Introduction to Hidden Markov Models
(HMMS)

Lecture 3
22222222



¥

* .

~ Reichman Efi Arazi School

University  of Computer Science
o

| ecture overview

* Sequence annotation using HMMs
* Decoding problems in probabilistic models and HMMs
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Sequence annotation niversicy ot arour s

Many problems in sequence analysis can be casted as annotation problems, which aim to
mark a given sequence of symbols with meaningful labels.

00000000000 000V0VV00000

1/2/2024 Algorithms in Computational Biology CS3571




¥
*x
» Reichman Efi Arazi School

Sequence annotation niversicy ot arour s

Many problems in sequence analysis can be casted as annotation problems, which aim to
mark a given sequence of symbols with meaningful labels.

00000000000 000V0VV00000

Examples:

* Finding sequence patterns and local alignment

) ( )
pattern genome

match

match
)G (

N
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Sequence annotation niversicy ot arour s

Many problems in sequence analysis can be casted as annotation problems, which aim to
mark a given sequence of symbols with meaningful labels.

00000000000 000V0VV00000

Examples:

* Finding genomic segments with specific features

Gene ( )
model genome
regulatory
exon intron exon intron exon element
( ) C ) ( ) ( ) ( )( ) ( )( @) ( )
C )
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Sequence annotation using hidden Markov models (HMMs)
o
Annotation problems can be solved efficiently if you consider the labels as hidden
(unobserved) states in a stochastic finite state machine (FSM).
Emission probabilities:

alphabet (Z
P (2) Each state has a different

_/ distribution over possible

emissions

The stochastic FSM:

Hidden labels / states =—~——w—7 _

Directed edges weighted
with probabilities ———
(sum of outgoing weights is
1 for each state)

V'

states

Annotation as a Markov chain over hidden states:
S, 31”"@331 S, 31@51 51@@@34 S, S, S,

G| A|C T C|lA|C]|C T|A|G|A |G| T C

Al G| C T
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Hidden Markov models - history UL ofcompuerscine

 Work on non-linear filtering and smoothing done in the late 1950’s by Ruslan Stratonovich laid
out much of the techniques used in HMM decoding

e HMMs were formally defined and algorithms proposed in the 1960’s, mostly by Leonard Baum

e Viterbi’s algorithm for most probable path proposed in 1967, three years before Needleman-
Wunsch’s algorithm for most probable alignment

 Widely used in applications in speech/writing recognition and signal analysis

D-0-0O-0O-0-0-0-0-0---0-0--- 00 0¢C

Al G| C T G| A|C T C|lA|C]|C T|A|G|A |G| T C|A |G
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Examples of HMMs — sequence motifs UnfVersity  of computer e

What are sequence motifs?

* Transcription factors are proteins that bind to DNA in specific sequence patterns (motifs),
and regulate transcription
O 15

* The binding motif is typically represented by a probabilistic sequence pattern, e.g. E 1.0

1] TiAsTOA:

AcXwakov Adfwa\r\-or \\e\?s
g enevo nsc,nphovx
Ea.c;\-ors .l: RNA polymerase
asSRYND\
Trans eri P‘I"l on _"
- DNA \ — = >
(B-':no\' WA ske TG%Q’* RN

for -‘f\r\'\‘? acxvato

Credit: www.khanacademy.org
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Examples of HMMs — sequence motifs

Sequence motif HMM

8- 1 2 3 4 5 6 7 8 9

t

Emission probabilities:

A
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0.01

G

0.33

0.01

0.97

0.01

0.49

0.01

0.01

0.01

0.01

O

C

0.33

0.01

0.01

0.01

0.49

0.01

0.97

0.01

0.49

Jc

T

0.01

0.97

0.01

0.01

0.01

0.97

0.01

0.01

0.49

Or

Ox

— background probability for base X
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Examples of HMMs — sequence motifs UnfVersity  of computer e
N
Detecting sequence motifs using the HMM: E,m
4 ToheToA
1AM VIS
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Examples of HMMs — sequence alignment CRITEIY ofcomputr s
I

