
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Quadrilateral Mesh Generation for Computational Knitting
Rahul Mitra

Boston University
Boston, USA

rahulm@bu.edu

ABSTRACT
Computer controlled knitting machines are ubiquitous in the textile
industry. However, a primary concern with their usage is the re-
quirement of a low-level understanding of the machine and knitting
details, on part of the user. In this course project, we attempt to
streamline and simplify the process of computational knitting by
presenting a novel construction of the vertices of a quad-dominant
stitch-mesh. Knoppel et al.’s method of generating stripe patterns
on 3D meshes is leveraged to inform the knitting the direction
over the model. In particular, we use the intersections of two mu-
tually orthogonal stripe patterns to generate the vertices of our
quad-dominant stitch-mesh. It is our hope that the generated mesh
can seamlessly integrate with extant methods for translating such
meshes to machine instructions. We present the vertices of our
stitch-mesh using three representative models, a simple prism, a
uniform sphere and a bent cylinder.

KEYWORDS
computational knitting, stripe patterns, quad-dominant meshing

ACM Reference Format:
Rahul Mitra. 2018. Quadrilateral Mesh Generation for Computational Knit-
ting. In Proceedings of Make sure to enter the correct conference title from
your rights confirmation emai (Conference acronym ’XX). ACM, New York,
NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Knitted clothes are ubiquitous in our daily lives. The two primary
reasons knitting is favored over other its alternatives are that knit-
ted fabrics easily stretch and also knitting allows for the production
of complex 3 dimensional surfaces without seams [1].

However, designing these knitting patterns for shapes with arbi-
trary geometry is a complex problem. The design process requires
a high level of domain expertise and numerous iterations of trial
and error.

In this project, we present the first steps in improving the fully
automatic method of Naryanan et al. [2] for converting an input 3D
mesh to machine-readable knitting instructions. While Naryanan et
al. [2] present a quad-dominant re-meshing pipeline, the generated
meshes tend to be highly unstructured and lack quality. We use

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Knoppel et al.’s [3] method for generating stripe-patterns on sur-
faces to present the vertices of what will be a far more structured
row-column stitch-mesh [2], an intermediate requirement towards
the generation of knitting machine instructions.

Our algorithm takes as input a 3D mesh of genus 0 and 2 bound-
aries, a user specified knitting direction (realized as starting and
ending cycles), and a stitch width. We then generate 2 orthogonal
stripe patterns over the surface. Our stitch-mesh’s vertex locations
are specified by the points of intersections of the two stripe patterns
(fig. 1). Significantly, our approach assumes no domain knowledge
on part of the user.

While the method implemented in this project was only able to
handle topological cylinders (𝑔 = 0, 𝑛 = 2), it is our hope that we
will be able to generalize the generation of the vertices to arbitrary
meshes.

Figure 1: Two orthogonal stripe patterns (left, blue and mid-
dle, red) [3]. The points of intersection of these patterns are
the vertices for our stitch-mesh.

2 BACKGROUND
Before we describe the details of our method, we briefly overview
the concepts of computational knitting and stripe parameterization
on surfaces.

2.1 Computational Knitting
With the advent of automatic industrial knitting machines, there
has been a growing interest in designing computational tools that
can streamline their usage. From usability [4] to comfort [5] consid-
erations, the field of computational knitting has received a plethora
of varied research interests.

A significant step in the knitting pipeline involves the generation
of a stitch-mesh [2]. This stitch-mesh is thought of as an abstraction
for the yarn level geometry [6] and is highly useful for modelling
knit structures. In particular, each face of this quad-dominant mesh
corresponds to a knit in the final structure. The faces of this mesh
are placed side-by-side forming rows, known as the course knitting

2022-05-12 23:15. Page 1 of 1–6.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mitra et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

direction. The rows are stacked one on top the other, forming the
wale knitting direction. The yarn used for knitting each face enters
the face through one wale edge, forms the stitch, and then exits the
face from the opposite wale edge [1]. See fig. 2.

