Introduction to Hidden Markov Models (HMMs)

Lecture overview

- Sequence annotation using HMMs
- Decoding problems in probabilistic models and HMMs
- Recap of multi-variate probability distributions
- Viterbi algorithm for most probable path

Lecture overview

- Sequence annotation using HMMs ←
- Decoding problems in probabilistic models and HMMs
- Recap of multi-variate probability distributions
- Viterbi algorithm for most probable path

Many problems in sequence analysis can be casted as annotation problems, which aim to mark a given sequence of symbols with meaningful labels.

Many problems in sequence analysis can be casted as annotation problems, which aim to mark a given sequence of symbols with meaningful labels.

Examples:

Finding sequence patterns and local alignment

Sequence annotation

Many problems in sequence analysis can be casted as annotation problems, which aim to mark a given sequence of symbols with meaningful labels.

Examples:

Finding genomic segments with specific features

Sequence annotation using hidden Markov models (HMMs)

Annotation problems can be solved efficiently if you consider the labels as hidden (unobserved) states in a stochastic finite state machine (FSM).

The stochastic FSM:

Emission probabilities:

Annotation as a Markov chain over hidden states:

Hidden Markov models - history

- Work on non-linear filtering and smoothing done in the late 1950's by Ruslan Stratonovich laid out much of the techniques used in HMM decoding
- HMMs were formally defined and algorithms proposed in the 1960's, mostly by Leonard Baum
- Viterbi's algorithm for most probable path proposed in 1967, three years before Needleman-Wunsch's algorithm for most probable alignment
- Widely used in applications in speech/writing recognition and signal analysis

Examples of HMMs – sequence motifs

What are sequence motifs?

- Transcription factors are proteins that bind to DNA in specific sequence patterns (motifs),
 and regulate transcription
- The binding motif is typically represented by a probabilistic sequence pattern, e.g.

Examples of HMMs – sequence motifs

Sequence motif HMM

Emission probabilities:

 $q_{\rm X}$ — background probability for base X

Transition probabilities:

Examples of HMMs – sequence motifs

Detecting sequence motifs using the HMM:

Examples of HMMs – sequence alignment

HMM for local alignment with insertions

T = AGGCCTTGC

start / end alignment at any point in ${\cal T}$

allow insertions (gaps in T)

Emission probabilities:

Α	p_{M}	p_{MM}	q_{A}	q_{A}							
G	p_{MM}	p_{M}	p_{M}	p_{MM}	p_{MM}	p_{MM}	p_{MM}	p_{M}	p_{MM}	q_{G}	q_{G}
С	p_{MM}	p_{MM}	p_{MM}	p_{M}	p_{M}	p_{MM}	p_{MM}	p_{MM}	p_{M}	q_{c}	q_{c}
Т	p_{MM}	p_{MM}	p_{MM}	p_{MM}	p_{MM}	p_{M}	p_{M}	p_{MM}	p_{MM}	q_{T}	q_{T}

 q_{X} – background probability for base X

 $p_{\rm M}$ — probability of a match $p_{\rm MM}$ — probability of a mismatch (1- $p_{\rm M}$)/3

Transition probabilities:

$$p = p_{\text{start}}$$

$$p = p_{\mathsf{gap}}$$

$$B \rightarrow B$$

$$p = 1-9p_{\text{start}}$$

$$p = p_{end}$$

$$p = p_{\text{elong}}$$

$$p$$
 =1- $p_{\rm gap}$ - $p_{\rm end}$

$$p = 1-p_{\text{elong}}$$

deletions (gaps in S) can be accommodated by adding an other series of states $D_1...D_8$

Inferring local alignment using the HMM:

What are CpGs and what is their significance?

- CpG represents the C-G di-nucleotide chain 5'-C-(phosphate)-G-3' (as opposed to a CG base pair)
- A common mechanism for silencing of genes
 (prevention of transcription) in vertebrate species is based on methylation of the C in CpGs in a gene body
- Spontaneous de-amination of a methylated C turns it to a T
- A methylated CpG can mutate into:
 - TpG $(C \rightarrow T)$
 - CpA (C \rightarrow T opposite to G, and this leads to G \rightarrow A)

What are CpG islands?