HMM for local alignment with insertions

T = AGGCCTTGC start / end alignment at any/v

pointinT

allow insertions (gapsin T) —

Emission probabilities:

oooo°°°°°°° P = Pstart “ P =Pgap

A 1 Pm [PvmPMmPMvPMm{PvmPvmvPuvmPunv @
B B =1-9 P =Pen

G Py P | Pra PrmPramdPoama[Prand Brvt Pran G | T 00 r-ior. Q-0 -
€ PuvmPmMPNMM P | Pw [PrvmPrmPrm P | Ac | Ac M D = Petong M P =1-PgapPend
T PrmPMmPMmPymPyv| P | P [PvmiPyn G | O _ -

M P = 1-Peiong deletions (gaps in S) can be
g, - background probability for base X accommodated by adding an
Py — probability of a match p,,, — probability of a mismatch (1-p,,)/3 other series of states D;...Dg
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Examples Of HMMS — Sequence alignment UIEY('EISItY of Computer Science

I
Inferring local alighment using the HMM:
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Examples of HMMs — CpG islands .

What are CpGs and what is their significance?
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CpG represents the C-G di-nucleotide chain 5’ -C- (phosphate) -G-3’
(as opposed to a CG base pair)

e e e e e ey

A common mechanism for silencing of genes
(prevention of transcription) in vertebrate species is based on

- ———— -

S

NH, NH; 0
methylation of the Cin CpGs in a gene body (CL\N H_SC;\KCL\,N ST
HAO!{ ﬁ)\o H/J\O

Spontaneous de-amination of a methylated Cturnsittoa T

Cytosine

A methylated CpG can mutate into:

* TpG (C>T) 5/
* CpA (C2>T opposite to G, and this leads to G=>A) 3
1/2/2024 Algorithms in Computational Biology CS3571

5-methyl Thymine
Cytosine
L] —C-G- L] L] L] 3 ,
L] —G-C- L] L] L] 5 ,

Images from https://en.wikipedia.org/wiki/CpG site @
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Examples of HMMs — CpG islands i
What are CpG islands? i E
* In evolutionary timescales, CpGs get depleted from the genome. E *;E

Roughly 0.8% of pairs are CpG, which is ~“5x smaller than
the expected frequency of ¢(C) x q(G) = 4.4%

NH, NH; 0
Genomic segments where we see relatively high concentrations (CL\N “_fﬁw S
of CpGs are called CpG islands. o ﬁ)\o N/J\O
Cytl;lsine 5-methyl Thyljnine
o Cytosine
CpG islands occur around the start of genes, because these Onepae B,
. iy R - NP UV I
regions do not tend to get methylated. I";f;"j ==
site I I
| |
Detecting CpG islands played a central role in finding new genes _0000 Q0 00 O®,..1 00
in the human genome. e;volutionaw I
timescale 1 1
_O el
| S,
1/2/2024 Algorithms in Computational Biology CS3571 | cpe AN (15
Images from https://en.wikipedia.org/wiki/CpG site
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Examples of HMMs — CpG islands

CpG island HMM:

=)

Emission probabilities:

0606000000
l1|o0|lo|lo|1]|o0o|o0]|oO

A
Glo|l|o|oflo|l]o
Clo|lo|1|o0o|o|o0]|1
Tlolo|lo|1|o0o|o]|o

(deterministic emissions)
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Transition probabilities:

At |G" |Ct T |A |G |C|T Transition in /
At ///OUt Of CpG
R / islands
ct 0.27 //
, ~
T A
//
A ]
G A
c 0.05
=

Dinucleotide frequencies
in CpG islands

Dinucleotide frequencies
outside of CpG islands
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I
Detecting CpG islands using the HMM:
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Examples of HMMs — noisy bit transmission UITCTSIY ofcompuersceree

Simple two-state HMM used in class demonstrations:

Paa Pgs Transitions: Emissions:

® O 0o 1

o Paa |1-Pan o Pao [1-Pno
9 l_pBB Pgs e 1'p|31 Pgs

Pag = Pag = 0.8 Pao = Pg; = 0.9
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Examples of HMMs — noisy bit transmission

e
Generating random sequences using the HMM:

= ./hmm-run G 20 (randomly generate a sequence of length 20)
Generated sequence = 00001011111011000111
Generated path =
-A-A-A-A-B-B-B-B-B-B-B-B-B-B-A-A-A-B-B-8B
I I I I I I I I I I I I I I I I I I I I
0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1
Probability: 1.68992e-07
= ./hmm-run G 20 (re-generate another sequence)
Generated sequence = 00000011000110010001
Generated path =
-A-A-A-A-A-A-B-B-A-A-A-B-A-A-A-B-A-A-A-B
I I I I I I I I I I I | I I I I I I I I
0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
Probability: 5.94111e-09
= ./hmm-run G 20 (re-generate another sequence)
Generated sequence = 00011100001110000110
Generated path =
-A-A-A-B-B-B-A-A-A-B-B-B-B-A-A-A-A-B-B-A
I I I I I I I I I I I I I I I I I I I I
0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0
Probability: 2.37644e-08
1/2/2024 Algorithms in Computational Biology CS3571
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Paa Pes
1-Pan

1-Pgg

Transitions:

o O
o Paa [1-Paa
e 1-Pgg | Pgs

Pag = Pag = 0.8
Emissions:
0 1

o Pao [1-Pao
e 1-Pgs | Pes

Ppo = Pg1 = 0.9
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Examples of HMMs — noisy bit transmission

e Dan Ds
Sequence annotation: 1-Pan

= ./hmm-run G 20 (randomly generate a sequence of length 20)
Generated sequence = 00001011111011000111
Generated path = Rtttk 1-
—A—A—A—A1B—B=-B—B—B—B—B—B—B—B—A—A—A—B—B—B Pes
I I I I : I I : I I I I I I I I I I I I I I i )
0 0o 0o o0i1 ©0j1 1 1 1 1 0 1 1 0 0 0 1 1 1 Transitions:
|
2007 | O O
Probability: 1.68?92e—07 I
= ./hmm-run V 00001011111011000111 (infer the most probable annotation for seq) o
Viterbi path = : I pAA 1'pAA
—A—A—A—A-:A—A:—B—B—B—B—B—B—B—B—A—A—A—B—B—B
| -
I I I (I Iy I I I I I I I I I I | I I o 1 pBB pBB
0 0 0 0 kl._ 0,/ 1 1 1 1 1 0 1 1 0 0 0 1 1 1 — = 0.8
Probability: 1.68992e-07 Pag = Pag = V.
Emissions:
0 1

o Pao [1-Pao
o 1-Pgs | Pes

1/2/2024 Algorithms in Computational Biology CS3571 Pao = Per = 0.9
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* Sequence annotation using HMMs
* Decoding problems in probabilistic models and HMMs &
* Recap of multi-variate probability distributions

*VViterbi algorithm for most probable path
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Probabilistic Models .
« N
Model M
Probabilistic model consist of two main components:
e  Structural model assumptions €< Markov model on states (bounded memory) e e @ = (8 )]
(e.g., hidden/observed random variables and dependencies) N v )
e  Model parameters €< Transition / emission probabilities

Three main tasks:
“Annotated” version of

 Decoding: given data and complete model with parameter values, infer data X’
hidden components of the model (e.g., finding best HMM path
explaining a given sequence of observations ) @

*  Model comparison: given data and two (or more) models (with or without Data X

model parameters), decide which model fits the data better (which HMM out
of a given set provides best explanation of given sequence) Data likelihood as measure of

 Parameter inference: given data and a model without parameter values, model fit: P(X|M,0)

infer parameter values that maximize model fit (compute transition and

emission probabilities that best explain a given set of sequences)
1/2f2024 Algorithms in Computational Biology CS3571 @
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e
. . 4 HMM N
A given HMM and observed sequence of symbols X imply a alphabet (z)
probability distribution over annotations S. Decoding questions ..3_
ask questions about this distribution, such as: “3
\C J

 What is the most probable annotation?
 What is the most probable state assignment at a given position?

e Whatis the data likelihood under the assumed model?

[r]c]cf[r]c]aJc]r]c]afclc]r]ajsfafcfr]c]a]c]

&

L) JoJojololerel X X JoI X Jojolel X X J

1/2/2024 Algorithms in Computational Biology CS3571 @
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Distribution of annotations / paths in the HMM "=y e

* Treat the observed data X = X,... X, and unobserved (hidden) annotation S =S,... S
as a collection of 2n random variables (RVs).

n

* Answer questions about the joint probability distribution of X and S given the model

P(X,S|HMM) = ?