Figure 2: (a) A single stitch-mesh face, (b) Faces arranged
along the course knitting direction, (c)Multiple faces stacked
to form the wale knitting direction.[1]

Because we are interested in knitting arbitrary geometries, we
also need to consider non-trivial 3D structures where the course
rows are non-uniform. In particular, not all rows can have the
same number of stitch-faces. The stitch-faces where the rows end
prematurely are known as short-rows and their placement within
the stitch-mesh is highly significant to guarantee knittability. See
fig. 4

Figure 3: Green and yellow arrows represent the course and
wale directions respectively. For non-trivial topologies, all
our rows cannot be uniform length. Short rows (red faces)
are introduced to guarantee knittability[5]

Finally, our stitch-mesh needs to be helix-free. The presence of
helices makes it unsuitable for tracing because arbitrary helices
hinder the row-structure construction [2].

In this project, we generate the vertices of the stitch-mesh on
three models. It should be noted here that helices are born (and
killed) at short-rows. Unfortunately, our method does not yet ac-
count for the existence of such short-row faces. As such, when we
will eventually trace the vertices to form the row-column stitch-
mesh of our three models, the graph is gauranteed to be helix-free.

2.2 Stripe Pattern Parameterization
Knoppel et al. use a per-vertex vector field to parameterize stripe
patterns on surfaces [3]. Their approach takes a 3D model and a
per-vertex vector field as input. Instead of directly specifying a
vector at each vertex, we modify their pipeline to specify a 1-form
in the space of edges. This 1-form serves as our parameterization
coordinate for stripe generation.

To keep stripe-spacing uniform, “branch indices" are introduced,
where the stripes bifurcate. These branch indices are realized as the
non-integrability of the vector field over particular faces (i.e., non-
zero curl). We model these branch faces as the short-rows described
above (not yet considered by our vertex-generation pipeline).

To very simply summarize Knoppel et al.’s method, each vertex,
𝑣𝑖 is assigned a scalar value, 𝛼𝑖 . The stripes over a face, {𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 }
that does not contain a short-row is given by a linear function of the
values, 𝛼𝑖 , 𝛼 𝑗 and 𝛼𝑘 . For a face that does contain a short-row, the
stripes are given by a quadratic function involving the values 𝛼𝑖 , 𝛼 𝑗
and 𝛼𝑘 , together with an interpolant to ensure that the function
(and by extension, the stripes) are continuous along the boundary
of the face.

Our approach allows for changing stripe width which enables
us to either increase or decrease the sampling rate of vertices. A
lower width implies a higher stripe frequency which means more
stripe intersections with an orthogonal stripe pattern and vice-
versa. Physically, the stripe width corresponds directly to the user-
specified stitch width as described in section 1.

Figure 4: Knoppel et al.’s [3] method inserts stripe bifurca-
tions, “branch indices" for uniform stripe-spacing over arbi-
trary geometries. We model these points of bifurcations as
short-row faces in our pipeline towards stitch-mesh genera-
tion.

3 METHODS
Our pipeline consists of 3 main components. We first ask the user to
input the knitting direction (realized as starting and ending cycles)
and a stitch width. We then run an edge-based optimization to
generate boundary-aligned stripes. We rotate the boundary-aligned
stripes by an angle of 𝜋

2 with respect to the outward pointing face
normal to get the orthogonal stripe pattern. Finally, we formulate
how to find stripe intersections at each face, given the two orthog-
onal stripe patterns. Again, our method currently only accounts
for faces where neither of the stripe patterns (boundary-aligned or
orthogonal) have short-rows. We present results in section 4.

2022-05-12 23:15. Page 2 of 1–6.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Quadrilateral Mesh Generation for Computational Knitting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3.1 User input
Much like the method of Naryanan et al. [2], our approach takes
as input a triangulated mesh. The user then selects a set vertices
as the starting and ending cycles. We realize these starting cycle
vertices as having a scalar value of 0 and the ending cycle vertices as
having a scalar value of 1. These correspond to our boundary con-
ditions. Given these boundary conditions we perform a harmonic
interpolation (fig. 5) over all the vertices of the mesh.

Δ𝑧 = 0
𝑧𝜕 = 𝑧𝑏𝑐

(1)

where Δ corresponds to the standard vertex-based Laplace operator
and 𝑧𝑏𝑐 are the specified boundary conditions. The iso-values of
the harmonic function roughly align with the generated stripes (fig.
7) and are a good representation for the course knitting direction.

