Digital 3D Geometry Processing Exercise 1 - Introduction

January 16, 2024

Note

Hand in a .zip compressed file renamed to Exercise*n*-GroupMemberNames.zip where *n* is the number of the current exercise sheet. It should contain:

- **Only** the files you changed (headers and source). It is up to you to make sure that all files that you have changed are in the zip.
- A readme.txt file containing a description on how you solved each exercise (use the same numbers and titles) and the encountered problems.
- Other files that are required by your readme.txt file. For example, if you mention some screenshot images in readme.txt, these images need to be submitted too.
- Submit your solutions to Gradescope before the submission deadline.

Coding Exercise (10 pts)

The goal of this exercise is to set up coding environment for the exercises in the course and to get started with Eigen library.

- Download dgp-exercise1.zip and extract into OpenFlipper folder.
- Compile OpenFlipper together with the plugin Plugin-DGPExercise.
- Read Eigen documentation and solve the small sparse linear algebra system Ax = b, where

$$A = \begin{bmatrix} 0 & 1 & 0 & -2 & 0 \\ -1 & 0 & 3 & 0 & 4 \\ 0 & 0 & 0 & 5 & 2 \\ -1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

and $b = \begin{pmatrix} 1 & 10 & 8 & 0 & 3 \end{pmatrix}^T$. You should set up the linear system with Eigen. Choose a proper sparse solver to solve for the variable *x* and output the result as well as the matrix *A* and vector *b*. For the exercise, you will need to fill in the missing code in the EigenTutorial.hh and EigenTutorial.cc files.

NOTE: Your code MUST at least compile without any issue for you to get a passing grade.