X, | % | X | X, X,

1/2/2024 Algorithms in Computational Biology CS3571 @
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L ecture overview

* Sequence annotation using HMMs
* Decoding problems in probabilistic models and HMMs
* Recap of multi-variate probability distributions <

* \Viterbi algorithm for most probable path
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Probability distribution of three random variables

Consider a joint probability distribution over three random variables A, B, and C

Marginal distribution: P(A=a, B=b) = Y. P(A=a, B=b,C=c)
Conditional distribution: P(A=a, B=b | C=c) = P(A=a, B=b,C=c) / P(C=c)
Chain law: P(A=a, B=b, C=c) = P(A=a) P(B=b| A=a) P(C=c| A=a, B=b)

= P(B=b) P(C=c| B=b) P(A=a| B=b, C=c)
Conditional independence:
C and A are conditionally independent given B, iff P(C=c| A=a, B=b) = P(C=c| B=b)

This implies that:
P(A=a, B=b, C=c) = P(A=a) P(B=b| A=a) P(C=c| A=a, B=b)
= P(A=a) P(B=b| A=a) P(C=c| B=b)

1/2/2024 Algorithms in Computational Biology CS3571 @
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Consider the joint probability distribution over A, B, and C specified in the table below
e Are the RVs A and B conditionally independent given C?

Steps:
1. Compute the marginal distributions P(A,C), P(B,C), and P(C).
2. Use these marginal distributions to compute the conditional distributions al|b|c| plabc)=
P(A=a| B=b, C=c) and P(A=a| C=c). P(A=a,B=Db,C=c)
N - _ 0 [0 [0 [0.192
3. Compare the conditional distributions to reach a conclusion. 010 |1 (0144
O [1 |]O |0.048
O |1 [1 |0.216
Detailed solution will be published after class LG O |01
1 (0 |1 |[0.064
1 (1 |0 [0.048
1 (1 |1 [0.096

1/2/2024 Algorithms in Computational Biology CS3571 @
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Class exercise — solution University  of omputor siene

Consider the joint probability distribution over A, B, and C specified in the table below

* Are the RVs A and B conditionally independent given C?

Steps:
1. Compute the marginal distributions P(A,C), P(B,C), and P(C).
alb|c| plabc)=
a|lc| PA=a,C=c) P(A=a,B=b,C =)
0 [0 |0.192+0.048=0.24 f<i7-----=- 0 /0 |0 [0.192
O [1 [0.144+0.216=0.36 |<z7™~=xz-|0 |0 |1 [0.144
1 [0 [0.192+0.048 =0.24 5. . 0|1 |o [0.048
1 [1 [0.064+0.096 =0.16 [s.5". 0 [1 |1 [0.216
SO 11 |0 |0 |0.192
SN2 [0 |1 |0.064
4 |1 |0 ]0.048
11 [1 [1 [0.096

1/2/2024
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Consider the joint probability distribution over A, B, and C specified in the table below

* Are the RVs A and B conditionally independent given C?

Steps:

1.

Compute the marginal distributions P(A,C), P(B,C), and P(C).

1/2/2024

¢ [P(B=b,C=c)

0.192+0.192 = 0.384

p(a,b,c) =
P(A=a,B=b,C =)

0.144+0.064 = 0.208

0.192

0.048+0.048 = 0.096

0.144

RPIFPIO|IO| o>
R|O|R|O

0.216+0.096 = 0.312

0.048

Algorithms in Computational Biology CS3571

0.216

0.192

0.064

0.048

R~~~ |lolololo

RPIFRPIOCIO|IFLIFPIO|IO

RPIO|IRPIO|IFL,O|IF|O

0.096
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Consider the joint probability distribution over A, B, and C specified in the table below

* Are the RVs A and B conditionally independent given C?

Steps:

1.

Compute the marginal distributions P(A,C), P(B,C), and P(C).

1/2/2024

P(C =)

P(B=b,C =c)

0.384+0.096 = 0.48

0.192+0.192 = 0.384

p(a,b,c) =
P(A=a,B=b,C =)

—

0.208+0.312 = 0.52

0.144+0.064 = 0.208

0.192

~ ~
\\\\\
~ S

~
SS

0.048+0.048 = 0.096

0.144

\~\
~d

ROk |O

0.216+0.096 = 0.312

0.048

Algorithms in Computational Biology CS3571

0.216

0.192

0.064

0.048

R~~~ |lolololo

RPIFRPIOCIO|IFLIFPIO|IO

RPIO|IRPIO|IFL,O|IF|O

0.096
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Consider the joint probability distribution over A, B, and C specified in the table below
* Are the RVs A and B conditionally independent given C?