Further, our method also accepts a user-specified stitch width,
which shows up as a period term in our optimization framework
(described in more detail in section 3.2) since its value is directly
proportional to stripe width. Recall that, as described in section 2.2,
this period term influences the sampling rate for generating the
vertices of the required stitch-mesh. The results of the interpolation
on a bunny mesh is shown in fig. 5.

Figure 5: The user inputs the 3D model and then selects the
starting cycle (the bunny base) and the ending cycle (bunny
ears).

3.2 Edge-based optimization for stripe and
orthogonal stripe generation

Now, we look for a 1-form that generates stripe patterns which
are amenable for conversion to a row-column stitch-mesh. For our
purposes, it suffices to specify a 1-form that provides principled
placement of short-rows and is helix-free. Moreover, we are inter-
ested in finding a 1-form that appropriately maintains the correct
directionality of stripes (with respect to the user-specified knitting
direction) over each individual element and also maintains a good
stripe width.

Let 𝑧 be the result of our harmonic interpolation. Because 𝑧 is a
scalar function defined at each vertex, i.e., 𝑧 is in R |V | , we interpret
it as a 0-form. The discrete differential of 𝑧, 𝑝 = 𝑑0𝑧 specifies a
1-form in R |E | . Given 𝑝 , we now define a gradient at each face, ∇𝑓 ,
𝑓 ∈ 𝐹 . Then, a 1-form that has the properties defined above,

𝑔 =
1
2

〈
∇𝑓1

| |∇𝑓1 | |
+ ∇𝑓2
| |∇𝑓2 | |

, e
〉

(2)

where e is the intrinsic edge vector and 𝑓1 and 𝑓2 are the two faces
shared by edge, 𝑒 . For boundary edges, we consider only the non-
boundary face.

The discrete differential of𝑔,𝑑1𝑔 is ameasure of its non-integrability
and thus, provides insight into the placement of short-rows. We note
that using 𝑔 as a 1-form we are trying to match in the optimization
leads to the good placement of short-rows for knitting purposes.
Note that 𝑑1𝑔 is in R |𝐹 | . See fig. 6.

Figure 6: Given the harmonic function, 𝑧, a plot of 𝑑1𝑔,
as defined by equation (1). The highest regions of non-
integrability (faces that are furthest from 0) correspond to
the likely placement of short-rows.

Let 𝜃 be the 1-form we are solving for. We encapsulate the fact
that the stripes should align with the user-specified boundary cycles
by constraining 𝜃 at the boundary edges (i.e., edges where both
endpoints are boundary vertices) to 0. Boundary edges are denoted
by 𝜕. We also ask the integral of 𝜃 around each face i.e., a row in
𝑑1𝜃 , be some integer multiple of the user-specified stripe width, say
𝑤 . Physically, where the integral isn’t 0 corresponds to short-row
faces. To encourage the insertion of short-rows, we also add on a
regularization term, | |𝑑𝜃 −𝑤𝑘 | |2 to the objective function. Our final
edge-based optimization is then,

𝑚𝑖𝑛𝜃 ∈R|𝐸 | | |𝜃 − 𝑔| |2 + ||𝑑1𝜃 −𝑤𝑘 | |2

subject to,
𝜃𝜕 = 0,

𝑑1𝜃 = 𝑤𝑘, 𝑘 ∈ Z

(3)

We note that the regularization term does not change the objec-
tive value since any feasible solution will have, | |𝑑𝜃 −𝑤𝑘 | |2 = 0,

2022-05-12 23:15. Page 3 of 1–6.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mitra et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

due to the constraints. The result is a mixed-integer optimization
with linear constraints for which we use the gurobi optimization
software [7]. Note that our optimization automatically solves for 𝑘 ,
i.e., locations of short-rows. However, the experienced user could
also manually place short-rows by specifying particular 𝑘-values at
faces, if so desired.

Figure 7: Stripes generated with our edge-based optimization.
The stripes represent the course knitting direction. They
adequately align with the boundaries and short-rows (faces
where the stripes bifurcate) are appropriately placed. The
thickness of the stripes correspond to the stitch width. How-
ever, these stripe patterns are not helix-free.

