
Winding Number Computation for Triangle Soups and Point

Clouds

Erwin Pimentel Daniel Scrivener Stanley To

Boston University

Spring 2022

Problem Statement

We aim to explore novel approaches to mesh voxelization, specifically with the use of generalized

winding numbers. In our work, we build upon prior course experience using a naive raycasting

method for voxelization, in which we cast a ray from each voxel center and count the number of

surface intersections as a means of achieving inside-outside segmentation [5]. This implementation

lacks a proper user interface, making it difficult to interact dynamically with meshes and change

voxelization parameters. Furthermore, this method proves to be computationally expensive, with

an execution time on the degree of hours for certain high-resolution voxelizations. Thus, our

objectives for this project are to (1) extend our naive implementation to the OpenFlipper interface

to allow for users to engage with voxelization of meshes using different parameters and (2) leverage

generalized winding numbers for inside-outside segmentation to improve efficiency and robustness.

Background

From character animation to physically-based simulation, mesh boundaries are often used to rep-

resent solid 3D objects in the field of computer graphics. Inside-outside segmentation is a crucial

part of interacting with meshes, as it is frequently used for a handful of applications: generating

signed distance fields, voxelizing volumes, and recovering smooth surfaces from point clouds. How-

ever, meshes often contain defects such as open boundaries, self-intersections, and non-manifold

pieces due to the fact that many meshes are constructed from imperfect datasets or with artistic

aims that do not align with strict geometric guidelines [1][2]. As such, it is necessary to account

for these categories of mesh aberrations. Generalized winding numbers extend our understanding

of the classic 2D winding number in order to account for the aforementioned defects in oriented

triangle meshes.

The traditional winding number is a signed, integer-valued property of a point p with respect

to a closed curve C ; intuitively, it can be thought of as the number of times C wraps around p

in the counterclockwise direction [4]. More formally, the winding number is equal to the signed

length of the projection of C onto the unit circle centered at p. The winding number can be

generalized to three-dimensional space by describing it as the signed surface area of the projection

1



of a continuous surface onto the unit sphere centered at p [2]. In the discrete case of polygonal

meshes, this method of calculating the winding number involves summing the signed solid angles

subtended by each surface patch.

Figure 1: The winding number intuitively captures self-intersections (top) and holes (bottom). [2]

Importantly, the generalized winding number is harmonic everywhere except across the bound-

ary, which allows it to gracefully handle holes, non-manifold attachments, and self-intersections

[2]. The harmonic property also allows us to experiment with and fine-tune the threshold value in

order to achieve a visually desirable inside-outside segmentation.

Methodology

Groundwork

With an eye toward voxelization, our initial work consisted of porting parts of a suitable C++ mesh

processing framework provided by Professor Whiting through CS581: Computational Fabrication

to OpenFlipper. Said framework provides built-in methods for generating a mesh representation

from a set of points with associated information regarding their solidity. Once this had been ac-

complished, other functions were written to work within the overall software pipeline: voxelization

query points are determined by dividing the axis-aligned bounding box of each mesh into a number

of cubic segments matching the user-specified resolution. The center of every such segment corre-

sponds to a query point. Data structures were designed to store the mesh elements: a framework

for representing the voxel grid was similarly adapted from CS581.

Rather than dealing with the performance overhead involved in constructing a matrix and

computing its determinant with libraries such as Eigen3, we instead laid out all calculations as

making use of standard C++ arithmetic operators. Operations between vectors are facilitated by

the ACG library packaged with OpenFlipper.

OpenMesh, another bundled library, was used to import and manage mesh data. We were able

to feasibly traverse surface patches and points by leveraging the performance of its proprietary

halfedge data structure. As voxelization was intended to be a visual demonstration of the underly-

ing mathematical process, we did not use OpenMesh to emit the updated mesh object due to the

2



massive space complexity of our mesh outputs. However, the resulting meshes can be imported

into OpenFlipper via OpenMesh in the same way as any other Wavefront object (.obj).

The plugin interface was modeled after the DGPExercises plugin designed for CS599 A1: Ge-

ometry Processing, which in turn exposes the Qt framework on which OpenFlipper’s interface is

built. This provides a convenient method for the user to generate a signal to initiate either voxeliza-

tion method and for specification of parameters (resolution of voxelization, solidity threshold). We

chose to allow manual specification of these parameters as a means of giving the user control over

the results: voxelization resolution determines how many cubic elements will be used to subdivide

each spatial axis, whereas the solidity threshold determines the winding number value required for

a voxel to be marked as belonging to the mesh interior.

Winding Number Computation for Triangle Meshes

Having laid the groundwork for voxelization, the first major project milestone was to implement

the foundational winding number algorithm for triangle soups as introduced by Jacobson et al. [2].