Steps: alb]|c|pabc)=
P(A=a,B=b,C =c)
O |0 |0 [0.192
: . " o 0 |0 |1 [0.144
2. Use these marginal distributions to compute the conditional distributions 011 o 0048
P(A=a| B=b, C=c) and P(A=a| C=c). b c|PB=bC=0) 01 |1 /0.216
’ 1 (0 |0 [0.192
0O |0 [0.384 110 |1 0064
0O |1 |0.208 1 11 lo l0.048
1 (1 [0.312
alc|PA=aClC=c)
| °C =9 0|0 |024
O 048 01 |0.36
1 10.52 1[0 [0.24
e Algorithms in Computational Biology CS3571 1|1 |0.16 @
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Class exercise — solution University - of computersiene

Consider the joint probability distribution over A, B, and C specified in the table below
e Are the RVs A and B conditionally independent given C?
Steps:

2. Use these marginal distributions to compute the conditional distributions
P(A=a| B=b, C=c) and P(A=a| C=c).

—->P(A=a| C=c) = P(A=a, C=c) / P(C=c) c [P(C=c)
al|lc| PA=alC=c) 0 10.48
1 ]0.52
0 |0 10.24/0.48=0.5
0 |1 [0.36/0.52 =0.6923 alc|PA=ac=0
1 {0 [0.24/0.48=0.5 0 1o 024
1)1 1 .52 =0.3077 .
0.16/0.52 = 0.30 0 11 1036
110 10.24
1/2/2024 Algorithms in Computational Biology CS3571 1|1

0.16 @
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Class exercise — solution

Consider the joint probability distribution over A, B, and C specified in the table below
* Are the RVs A and B conditionally independent given C?

Steps: a|b|c|plabc)=
P(A=a,B=b,C =c)
O (0O |0 [0.192
: o " S 0 [0 [1 [0.144
2. Use these marginal distributions to compute the conditional distributions 011 |o |0o048
P(A=a| B=b, C=c) and P(A=a| C=c). a|blclPA=aB=bC=c) |01 |1 0216
_ _ _ 10 |0 |0.192
- P(A=a| B=b, C=c) 0 |0 |0 |0.192/0.384=05
ol o~ 1[0 |1 [0.064
= P(A=a, B=b, C=c) / P(B=b, C=c) 0 |0 [1 ]0.144/0.208=0.6933 | [7 17 To lo0.048
O |1 |1 |0.216/0.312=0.6933
110 |0 [0.192/0.384=0.5 b|c|P(B=bhC=c)
1 (0 |1 [0.064/0.208 =0.3077
1 (1 |0 [0.048/0.096=0.5 8 2 833;
| | | 1|1 - 1 [0.096/0.312 =0.3077 110 10.096
1/2/2024 Algorithms in Computational Biology CS3571 1[1 [0.312 (33
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Consider the joint probability distribution over A, B, and C specified in the table below

* Are the RVs A and B conditionally independent given C?

Steps:

3.

Compare the conditional distributions to reach a conclusion.

1/2/2024

P(A=alB =b,C =)

0.5

0.6933

0.5

0.6933

0.5

0.3077

0.5

Rk~ |lo|lo|lo|o] o

Rk|lo|lo|k|k|lolof =

ROk |o|k|lo|k|o] o

0.3077

Algorithms in Computational Biology CS3571

P(A=al|lC =rc)

0.5

0.6923

0.5

RIFPIOIO]| Q

RIOIFR|IO| o

0.3077
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Class exercise — solution

Consider the joint probability distribution over A, B, and C specified in the table below
* Are the RVs A and B conditionally independent given C?  Yes!

StepS: alb | c |PA=alB=bC=rc) P(A = a|C = ¢)
0 |0 |0 [0.5
0 |0 |1 [0.6933
01 |0 (0.5
0 |1 |1 [0.6933
110 |0 |05
3. Compare the conditional distributions to reach a conclusion. 1 cl) é 8-2077
111 |1 10.3077
alc| P(A=al|C =c)
010105
011 ]0.6923
110 (0.5
11 ]0.3077

1/2/2024 Algorithms in Computational Biology CS3571 @
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Probability distribution of multiple random variables