Now, we turn our attention to generating orthogonal stripes.
To generate orthogonal stripes we begin by simply rotating the
gradient, ∇𝑓𝑖 , 𝑓𝑖 ∈ 𝐹 at each face by 𝜋

2 with respect to the outward
pointing normal. This is achieved using Rodrigues’ formula [8].
Further, we no longer want the stripes to align with the boundaries
but in fact ask that stripes are orthogonal to the boundary edges.
As such we remove the constraint, 𝜃𝜕 = 0 from our optimization.
Now, re-running the optimization gives us the required orthogonal
stripe patterns. We demonstrate two orthogonal stripe patterns in
fig. 8.

3.3 Vertex Intersection Formulation
Knoppel et al.’s method [3] takes, as input, a vector field defined
over the mesh and parameterizes stripe patterns according to the
input-field. The method does so by finding a coordinate function
that increases uniformly as one travels along the input vector field.
However, not all vector fields are globally integrable. The faces at
which the vector-field cannot be integrated is where the method
introduces branch-indices (i.e., short-rows according to our termi-
nology). As discussed in the introduction, the stripe parameteri-
zation coordinate is specified as a scalar at each vertex. However,
instead of directly specifying a value at each vertex, we modify the
pipeline to specify a 1-form in the space of edges. This 1-form is
the integrated onto the vertices and serves as our parameterization
coordinate for strip generation. The method also incorporates the

Figure 8: The original stripe pattern from our optimization
(left) and the orthogonal stripe pattern by rotating face gra-
dients and re-running the optimization (right). The inter-
sections of the two stripe patterns are the vertices of our
stitch-mesh.

notion of a “stripe period". One period is defined as the distance
covered by a pair of black and orange stripes. Then, the number of
stripes through an edge is given by the number of period differences
between the scalar values at the edge’s two endpoints.

Let us consider stripe intersection points for a single face, 𝑓𝑖 𝑗𝑘 ∈
𝐹 , where the subscripts signify vertex indices. Consider the simple
case where neither of the stripe patterns (boundary-aligned or
orthogonal) have a short row at this face. Then, we use barycentric
coordinates to solve for the point of intersection of the two stripes.
If 𝑝𝑖 , 𝑝 𝑗 and 𝑝𝑘 are the 3 vertex locations of 𝑓𝑖 𝑗𝑘 and 𝑝 is the point
of intersection then,

𝑝 = 𝑏𝑖𝑝𝑖 + 𝑏 𝑗𝑝 𝑗 + 𝑏𝑘𝑝 𝑗 (4)

where𝑏𝑖 ,𝑏 𝑗 and𝑏𝑘 are the barycentric coordinates. In the following,
we use 𝛼 for one stripe pattern and 𝛽 for the other. To recover the
barycentric coordinates, we simply solve the linear system,

𝑏𝑖𝛼𝑖 + 𝑏 𝑗𝛼 𝑗 + 𝑏𝑘𝛼𝑘 = 𝑍𝛼

𝑏𝑖𝛽𝑖 + 𝑏 𝑗 𝛽 𝑗 + 𝑏𝑘𝛽𝑘 = 𝑍𝛽
(5)

where 𝑍𝛼 and 𝑍𝛽 are iterated for every integer multiple of the
period (or period

2 for higher sampling rate), within [𝛼𝑚𝑎𝑥 , 𝛼𝑚𝑖𝑛]
and [𝛽𝑚𝑎𝑥 , 𝛽𝑚𝑖𝑛] in face, 𝑓𝑖 𝑗𝑘 . And, 𝛼𝑛, 𝛽𝑛, 𝑛 ∈ [𝑖, 𝑗, 𝑘] are the
scalar values at the vertices of face, 𝑓𝑖 𝑗𝑘 . Also, 𝑏𝑘 = 1 − 𝑏𝑖 − 𝑏 𝑗 so
eqn. 5 is simply a linear system of 2 equations with 2 unknowns.
We carry out this linear solve for every face in the mesh where
neither of the two stripe patterns exhibit a short-row.