This method of computing the winding number for a given query point involves determining the

signed solid angle subtended by every discrete surface patch:

w(q) ≈
m∑
i=1

1

4π
Ωi(q)

Figure 2: Discretization of the winding number for triangle soups.

for m surface patches where q is the query point. In our implementation, surface patches

correspond to elements of the triangle mesh, meaning that all solid angles could be computed via

a standard series of calculations. The following formula was used to determine the tangent of the

signed solid angle, whose magnitude could be determined using the standard atan function [3].

tan(
Ω(q)

2
) =

det(
[
a b c

]
)

abc+ (a · b)c+ (b · c)a+ (c · a)b

a = v0 − q,b = v1 − q, c = v2 − q, a = ∥a∥, b = ∥b∥, c = ∥c∥

Figure 3: Calculation of the signed solid angle.

Winding Number Computation for Point Clouds

The work of Barill et al. in generalizing the notion of winding numbers to point clouds provided

the direction for our improved implementation [1]. Notably, a formula for the contribution of

individual points toward the winding number was derived from the underlying definition in Figure

2 as follows:

3



w(q) ≈
n∑

i=1

ai
(pi − q) · ni

4π∥pi − q∥3

Figure 4: Discretization of the winding number for point clouds.

This sum is computed for all points pi in a set of n points oriented with respect to a query

point q. ai represents the geodesic Voronoi area of the 1-ring neighborhood around the current

pi, which can be approximated without connectivity information by constructing a ring from the

k-nearest neighbors with similarly-oriented normals. Given that our aim was to improve upon

the running time of the approach described by Jacobson et al., we elected to treat the Voronoi

area as a constant for every point rather than employ another library, TRIANGLE, for the task

of estimating the Voronoi area. This provided us with intuition regarding the sensitivity of the

method to the accuracy of this parameter, which Barill et al. found to be of lesser importance [1].

Data Collection

One of our goals was to analyze and compare the running times of various voxelization algorithms

on standard datasets. To this end, we added timing controls to our code using the standard C++

chrono library in order to obtain runtimes accurate to one thousandth of a second. All tests for

which execution time was measured were conducted on an ARM-based MacBook Pro (M1 Pro,

16 GB LPDDR5). Since the OpenFlipper framework can be ported to many different systems,

some visual results were obtained on a desktop running Windows (Intel i7-11700F, 16 GB DDR4).

Though we did not attempt to compute standard deviation across multiple trials, we can report

informally that identical tests were run on separate occasions with only milliseconds of difference

between their execution times.

Results

Execution time

The processing time of both algorithms as well as the baseline raycasting method was measured for

a variety of standard meshes. Some meshes were provided as part of CS599 ; some were obtained

from the Stanford 3D Scanning Repository; others were modeled in Sketchup. We selected a wide

variety of meshes with interesting geometric features and varying polygon counts. Our results are

as follows:

4



Voxelization by Raycasting Technique (res = 32)

Mesh No. Triangles Processing Time (ms)

Icosahedron 20 139

Sphere 960 7123

Teapot 2464 17659

Bunny #1 1000 7279

Bunny #2 10000 71963

Bunny #3 69664 506532 (∼ 8 min)

Voxelization by Direct Evaluation of Winding Number (Trimesh)

Mesh No. Triangles Resolution Processing Time (ms)

Bunny #1 1000 32 7370

Bunny #1 1000 64 59277 (∼ 1 min)

Bunny #1 1000 128 471976 (∼ 8 min)

Teapot 2464 32 17660

Max 20196 32 143033 (∼ 2 min)

Armadillo 345944 32 2698200 (∼ 44 min)

Voxelization by Direct Evaluation of Winding Number (Point Cloud)

Mesh No. Vertices Resolution Processing Time (ms)

Bunny #1 502 32 444

Bunny #1 502 64 3462

Bunny #1 502 128 27852

Bunny #3 34835 32 30016

Teapot 1292 32 1115

Max 10227 32 8777

Armadillo 172974 32 150593 (∼ 2 min)

Crucially, the point cloud algorithm is much faster than other methods at the expense of

accuracy, as indicated by the visual results. The triangle mesh algorithm and raycaster are ap-

proximately even in terms of running time.

Both experimental algorithms lend themselves to parallelization due to the fact that the con-

tribution from each surface patch or point can be calculated independently [1]. This optimization

would greatly improve the execution time despite requiring additional computing resources.