- In evolutionary timescales, CpGs get depleted from the genome.
- Roughly 0.8% of pairs are CpG, which is $^{\sim}5x$ smaller than the expected frequency of $q(C) \times q(G) = 4.4\%$
- Genomic segments where we see relatively high concentrations of CpGs are called CpG islands.
- CpG islands occur around the start of genes, because these regions do not tend to get methylated.
- Detecting CpG islands played a central role in finding new genes in the human genome.

1

0

CpG island HMM:

Emission probabilities:

Transition probabilities:

(deterministic emissions)

Detecting CpG islands using the HMM:

Examples of HMMs – noisy bit transmission

Simple two-state HMM used in class demonstrations:

$$p_{AB} = p_{AB} = 0.8$$

Emissions:

 $\begin{array}{c|cccc} & \mathbf{0} & \mathbf{1} \\ & & & \\ & & p_{\mathsf{A0}} & \mathbf{1} \text{-} p_{\mathsf{A0}} \\ & & & \mathbf{1} \text{-} p_{\mathsf{R1}} & p_{\mathsf{R1}} \end{array}$

$$p_{A0} = p_{B1} = 0.9$$

Examples of HMMs – noisy bit transmission

Generating random sequences using the HMM:

1/2/2024

Transitions:

$$p = p_{BB} \mid p_{BB}$$

$$p_{\mathsf{AB}} = p_{\mathsf{AB}} = 0.3$$

Emissions:

0

A	p_{A0}	$1-p_{AI}$
В	1 - p_{B1}	$p_{\mathtt{B1}}$

$$p_{A0} = p_{B1} = 0.9$$

Examples of HMMs – noisy bit transmission

Sequence annotation:

Transitions:

$$p_{AB} = p_{AB} = 0.8$$

Emissions:

)

A	p_{A0}	$1-p_{A0}$
В	1 - p_{B1}	p_{B1}

$$p_{A0} = p_{B1} = 0.9$$

Lecture overview

- Sequence annotation using HMMs
- Decoding problems in probabilistic models and HMMs ←
- Recap of multi-variate probability distributions
- Viterbi algorithm for most probable path

Probabilistic model consist of two main components:

- Structural model assumptions ← Markov model on states (bounded memory) (e.g., hidden/observed random variables and dependencies)
- Model parameters ← Transition / emission probabilities

Three main tasks:

- Decoding: given data and complete model with parameter values, infer hidden components of the model (e.g., finding best HMM path explaining a given sequence of observations)
- Model comparison: given data and two (or more) models (with or without model parameters), decide which model fits the data better (which HMM out of a given set provides best explanation of given sequence)
- Parameter inference: given data and a model without parameter values, infer parameter values that maximize model fit (compute transition and emission probabilities that best explain a given set of sequences)

 Algorithms in Computational Biology CS3571

Model M

Parameters $\Theta = \{\theta_1, ..., \theta_N\}$

Data likelihood as measure of model fit: $P(X|M,\Theta)$

Decoding HMMs

A given HMM and observed sequence of symbols X imply a probability distribution over annotations S. Decoding questions ask questions about this distribution, such as:

- What is the most probable annotation?
- What is the most probable state assignment at a given position?
- What is the data likelihood under the assumed model?

- Treat the observed data $X = X_1 ... X_n$ and unobserved (hidden) annotation $S = S_1 ... S_n$ as a collection of 2n random variables (RVs).
- Answer questions about the joint probability distribution of X and S given the model

$$P(X,S|HMM) = ?$$

Lecture overview

- Sequence annotation using HMMs
- Decoding problems in probabilistic models and HMMs
- Recap of multi-variate probability distributions ←
- Viterbi algorithm for most probable path

Probability distribution of three random variables

Consider a joint probability distribution over three random variables A, B, and C

Marginal distribution: $P(A=a, B=b) = \sum_{c} P(A=a, B=b, C=c)$

Conditional distribution: $P(A=a, B=b \mid C=c) = P(A=a, B=b, C=c) / P(C=c)$

Chain law: $P(A=a, B=b, C=c) = P(A=a) P(B=b/A=a) P(C=c \mid A=a, B=b)$

= P(B=b) P(C=c/B=b) P(A=a|B=b, C=c)

