B=b,C=c) / P(C=c) 

Chain law:    P(A=a, B=b, C=c)   =   P(A=a) P(B=b| A=a) P(C=c| A=a, B=b)

         =   P(B=b) P(C=c| B=b) P(A=a| B=b , C=c)

Conditional independence:

C and A are conditionally independent given B, iff P(C=c| A=a, B=b) = P(C=c| B=b)

This implies that:
     P(A=a, B=b, C=c) =   P(A=a) P(B=b| A=a) P(C=c| A=a, B=b)
   =   P(A=a) P(B=b| A=a) P(C=c| B=b) 

1/2/2024

Probability distribution of three random variables

Algorithms in Computational Biology CS3571
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

2. Use these marginal distributions to compute the conditional distributions
P(A=a| B=b, C=c) and P(A=a| C=c).

3. Compare the conditional distributions to reach a conclusion.

1/2/2024

Class exercise

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑝 𝑎, 𝑏, 𝑐 =
𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.192

0 0 1 0.144

0 1 0 0.048

0 1 1 0.216

1 0 0 0.192

1 0 1 0.064

1 1 0 0.048

1 1 1 0.096

Detailed solution will be published after class
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑝 𝑎, 𝑏, 𝑐 =
𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.192

0 0 1 0.144

0 1 0 0.048

0 1 1 0.216

1 0 0 0.192

1 0 1 0.064

1 1 0 0.048

1 1 1 0.096

𝑎 𝑐 𝑃(𝐴 = 𝑎, 𝐶 = 𝑐)

0 0 0.192+0.048 = 0.24

0 1 0.144+0.216 = 0.36

1 0 0.192+0.048 = 0.24

1 1 0.064+0.096 = 0.16
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑝 𝑎, 𝑏, 𝑐 =
𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.192

0 0 1 0.144

0 1 0 0.048

0 1 1 0.216

1 0 0 0.192

1 0 1 0.064

1 1 0 0.048

1 1 1 0.096

𝑏 𝑐 𝑃(𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0.192+0.192 = 0.384

0 1 0.144+0.064 = 0.208

1 0 0.048+0.048 = 0.096

1 1 0.216+0.096 = 0.312
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑝 𝑎, 𝑏, 𝑐 =
𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.192

0 0 1 0.144

0 1 0 0.048

0 1 1 0.216

1 0 0 0.192

1 0 1 0.064

1 1 0 0.048

1 1 1 0.096

𝑏 𝑐 𝑃(𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0.192+0.192 = 0.384

0 1 0.144+0.064 = 0.208

1 0 0.048+0.048 = 0.096

1 1 0.216+0.096 = 0.312

𝑐 𝑃(𝐶 = 𝑐)

0 0.384+0.096 = 0.48

1 0.208+0.312 = 0.52
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

2. Use these marginal distributions to compute the conditional distributions
P(A=a| B=b, C=c) and P(A=a| C=c).

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑝 𝑎, 𝑏, 𝑐 =
𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.192

0 0 1 0.144

0 1 0 0.048

0 1 1 0.216

1 0 0 0.192

1 0 1 0.064

1 1 0 0.048

1 1 1 0.096

𝑐 𝑃(𝐶 = 𝑐)

0 0.48

1 0.52

𝑏 𝑐 𝑃(𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0.384

0 1 0.208

1 0 0.096

1 1 0.312
𝑎 𝑐 𝑃(𝐴 = 𝑎, 𝐶 = 𝑐)

0 0 0.24

0 1 0.36

1 0 0.24

1 1 0.16
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

2. Use these marginal distributions to compute the conditional distributions
P(A=a| B=b, C=c) and P(A=a| C=c).
→P(A=a| C=c) = P(A=a, C=c) / P(C=c)

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑐 𝑃(𝐴 = 𝑎|𝐶 = 𝑐)

0 0 0.24 / 0.48 = 0.5

0 1 0.36 / 0.52 = 0.6923

1 0 0.24 / 0.48 = 0.5

1 1 0.16 / 0.52 = 0.3077

𝑐 𝑃(𝐶 = 𝑐)

0 0.48

1 0.52

𝑎 𝑐 𝑃(𝐴 = 𝑎, 𝐶 = 𝑐)