Same goes with larger sets of random variables A A,,...,Ay:
Marginal distribution: P(A ,=a,,...A=a;) = Y. . . P(A,=a,,..,A=a;, A,p,=ay,-A0=a,)
Conditional distribution:
P(Aj,=a,,...,.A=a; | Ai,y,=aiq,--A=a,) = P(A,=a,...,.A=a;, A, ,=ai,q,-A=a,) [/ P(AL =i, A=a,)
Chain law: P(A_A,,...Ay) = P(A)) x P(A,|A)) x P(A;]AA,) X ... x P(Ay| Ay . A,)
Conditional independence:

A, is conditionally independent of A}, A,,...,A; ; given A,,..., Ay, iIff P(Ay 1Ay - A7) = P(Ay] Ang s AY)
* When the value (a;) is known from context, we will use the shorthand P(A,) for P(A;=a;)

1/2/2024 Algorithms in Computational Biology CS3571 @



+*

* .

~ Reichman E&fi Arazi School

University  of Computer Science
£

L ecture overview

* Sequence annotation and HMMs

* Examples of sequence HMMs

* Decoding problems in HMMs

e \Viterbi algorithm for most probable path <



Decoding HMMs

A given HMM and observed sequence of symbols X imply a
probability distribution over annotations S. Decoding questions
ask questions about this distribution, such as:

 What is the most probable annotation? <
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Rl

4 HMM N

alphabet ()

states

2 /

 What is the most probable state assignment at a given position?

e Whatis the data likelihood under the assumed model?

Objective: for a given observed sequence X = X,...X, find the
sequence of annotations S = S,...5, that maximizes P(X,S|HMM)
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Distribution of annotations / paths in the HMM "=y e

The joint probability of an annotation path and the observed sequence:
Sp—an added >
constant initial state
with no emissions
X, % | X | X, X,

Using the chain law, we get:

POX,SIHMM) = P(S, | So) P(X; | S;S,) P(S, | X;S,S0) P(X, | S,X;S,S,) .
= _I P(SI | Xl...Xi_l SO"'Si-l) P(XI | Xl...xi_l Sl"'Si)
= TIPS | Sy)POX | S;) | conc?litional ino.lependence (Cl) ir-m HMMs: .
- given S; , X.is Cl of all other variables Sj, Xj (J#1)
= [ USi,2S) e(Si=2X) and Sy, is Cl of X; (J<i), S;(j<i).

transition emission
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Decoding — finding most probable annotation

Question: Can we use a greedy algorithm to compute the most probable path? Answer: No!!

If S =S,...S, is a max-probability annotation of X = X,..X,
is its prefix S'=S,...S, ; @ max-probability annotation of X'= X;..X ; ?

o .S ----- S
e Lets,s’ be the last two states in S. S S5 @0 € N —C9
Then, P(X,S|HMM) = P(X’, S'|HMM) t(s’=>s) e(s=>X,,). — —
[ derive using formula from last slide ] X X X | % | % v X %,

 Now consider an arbitrary path S”of length n-1,

and let s be the last state in this path. s is'@

* The path S™'=S"s has joint probability: P(X, S™'|HMM) = P(X', S"|HMM) t(s "=>s) e(s=2>X,).
* Thisimplies: P(X,S|HMM) /P(X, S"'|[HMM) = (P(X"S'|HMM)/P(X"'S"|HMM) ) x (t(s’=>s) /t(s"=>s))
e So, it’s possible to have P(X',S'|HMM) < P(X',S"|HMM) if t(s’=2s)>t(s”’=>5s)

* Note, however, that S" has the highest joint probability with X" among all paths that end with s".
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Decoding — finding most probable annotation

Claim: If S = S,...S, is a max-probability annotation of X = X;...X, among annotations that end with S.=s, then
its prefix S’=S,...S,, ; @ max-probability annotation of X’= X,...X; among annotations that end with S, ;=S".

. S S
Proof: S 'S'@ -
Let 5,S° be the last two states in S. : -
Then, P(X,S|HMM) = P(X’,S’|HMM) t(s'=>s) e(s>X,). XX | X | X | [ %]
[ derive using formula from last slide ] : ' i
Now consider an arbitrary path S”of length n-1 ‘ S S,

that ends with state s’
The path S”’= S’% has joint probability: P(X,S’’|HMM) = P(X",S”|HMM) t(s’->s) e(s=>X,,).
This implies: P(X,S|HMM) /P(X,S’’|HMM) = (P(X’,S’|HMM) /P(X",S”|HMM) ) x (t(s’=>s) / t(s’=>s) )