Conditional independence:

C and A are conditionally independent given B, iff $P(C=c \mid A=a, B=b) = P(C=c \mid B=b)$

This implies that:

$$P(A=a, B=b, C=c) = P(A=a) P(B=b/A=a) P(C=c|A=a, B=b)$$

=
$$P(A=a) P(B=b/A=a) P(C=c|B=b)$$

Class exercise

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

Steps:

- 1. Compute the marginal distributions P(A,C), P(B,C), and P(C).
- 2. Use these marginal distributions to compute the conditional distributions $P(A=a \mid B=b, C=c)$ and $P(A=a \mid C=c)$.
- 3. Compare the conditional distributions to reach a conclusion.

Detailed solution will be published after class

а	b	С	p(a,b,c) = P(A = a, B = b, C = c)
0	0	0	0.192
0	0	1	0.144
0	1	0	0.048
0	1	1	0.216
1	0	0	0.192
1	0	1	0.064
1	1	0	0.048
1	1	1	0.096

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and P(C).

а	С	P(A=a,C=c)				
0	0	0.192 + 0.048 = 0.24				
0	1	0.144 + 0.216 = 0.36				
1	0	0.192 + 0.048 = 0.24				
1	1	0.064 + 0.096 = 0.16				

	а	b	С	p(a,b,c) = P(A = a,B = b,C = c)
-	0	0	0	0.192
-	0	0	1	0.144
/	0	1	0	0.048
1	0	1	1	0.216
,	1	0	0	0.192
	1	0	1	0.064
	1	1	0	0.048
1	1	1	1	0.096

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and P(C).

			_	а	$\mid b \mid$	С	p(a,b,c) =
ŀ	С	P(B=b,C=c)					P(A = a, B = b, C = c)
0	0	0.192 + 0.192 = 0.384		0	0	0	0.192
0	1	0.144 + 0.064 = 0.208		0	0	1	0.144
1	0	0.048 + 0.048 = 0.096		0	1	0	0.048
1	1	0.216+0.096 = 0.312		0	1	1	0.216
				1	0	0	0.192
				1	0	1	0.064
				1	1	0	0.048

0.096

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and P(C).

С	P(C=c)	
0	0.384+0.096 = 0.48	
1	0.208+0.312 = 0.52	
		The state of the

b	С	P(B=b,C=c)				
 0	0	0.192+0.192 = 0.384				
 0	1	0.144 + 0.064 = 0.208				
Ψ-	0	0.048 + 0.048 = 0.096				
1	1	0.216 + 0.096 = 0.312				

	а	b	С	p(a,b,c) = P(A = a, B = b, C = c)
	0			0.100
	0	0	0	0.192
-	0	0	1	0.144
-	0	1	0	0.048
	0	1	1	0.216
	1	0	0	0.192
	1	0	1	0.064
	1	1	0	0.048
	1	1	1	0.096

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

Steps:

1. Compute the marginal distributions P(A,C), P(B,C), and P(C).

2. Use these marginal distributions to compute the conditional distributions

 $P(A=a \mid B=b, C=c)$ and $P(A=a \mid C=c)$.

b	С	P(B=b,C=c)
0	0	0.384
0	1	0.208
1	0	0.096
1	1	0.312

С	P(C=c)
0	0.48
1	0.52

а	b	С	p(a,b,c) =
			P(A = a, B = b, C = c)
0	0	0	0.192
0	0	1	0.144
0	1	0	0.048
0	1	1	0.216
1	0	0	0.192
1	0	1	0.064
1	1	0	0.048
1	1	1	0.096

a	С	P(A=a,C=c)
0	0	0.24
0	1	0.36
1	0	0.24
1	1	0.16

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

- 1. Compute the marginal distributions P(A,C), P(B,C), and P(C).
- 2. Use these marginal distributions to compute the conditional distributions $P(A=a \mid B=b, C=c)$ and $P(A=a \mid C=c)$. $\rightarrow P(A=a \mid C=c) = P(A=a, C=c) / P(C=c)$