0 0 0.24

0 1 0.36

1 0 0.24

1 1 0.16
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

2. Use these marginal distributions to compute the conditional distributions
P(A=a| B=b, C=c) and P(A=a| C=c).
→ P(A=a| B=b, C=c) 
       = P(A=a , B=b, C=c) / P(B=b, C=c) 

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑝 𝑎, 𝑏, 𝑐 =
𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.192

0 0 1 0.144

0 1 0 0.048

0 1 1 0.216

1 0 0 0.192

1 0 1 0.064

1 1 0 0.048

1 1 1 0.096

𝑏 𝑐 𝑃(𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0.384

0 1 0.208

1 0 0.096

1 1 0.312

𝑎 𝑏 𝑐 𝑃(𝐴 = 𝑎|𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.192 / 0.384 = 0.5

0 0 1 0.144 / 0.208 = 0.6933

0 1 0 0.048 / 0.096 = 0.5

0 1 1 0.216 / 0.312 = 0.6933

1 0 0 0.192 / 0.384 = 0.5

1 0 1 0.064 / 0.208 = 0.3077

1 1 0 0.048 / 0.096 = 0.5

1 1 1 0.096 / 0.312 = 0.3077
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

2. Use these marginal distributions to compute the conditional
distributions P(A=a| B=b, C=c) and P(A=a| C=c).

3. Compare the conditional distributions to reach a conclusion.

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑃(𝐴 = 𝑎|𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.5

0 0 1 0.6933

0 1 0 0.5

0 1 1 0.6933

1 0 0 0.5

1 0 1 0.3077

1 1 0 0.5

1 1 1 0.3077

𝑎 𝑐 𝑃(𝐴 = 𝑎|𝐶 = 𝑐)

0 0 0.5

0 1 0.6923

1 0 0.5

1 1 0.3077
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Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and  P(C).

2. Use these marginal distributions to compute the conditional
distributions P(A=a| B=b, C=c) and P(A=a| C=c).

3. Compare the conditional distributions to reach a conclusion.

1/2/2024

Class exercise – solution

Algorithms in Computational Biology CS3571

𝑎 𝑏 𝑐 𝑃(𝐴 = 𝑎|𝐵 = 𝑏, 𝐶 = 𝑐)

0 0 0 0.5

0 0 1 0.6933

0 1 0 0.5

0 1 1 0.6933

1 0 0 0.5

1 0 1 0.3077

1 1 0 0.5

1 1 1 0.3077

𝑎 𝑐 𝑃(𝐴 = 𝑎|𝐶 = 𝑐)

0 0 0.5

0 1 0.6923

1 0 0.5

1 1 0.3077

𝑃(𝐴 = 𝑎|𝐶 = 𝑐)

0.5

0.6933

0.5

0.6933

0.5

0.3077

0.5

0.3077

Yes!
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Same goes with larger sets of random variables A1,A2,…,AN :

Marginal distribution: P(A1,=a1,…,Ai=ai) =   ∑ai+1…an P(A1,=a1,…,Ai=ai , Ai+1,=ai+1,…,An=an) 

Conditional distribution:

      P(A1,=a1,…,Ai=ai | Ai+1,=ai+1,…,An=an)   =   P(A1,=a1,…,Ai=ai , Ai+1,=ai+1,…,An=an)   / P(Ai+1,=ai+1,…,An=an) 

Chain law:  P(A1,A2,…,AN) = P(A1) x P(A2|A1) x P(A3|A2A1) x … x P(AN|AN-1 … A1)

Conditional independence:

AN is conditionally independent of A1,A2,…,Ai-1 given Ai,…, AN-1, iff P(AN|AN-1, …, A1) = P(AN| AN-1 ,…, Ai)

• When the value (ai) is known from context, we will use the shorthand P(Ai) for P(Ai=ai)

1/2/2024

Probability distribution of multiple random variables

Algorithms in Computational Biology CS3571
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Lecture overview

•Sequence annotation and HMMs

•Examples of sequence HMMs

•Decoding problems in HMMs

•Viterbi algorithm for most probable path
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A given HMM and observed sequence of symbols X imply a 
probability distribution over annotations S. Decoding questions
ask questions about this distribution, such as:

• What is the most probable annotation? 