Since we know that P(X,S|HMM) / P(X,S”’|HMM) > 1,
then we must also have  P(X’,S’|HMM) /P(X’,S”|HMM) > 1
1/2/2024 Algorithms in Computational Biology CS3571
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Input sequence X

=

HMM states S
00000000

Fill a DP matrix V, where V[I,]] will hold the max-probability annotation S;...S; of
the prefix X,...X; among those that end with state S;=S; (the I'th state in the path equals S;)

 Update formula: (implied by claim from previous slide)
V[ijl = max {V[i-1,l] xt(s;>s) xe(s;>X;)} = max {V[i-1,I]xt(s;>s;)} x e(s;>X;)

 Update pointers are used to reconstruct the path
1/2/2024 Algorithms in Computational Biology CS3571 @
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Viterbi’s algorithm

Input: an HMM with k states s,...5, and a sequence of observed symbols X,...X,

Objective: Compute a matrix V s.t. V[i,j] holds
the max-probability annotation S,...S; of the prefix X,...X;

among those that end with state S; =S
(the I'th state in the path equals ;)

HMM states S
00000000

Initialization: v[0,0] = 1 and V[0, j] =0 for j=1..k (s, is the added initial state)

Update: for each i=1..n and j=1..k compute V[i,j] as follows:
V[1,j] = max, {V[i-l,l]xt(s,%sj)} xe(5;>X;) + keep pointer to cell [1-1,]] used in update

Output: reconstruct max-probability annotation by finding cell V[n,j] with highest value and tracing back from
it using the update pointers all the way to V[0,0].
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Viterbi’s algorithm

Correctness: implied by the claim on slide 41

Complexity:
Space — O(kn) the algorithm keeps kxn values V[i,j] and pointers
Time —O(k’n) calculation of VI[i,j] requires finding the maximum among k possible values.

Comments:

* Hirschberg’s technique can be used to reduce space complexity to O(k) with time
complexity O(k?nlog(n)) (typically k<n)

* Time complexity eventually depends on the number of non-zero transitions, which can be
less than k? (asis in the case of the alignment and motif detection HMM:s)
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Noisy bit transmission

Paa Pes
1-Pan

Execution of Viterbi’s algorithm on simple HMM:

= ./hmm-run G 20 (randomly generate a sequence of length 20)
Generated sequence = 00001011111011000111

Generated path = 1-
-A-A-A-A-B-B-B-B-B-B-B-B-B-B-A-A-A-B-B-8B Pes
I I I I I I I I I I I I I I I I I I I I o )
o o o o 1 o 1 1 1 1 1 o0 1 1 o0 o0 o0 1 1 1 Transitions:

Probability: 1.68992e-07 Q 9

= ./hmm-run V 00001011111011000111 (infer the most probable annotation for seq) o
Viterbi path = Pan [1-Paa
-A-A-A-A-A-A-B-B-B-B-B-B-B-B-A-A-A-B-B-B
I I I I | I I I I I I I I I I I I | I I o 1_pBB pBB
o o o o 1 o 1 1 1 1 1 ©O0 1 1 O O O 1 1 1 — D0 =08
Probability: 1.68992e-07 Pag = Pas = L.
Viterbi matrix: Emissions:
0.45  0.32  0.23 _ 0.17 0.013 0.0097 0.00077 6.2e-05 2.5e-05 1.8e-05 1.3e-05 0 L
0.05 0.009 0.0065 0.0047 0.03 0.0024 “0.0017 0.0013 0.0009 0.00065 0.00047 o
________________ Pao [1-Pao
8.4e-05 6.7e-06 5.4e-07 .3.5e-06 2.5e-06 1.8e-06 1.4e-07 1.2e-08 4.7e-09
3.7¢-05_2.7e05 1.9e-05 1.6e-06 1.2e-07  5e-08'3;3e-07 2 3207 1.7¢-07 O 1P| P
- - - - = =0.9
1/2/2024 Algorithms in Computational Biology CS3571 Pao = Pas
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* HMMs are general and useful models for defining “hidden” annotations for
sequential data.

e HMMs are based on a Markov model of the hidden states + emissions that
connect observations with the states.

* The Markov model enables efficient decoding algorithms

* Next week we’ll discuss more decoding algorithms and start thinking about
how the probabilities of the model can be inferred.

1/2/2024 Algorithms in Computational Biology CS3571
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