а	С	P(A=a C=c)
0	0	0.24 / 0.48 = 0.5
0	1	0.36 / 0.52 = 0.6923
1	0	0.24 / 0.48 = 0.5
1	1	0.16 / 0.52 = 0.3077

С	P(C=c)
0	0.48
1	0.52

а	С	P(A=a,C=c)
0	0	0.24
0	1	0.36
1	0	0.24
1	1	0.16

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

- 1. Compute the marginal distributions P(A,C), P(B,C), and P(C).
- 2. Use these marginal distributions to compute the conditional distributions

$$\underline{P(A=a \mid B=b, C=c)}$$
 and $\underline{P(A=a \mid C=c)}$.

$$\rightarrow$$
 P(A=a| B=b, C=c)
= P(A=a, B=b, C=c) / P(B=b, C=c)

a	b	С	P(A = a B = b, C = c)
0	0	0	0.192 / 0.384 = 0.5
0	0	1	0.144 / 0.208 = 0.6933
0	1	0	0.048 / 0.096 = 0.5
0	1	1	0.216 / 0.312 = 0.6933
1	0	0	0.192 / 0.384 = 0.5
1	0	1	0.064 / 0.208 = 0.3077
1	1	0	0.048 / 0.096 = 0.5
1	1	1	0.096 / 0.312 = 0.3077

а	b	С	p(a,b,c) = P(A = a,B = b,C = c)
0	0	0	0.192
0	0	1	0.144
0	1	0	0.048
0	1	1	0.216
1	0	0	0.192
1	0	1	0.064
1	1	0	0.048
1	1	1	0.096

b	С	P(B=b,C=c)
0	0	0.384
0	1	0.208
1	0	0.096
1	1	0.312

Consider the joint probability distribution over A, B, and C specified in the table below

Are the RVs A and B conditionally independent given C?

- 1. Compute the marginal distributions P(A,C), P(B,C), and P(C).
- 2. Use these marginal distributions to compute the conditional distributions $P(A=a \mid B=b, C=c)$ and $P(A=a \mid C=c)$.
- 3. Compare the conditional distributions to reach a conclusion.

a	b	С	P(A = a B = b, C = c)
0	0	0	0.5
0	0	1	0.6933
0	1	0	0.5
0	1	1	0.6933
1	0	0	0.5
1	0	1	0.3077
1	1	0	0.5
1	1	1	0.3077

а	С	P(A=a C=c)
0	0	0.5
0	1	0.6923
1	0	0.5
1	1	0.3077

Consider the joint probability distribution over A, B, and C specified in the table below

• Are the RVs A and B conditionally independent given C? Yes

- 1. Compute the marginal distributions P(A,C), P(B,C), and P(C).
- 2. Use these marginal distributions to compute the conditional distributions $P(A=a \mid B=b, C=c)$ and $P(A=a \mid C=c)$.
- 3. Compare the conditional distributions to reach a conclusion.

а	b	С	P(A = a B = b, C = c)
0	0	0	0.5
0	0	1	0.6933
0	1	0	0.5
0	1	1	0.6933
1	0	0	0.5
1	0	1	0.3077
1	1	0	0.5
1	1	1	0.3077

P(A=a C=c)
0.5
0.6933
0.5
0.6933
0.5
0.3077
0.5
0.3077

а	С	P(A=a C=c)
0	0	0.5
0	1	0.6923
1	0	0.5
1	1	0.3077

Probability distribution of multiple random variables

Same goes with larger sets of random variables $A_1, A_2, ..., A_N$:

Marginal distribution: $P(A_1,=a_1,...,A_i=a_i) = \sum_{a_{i+1}...a_n} P(A_1,=a_1,...,A_i=a_i,A_{i+1},=a_{i+1},...,A_n=a_n)$

Conditional distribution:

$$P(A_1,=a_1,...,A_i=a_i \mid A_{i+1},=a_{i+1},...,A_n=a_n) = P(A_1,=a_1,...,A_i=a_i,A_{i+1},=a_{i+1},...,A_n=a_n) / P(A_{i+1},=a_{i+1},...,A_n=a_n)$$