• What is the most probable state assignment at a given position?

• What is the data likelihood under the assumed model?

Objective: for a given observed sequence X = X1…Xn find the 
sequence of annotations S = S1…Sn that maximizes P(X,S|HMM)

1/2/2024

Decoding HMMs

Algorithms in Computational Biology CS3571

HMM

?
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The joint probability of an annotation path and the observed sequence:

1/2/2024

Distribution of annotations / paths in the HMM

X1 X2 X3 X4 … Xn

S3 S4 SnS2S1

Using the chain law, we get:

P(X,S|HMM) =   P(S1 | S0) P(X1 | S1 S0) P(S2 | X1 S1 S0) P(X2 | S2 X1 S1 S0) …

  =   ∏i P(Si | X1…Xi-1 S0…Si-1 ) P(Xi | X1…Xi-1 S1…Si )

  =   ∏i P(Si | Si-1 ) P(Xi | Si )

  =   ∏i t(Si-1→Si) e(Si→Xi)

S0

transition emission

Algorithms in Computational Biology CS3571

conditional independence (CI) in HMMs:

      given Si  ,  Xi is CI of all other variables Sj , Xj (j≠i)
                        and Si+1 is CI of Xj (j≤i),  Sj (j<i).

S0 – an added 
constant initial state 
with no emissions
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Question: Can we use a greedy algorithm to compute the most probable path?
  If S = S1…Sn is a max-probability annotation of X = X1…Xn ,
  is its prefix S'=S1…Sn-1 a max-probability annotation of X'= X1…Xn-1 ?

• Let s,s’ be the last two states in S.  
Then, P(X,S|HMM)  =  P(X’, S'|HMM) t(s’→s) e(s→Xn).
[ derive using formula from last slide ]

• Now consider an arbitrary path  S’’ of length n-1,
and let s’’ be the last state in this path.

• The path S'''= S''s has joint probability:  P(X, S'''|HMM)  =  P(X', S''|HMM) t(s’’→s) e(s→Xn).

• This implies:   P(X,S|HMM) / P(X, S'''|HMM)   =  ( P(X',S'|HMM) / P(X',S''|HMM) ) x ( t(s’→s) / t(s’’→s) )

• So, it’s possible to have P(X',S'|HMM) < P(X',S''|HMM)    if     t(s’→s) > t(s’’→s)

• Note, however, that S' has the highest joint probability with X' among all paths that end with s’.

1/2/2024

Decoding – finding most probable annotation

Algorithms in Computational Biology CS3571

X1 X2 X3 … Xn-1 Xn

S3 S4 SnS2S1S0 Sn-1S S'

X'X

Answer: No!!

S3 S4S2S1S0 Sn-1

s''

S'' Sn

s

S'''

ss'
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Claim: If S = S1…Sn is a max-probability annotation of X = X1…Xn among annotations that end with Sn=s, then

its prefix S’=S1…Sn-1 a max-probability annotation of X’ = X1…Xn-1 among annotations that end with Sn-1=s’.

Proof:

• Let s,s’ be the last two states in S.  
Then, P(X,S|HMM)  =  P(X’,S’|HMM) t(s’→s) e(s→Xn).
[ derive using formula from last slide ]

• Now consider an arbitrary path  S’’ of length n-1

that ends with state s’.

• The path S’’’ = S’’s has joint probability:  P(X,S’’’|HMM)  =  P(X’,S’’|HMM) t(s’→s) e(s→Xn).

• This implies:   P(X,S|HMM) / P(X,S’’’|HMM)   =  ( P(X’,S’|HMM) / P(X’,S’’|HMM) ) x ( t(s’→s) / t(s’→s) )

• Since we know that  P(X,S|HMM) / P(X,S’’’|HMM) > 1,
then we must also have P(X’,S’|HMM) / P(X’,S’’|HMM) > 1

1/2/2024

Decoding – finding most probable annotation

Algorithms in Computational Biology CS3571

X1 X2 X3 … Xn-1 Xn

S3 S4 SnS2S1S0 Sn-1S S'

X'X

ss'

S3 S4S2S1S0 Sn-1

s'

S'' Sn

s

S'''
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• Fill a DP matrix V, where V[i,j]  will hold the max-probability annotation S1…Si of
the prefix X1…Xi  among those that end with state Si =sj (the i’th state in the path equals sj)