Next, we consider the case where 𝑓𝑖 𝑗𝑘 is a short-row face i.e., one
of the stripe parameterizations exhibits a branch index. We will use
𝛼 ’s to denote the scalar values that resulted in the short-rows. 𝛽’s
will be used to denote the linear stripes over 𝑓𝑖 𝑗𝑘 . Our method does
not handle the case where both stripe parameterizations, given by
𝛼 and 𝛽 induce short-rows at the same face. [3] uses a quadratic
function to generate short-row stripes. An interpolant is introduced

2022-05-12 23:15. Page 4 of 1–6.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Quadrilateral Mesh Generation for Computational Knitting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

to keep the stripes continuous along the boundary. We let 𝑡 be
the stripe period as described earlier. Because [3] uses a different
interpolants, depending on the barycentric region of the face, our
intersection formulation must also consider different barycentric
regions separately. In particular,

Case 𝑏𝑘 ≤ 𝑏𝑖 and 𝑏𝑘 ≤ 𝑏 𝑗

𝑏𝑖 (𝛼𝑖) + 𝑏 𝑗
(
𝛼 𝑗 −

𝑡 · 𝑛
3

)
+ 𝑏𝑘

(
𝛼𝑘 − 2 · 𝑡 · 𝑛

3

)
+ 𝑡 · 𝑛

6

(
1 +

𝑏 𝑗 − 𝑏𝑖

1 − 3𝑏𝑘

)
= 𝑍𝛼

𝑏𝑖𝛽𝑖 + 𝑏 𝑗 𝛽 𝑗 + 𝑏𝑘𝛽𝑘 = 𝑍𝛽

Case 𝑏𝑖 ≤ 𝑏 𝑗 and 𝑏𝑖 ≤ 𝑏𝑘

𝑏𝑖 (𝛼𝑖) + 𝑏 𝑗
(
𝛼 𝑗 −

𝑡 · 𝑛
3

)
+ 𝑏𝑘

(
𝛼𝑘 − 2 · 𝑡 · 𝑛

3

)
+ 𝑡 · 𝑛

6

(
3 +

𝑏𝑘 − 𝑏 𝑗

1 − 3𝑏𝑖

)
= 𝑍𝛼

𝑏𝑖𝛽𝑖 + 𝑏 𝑗 𝛽 𝑗 + 𝑏𝑘𝛽𝑘 = 𝑍𝛽

Case 𝑏 𝑗 ≤ 𝑏𝑘 and 𝑏 𝑗 ≤ 𝑏𝑖

𝑏𝑖 (𝛼𝑖) + 𝑏 𝑗
(
𝛼 𝑗 −

𝑡 · 𝑛
3

)
+ 𝑏𝑘

(
𝛼𝑘 − 2 · 𝑡 · 𝑛

3

)
+ 𝑡 · 𝑛

6

(
5 + 𝑏𝑖 − 𝑏𝑘

1 − 3𝑏𝑘

)
= 𝑍𝛼

𝑏𝑖𝛽𝑖 + 𝑏 𝑗 𝛽 𝑗 + 𝑏𝑘𝛽𝑘 = 𝑍𝛽
(6)

where again𝑍𝛼 and𝑍𝛽 are iterated for every integer multiple of the
period (or period

2), within [𝛼𝑚𝑎𝑥 , 𝛼𝑚𝑖𝑛] and [𝛽𝑚𝑎𝑥 , 𝛽𝑚𝑖𝑛] in face,
𝑓𝑖 𝑗𝑘 . We solve all three cases in eqn. 6 for every short-row face in
the mesh. Having done so, we only use the barycentric coordinates
that satisfy the respective case conditions to find the points of
intersection using eqn. 4.

4 RESULTS
Now, we present the vertices of our quadrilateral mesh on three
simple models. First, let’s consider the simple prism (fig. 9).

Figure 9: Two orthogonal stripe patterns on the prism model.
We are interested in finding the locations of where these
stripes intersect.

Using eqn. 5 to solve for stripe intersections over every face
gives us the result in fig. 10.

Next, we consider the uniform sphere (fig. 11).
Again, we use eqn. 5 to solve for stripe intersections on every

face of this mesh to arrive at fig. 12.
Finally, let’s consider the bent cylinder shown in fig. 8 (results

shown in fig. 13).