Chain law: $P(A_1, A_2, ..., A_N) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_2 A_1) \times ... \times P(A_N | A_{N-1} ... A_1)$

Conditional independence:

 A_N is conditionally independent of $A_1, A_2, ..., A_{i-1}$ given $A_i, ..., A_{N-1}$, iff $P(A_N | A_{N-1}, ..., A_1) = P(A_N | A_{N-1}, ..., A_i)$

• When the value (a_i) is known from context, we will use the shorthand $P(A_i)$ for $P(A_i=a_i)$

Lecture overview

- Sequence annotation and HMMs
- Examples of sequence HMMs
- Decoding problems in HMMs
- Viterbi algorithm for most probable path ←

Decoding HMMs

alphabet (Σ)

A given HMM and observed sequence of symbols X imply a probability distribution over annotations S. Decoding questions ask questions about this distribution, such as:

- What is the most probable annotation? \leftarrow
- What is the most probable state assignment at a given position?
- What is the data likelihood under the assumed model?

Objective: for a given observed sequence $X = X_1...X_n$ find the sequence of annotations $S = S_1...S_n$ that maximizes $P(X,S \mid HMM)$

HMM

The joint probability of an annotation path and the observed sequence:

Using the chain law, we get:

$$\begin{split} \mathsf{P}(X,\!S\,|\,\mathsf{HMM}) &= \mathsf{P}(S_1\mid S_0)\,\mathsf{P}(X_1\mid S_1S_0)\,\mathsf{P}(S_2\mid X_1S_1S_0)\,\mathsf{P}(X_2\mid S_2X_1S_1S_0)\,\ldots \\ &= \prod_i \mathsf{P}(S_i\mid X_1...X_{i-1}S_0...S_{i-1})\,\mathsf{P}(X_i\mid X_1...X_{i-1}S_1...S_i) \\ &= \prod_i \mathsf{P}(S_i\mid S_{i-1})\,\mathsf{P}(X_i\mid S_i) & \qquad \qquad \text{conditional independence (CI) in HMMs:} \\ &= \prod_i t(S_{i-1} \!\!\to\!\! S_i)\,\;e(S_i \!\!\to\!\! X_i) & \qquad \qquad \text{given } S_i\,,\,\,X_i \text{ is CI of all other variables } S_j\,,\,X_j\,(j \!\neq\! i) \\ &= \prod_i t(S_{i-1} \!\!\to\!\! S_i)\,\;e(S_i \!\!\to\!\! X_i) & \qquad \qquad \text{and } S_{i+1} \text{ is CI of } X_j\,(j \!\leq\! i),\,\,S_j\,(j \!<\! i). \end{split}$$

Decoding – finding most probable annotation

Question: Can we use a greedy algorithm to compute the most probable path? Answer: No!!

If $S = S_1...S_n$ is a max-probability annotation of $X = X_1...X_n$, is its prefix $S' = S_1...S_{n-1}$ a max-probability annotation of $X' = X_1...X_{n-1}$?

- Let s, s 'be the last two states in S. Then, $P(X, S | HMM) = P(X', S' | HMM) t(s' \rightarrow s) e(s \rightarrow X_n)$. [derive using formula from last slide]
- Now consider an arbitrary path S "of length n-1, and let s" be the last state in this path.

- The path S''' = S''s has joint probability: $P(X, S''' | HMM) = P(X', S'' | HMM) t(s'' \rightarrow s) e(s \rightarrow X_n)$.
- This implies: $P(X,S|HMM) / P(X,S''|HMM) = (P(X',S'|HMM) / P(X',S''|HMM)) \times (t(s' \rightarrow s) / t(s'' \rightarrow s))$
- So, it's possible to have P(X',S'|HMM) < P(X',S''|HMM) if $t(s \rightarrow s) > t(s \rightarrow s)$
- Note, however, that S' has the highest joint probability with X' among all paths that end with S'.

Decoding – finding most probable annotation

Claim: If $S = S_1...S_n$ is a max-probability annotation of $X = X_1...X_n$ among annotations that end with $S_n = s$, then its prefix $S' = S_1...S_{n-1}$ a max-probability annotation of $X' = X_1...X_{n-1}$ among annotations that end with $S_{n-1} = s'$.