Visual Results

A major advancement of both experimental algorithms is their ability to produce reasonable results

from meshes with aberrations such as self-intersections and holes. Whereas raycasting requires a

watertight mesh due to its sensitivity to the randomly-selected ray, the experimental algorithms

process primitive elements individually without regard to their connectivity. Well-conditioned,

detailed triangle meshes such as the Stanford bunny provide superb results with all three methods,

but the point cloud algorithm provides an edge in terms of performance.

5



(a) res = 32 (b) res = 64 (c) res = 128

Figure 5: Comparison of trimesh algorithm run on bunny.obj for three different resolutions
(thresh = 0).

(a) Front (b) Back

Figure 6: Trimesh algorithm run on max.off, a mesh with an open boundary. Note the gradual
tapering effect on the open half of the mesh.

Some limitations of the experimental algorithms also make themselves apparent in these re-

sults, signaling directions for future improvement. When operating on meshes with fewer primitive

elements, the winding number calculation tends to be less granular, providing subpar surface rep-

resentation. This was observed in the case of block intersect.obj : despite correctly modeling the

self-intersected interior, a large amount of noise is generated around the mesh boundary. Further-

more, approximating the Voronoi area as a constant has consequences for the point cloud method,

which tends to produce physically exaggerated results in areas with high principal curvatures.

Prominent examples of this defect can be seen in the Stanford bunny’s right ear and the spout of

the Utah teapot, both of which are slender features with sharp curves.

Assessment and Future Work

Overall, we were pleased to provide a functional implementation of two research algorithms despite

the apparent limitations in our work. Notably, the recursive tree-based algorithm — a hallmark of

the Barill et al. publication — is conspicuously absent from our implementation for a number of

reasons. First, we encountered difficulties using the available libraries for constructing a bounding-

6



(a) Raycasting (b) Trimesh winding number

Figure 7: Comparison between raycasting algorithm and trimesh winding number algorithm on
block intersect.obj, a mesh with a self-intersection in the outlined area. This area is correctly
marked as solid by the experimental algorithm yet left completely empty by the raycasting

approach. Large amounts of noise in the winding number calculation are present on the boundary.

(a) bunny.obj (b) teapot.obj

Figure 8: Point cloud winding number algorithm run on two different meshes. Note regions where
the features of the original model are greatly exaggerated or distorted.

volume hierarchy, likely due to inexperience in managing different parts of a complex geometry

processing framework like OpenFlipper. Our next option was to design our own data structures

as a means of subdividing the mesh boundary, but this too posed issues regarding the variable

scaling of meshes as well as determination of nearest neighbors. Second, one key limitation of

the “fast” winding number algorithm is the need to construct a hierarchical representation of the

mesh before any useful computation can take place. Given that the point cloud algorithm is meant

to prioritize efficiency, this approach seemed antithetical to our goals. It is worth noting that

certain preprocessing information — namely, the hierarchical data structure — could be stored on

individual meshes in order to improve the performance of subsequent calculations on the same mesh.

However, as the general use-case for winding number determination lends itself to computations

on multiple meshes, this did not seem like an appealing compromise.

Estimation of the Voronoi area surrounding each point is the other key omission in our imple-

mentation: the effects of treating this quantity as a constant are shown through our visual results.

7



Our theoretical approach to this problem was to capture sets of similarly-oriented nearest neighbors

in the form of a directed graph. A rudimentary triangulation of the 1-ring neighborhood could then

be generated from this subset of points. However, the time complexity involved in constructing

this directed graph would likely be far greater than that of the winding number algorithm. One

interesting compromise could be made between the triangle mesh and point cloud algorithms by

(a) calculating the Voronoi area around each point using built-in mesh connectivity (in the case of

triangle meshes only) and (b) treating triangle meshes as point clouds otherwise.

Finally, various quality-of-life improvements could be made to the plugin interface. Notably, the

plugin does not emit an updated visual representation of the mesh after voxelization occurs. This

is deliberate: the imported CS581 framework generates the voxelized mesh somewhat inefficiently

with many redundant faces and vertices. OpenFlipper seemed to encounter difficulties rendering

these meshes: however, the tools of OpenMesh could likely be used to eliminate redundant elements

prior to mesh generation.

References

[1] Barill, G., Dickson, N., Schmidt, R., Levin, D. I., and Jacobson, A. Fast winding

numbers for soups and clouds. ACM Transactions on Graphics (2018).

[2] Jacobson, A., Kavan, L., and Sorkine, O. Robust inside-outside segmentation using

generalized winding numbers. ACM Trans. Graph. 32, 4 (2013).

[3] Van Oosterom, A., and Strackee, J. The solid angle of a plane triangle. IEEE Transac-

tions on Biomedical Engineering BME-30, 2 (1983), 125–126.

[4] Whiting, E. Cs480: Polygons, 2021.

[5] Whiting, E. Cs581: Solid modeling, 2022.

8