Figure 10: Vertices of the stitch-mesh of the prismmodel. (As
a side note, I know the black background is alarming but the
vertices are not very discernible if I plot them in black and
use the standard white background as I have been for the
rest of the paper.)

Figure 11: Two orthogonal stripe patterns on the sphere
model. We are interested in finding the locations of where
these stripes intersect.

Recall that our method also allows for sampling points at differ-
ent stripe frequencies. For figures 10, 12 and 13, we have sampled
vertices at every period

2 i.e., at every black (or correspondingly, or-
ange) stripe. We can change the sampling rate as shown in fig. 14,
where the vertices have been sampled at every period i.e., at every
black + orange stripe.

5 CONCLUSION AND REFLECTION
We have implemented the first steps in the pipeline towards using
stripe patterns for computational knitting. We have presented a
novel mixed-integer optimization framework to generate stripe

2022-05-12 23:15. Page 5 of 1–6.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mitra et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 12: Vertices of the stitch-mesh of the sphere model.

Figure 13: Vertices of the stitch-mesh of the bent cylinder
model. Here, once again, we have used eqn. 5 to solve for
stripe intersections at non-short-row faces. The holes in the
mesh correspond to short-row faces, where our solve has not
been adequately implemented.

patterns that are amenable for conversion to a stitch-mesh. Our
method is flexible in that it accounts for both the automatic and
manual insertion of short-rows. Further, our method assumes no
domain knowledge on behalf of the user and only requires mesh,
knitting direction and stitch width as input. Given these parameters,
we are able to find the vertices of the required quadrilateral stitch-
mesh, as shown by the results in section. 4.

In this article, we have steered away from the discussion of helix-
removal from the stripe patterns. Going forward, it is an important
aspect to consider as arbitrary helices hinder the row-structure
construction of our stitch-mesh, as also mentioned in section 1.

Figure 14: Our method allows for changing vertex sampling
rate. Here, vertices have been sampled at every black + orange
stripe as opposed to every black stripe as seen in fig. 13.

Further, we also need to consider vertex-generation at short-row
faces. While the code for the solve of eqn. 6 has been written, it
continues to be buggy and preliminary results seem incorrect. We
are hopeful that the issues will be resolved soon.

Finally, we also need to address the question of tracing the gen-
erated vertices to actually form the rows and columns of our stitch-
mesh. We have discussed a high-level approach and we’re expecting
it to be a really fun algorithmic and implementation challenge over
the next few weeks.

REFERENCES
[1] Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. Stitch

meshing. ACM Trans. Graph., 37(4), jul 2018.
[2] Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.

Automatic machine knitting of 3d meshes. ACM Transactions on Graphics (TOG),
37(3):1–15, 2018.

[3] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Stripe patterns
on surfaces. ACM Transactions on Graphics (TOG), 34(4):1–11, 2015.

[4] Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff, and
Adriana Schulz. Computational design of knit templates. ACM Transactions on
Graphics (TOG), 41(2):1–16, 2021.

[5] Zishun Liu, Xingjian Han, Yuchen Zhang, Xiangjia Chen, Yu-Kun Lai, Eugeni L
Doubrovski, Emily Whiting, and Charlie CL Wang. Knitting 4d garments with
elasticity controlled for body motion. ACM Transactions on Graphics (TOG),
40(4):1–16, 2021.

[6] Cem Yuksel, Jonathan M Kaldor, Doug L James, and Steve Marschner. Stitch
meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics (TOG), 31(4):1–12, 2012.

[7] Bob Bixby. The gurobi optimizer. Transp. Re-search Part B, 41(2):159–178, 2007.
[8] Jian S Dai. Euler–rodrigues formula variations, quaternion conjugation and

intrinsic connections. Mechanism and Machine Theory, 92:144–152, 2015.

2022-05-12 23:15. Page 6 of 1–6.

	Abstract
	1 Introduction
	2 Background
	2.1 Computational Knitting
	2.2 Stripe Pattern Parameterization

	3 Methods
	3.1 User input
	3.2 Edge-based optimization for stripe and orthogonal stripe generation
	3.3 Vertex Intersection Formulation

	4 Results
	5 Conclusion and Reflection
	References