Proof:

- Let s, s 'be the last two states in S. Then, $P(X,S|HMM) = P(X',S'|HMM) t(s' \rightarrow s) e(s \rightarrow X_n)$. [derive using formula from last slide]
- Now consider an arbitrary path S "of length n-1 that ends with state s".

- $S \quad S' \quad S_0 \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_3 \longrightarrow S_4 \longrightarrow S_{n-1} \longrightarrow S_n$ $X \quad X' \quad X_1 \quad X_2 \quad X_3 \quad \dots \quad X_{n-1} \quad X_n$ $S''' \quad S''' \quad S_0 \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_3 \longrightarrow S_4 \longrightarrow S_{n-1} \longrightarrow S_n$ $S' \quad S$
- The path S''' = S''s has joint probability: $P(X,S'''|HMM) = P(X',S''|HMM) t(s' \rightarrow s) e(s \rightarrow X_n)$.
- This implies: $P(X,S|HMM) / P(X,S'''|HMM) = (P(X',S'|HMM) / P(X',S''|HMM)) \times (t(s' \rightarrow s) / t(s' \rightarrow s))$
- Since we know that P(X,S | HMM) / P(X,S'' | HMM) > 1, then we must also have P(X',S' | HMM) / P(X',S'' | HMM) > 1Algorithms in Computational Biology CS3571

Input sequence X

- Fill a DP matrix V, where V[i,j] will hold the max-probability annotation $S_1...S_i$ of the prefix $X_1...X_i$ among those that end with state $S_i = s_j$ (the i'th state in the path equals s_j)
- Update formula: (implied by claim from previous slide) $V[i,j] = \max_{l} \{V[i-1,l] \times t(s_l \rightarrow s_j) \times e(s_j \rightarrow X_i)\} = \max_{l} \{V[i-1,l] \times t(s_l \rightarrow s_j)\} \times e(s_j \rightarrow X_i)\}$
- Update pointers are used to reconstruct the path

Viterbi's algorithm

Input: an HMM with k states $s_1...s_k$ and a sequence of observed symbols $X_1...X_n$

Objective: Compute a matrix V s.t. V[i,j] holds the max-probability annotation $S_1...S_i$ of the prefix $X_1...X_i$ among those that end with state $S_i = s_j$ (the i'th state in the path equals s_i)

Initialization: V[0,0] = 1 and V[0,j] = 0 for j=1..k (s_0 is the added initial state)

Update: for each i=1..n and j=1..k compute V[i,j] as follows:

 $V[i,j] = \max_{l} \{V[i-1,l] \times t(s_l \rightarrow s_i)\} \times e(s_i \rightarrow X_i) + \text{keep pointer to cell } [i-1,l] \text{ used in update}$

Output: reconstruct max-probability annotation by finding cell V[n,j] with highest value and tracing back from it using the update pointers all the way to V[0,0].

Viterbi's algorithm

Correctness: implied by the claim on slide 41

Complexity:

Space – O(kn) the algorithm keeps kxn values V[i,j] and pointers

Time $-O(k^2n)$ calculation of V[i,j] requires finding the maximum among k possible values.

Comments:

- Hirschberg's technique can be used to reduce space complexity to O(k) with time complexity $O(k^2n\log(n))$ (typically k < n)
- Time complexity eventually depends on the number of non-zero transitions, which can be less than k^2 (as is in the case of the alignment and motif detection HMMs)

Noisy bit transmission

Execution of Viterbi's algorithm on simple HMM:

Transitions:

$$p_{AB} = p_{AB} = 0.8$$

Emissions:

0

A	p_{A0}	$1-p_{A0}$
В	1 - p_{B1}	$p_{\mathtt{B1}}$

$$p_{A0} = p_{B1} = 0.9$$

HMM introduction summary

- HMMs are general and useful models for defining "hidden" annotations for sequential data.
- HMMs are based on a Markov model of the hidden states + emissions that connect observations with the states.
- The Markov model enables efficient decoding algorithms
- Next week we'll discuss more decoding algorithms and start thinking about how the probabilities of the model can be inferred.