• Update formula: (implied by claim from previous slide)

V[i,j]      =       maxl {V[i-1,l] x t(sl→sj) x e(sj→Xi)}     = maxl {V[i-1,l]xt(sl→sj)} x e(sj→Xi)

• Update pointers are used to reconstruct the path

1/2/2024

Outline for Viterbi’s algorithm

Input sequence X

H
M

M
 s

ta
te

s 
S

Algorithms in Computational Biology CS3571
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Input: an HMM with k states s1…sk and a sequence of observed symbols X1…Xn

Objective: Compute a matrix V s.t. V[i,j]  holds

the max-probability annotation S1…Si of the prefix X1…Xi  

among those that end with state Si =sj

(the i’th state in the path equals sj)

Initialization: V[0,0] = 1 and V[0, j] = 0 for j=1..k   (s0 is the added initial state)

Update: for each i=1..n and j=1..k compute V[i,j] as follows:

V[i,j] = maxl {V[i-1,l]xt(sl→sj)} x e(sj→Xi)     +    keep pointer to cell [i-1,l] used in update

Output: reconstruct max-probability annotation by finding cell V[n,j] with highest value and tracing back from 

it using the update pointers all the way to V[0,0].

1/2/2024 Algorithms in Computational Biology CS3571

Viterbi’s algorithm
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Correctness: implied by the claim on slide 41

Complexity:

Space – O(kn)    the algorithm keeps kxn values V[i,j] and pointers

Time  – O(k2n)    calculation of V[i,j] requires finding the maximum among k possible values.

Comments:

• Hirschberg’s technique can be used to reduce space complexity to O(k) with time 

complexity O(k2nlog(n)) (typically k<n)

• Time complexity eventually depends on the number of non-zero transitions, which can be 
less than k2       (as is in the case of the alignment and motif detection HMMs)

1/2/2024

Viterbi’s algorithm

Algorithms in Computational Biology CS3571
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1/2/2024

Noisy bit transmission

Execution of Viterbi’s algorithm on simple HMM:

Algorithms in Computational Biology CS3571

➔ ./hmm-run G 20 (randomly generate a sequence of length 20)

Generated sequence = 00001011111011000111

Generated path = 

 - A - A - A - A - B - B - B - B - B - B - B - B - B - B - A - A - A - B - B - B

   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

   0   0   0   0   1   0   1   1   1   1   1   0   1   1   0   0   0   1   1   1

Probability: 1.68992e-07

➔ ./hmm-run V 00001011111011000111 (infer the most probable annotation for seq)

Viterbi path = 

 - A - A - A - A - A - A - B - B - B - B - B - B - B - B - A - A - A - B - B - B

   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

   0   0   0   0   1   0   1   1   1   1   1   0   1   1   0   0   0   1   1   1

Probability: 1.68992e-07

Viterbi matrix:

   0.45    0.32    0.23    0.17   0.013  0.0097 0.00077 6.2e-05 2.5e-05 1.8e-05 1.3e-05

   0.05   0.009  0.0065  0.0047    0.03  0.0024  0.0017  0.0013  0.0009 0.00065 0.00047

 8.4e-05 6.7e-06 5.4e-07 3.5e-06 2.5e-06 1.8e-06 1.4e-07 1.2e-08 4.7e-09 

 3.7e-05 2.7e-05 1.9e-05 1.6e-06 1.2e-07   5e-08 3.3e-07 2.3e-07 1.7e-07 

A B

1-pAA

1-pBB

pAA pBB

A pA0 1-pA0

1-pB1 pB1B

Emissions:

pA0 = pB1 = 0.9

0 1

pAB = pAB = 0.8

Transitions:

A B

pAA 1-pAA

1-pBB pBB

A

B
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• HMMs are general and useful models for defining “hidden” annotations for 
sequential data.

• HMMs are based on a Markov model of the hidden states + emissions that 
connect observations with the states.

• The Markov model enables efficient decoding algorithms

• Next week we’ll discuss more decoding algorithms and start thinking about 
how the probabilities of the model can be inferred.

1/2/2024

HMM introduction summary

Algorithms in Computational Biology CS3571
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