
Digital 3D Geometry Processing

Exercise 4 – Surface Normals, Curvature

February 15, 2024

Note

Hand in a .zip compressed file renamed to Exercisen-GroupMemberNames.zipwhere
n is the number of the current exercise sheet. It should contain:

• Only the files you changed (headers and source). It is up to you to make sure that
all files that you have changed are in the zip.

• A readme.txt file containing a description on how you solved each exercise (use
the same numbers and titles) and the encountered problems.

• Other files that are required by your readme.txt file. For example, if you mention
some screenshot images in readme.txt, these images need to be submitted too.

• Submit your solutions to Gradescope before the submission deadline.

1

Theory Question (2 pts)

Recall our Gaussian curvature discretization K(v) = 2π − ∑j θj (Note: without area nor-
malization) for interior vertices v ∈ Vint of a traingle mesh M = (V, E, F). Let us also
define a boundary geodesic curvature discretization at a boundary vertex b ∈ Vbdy:

kg(b) = π − ∑
j

θj, (1)

where the second term again gives the interior angle sum over neighboring triangles.
When considered together, there is a simple discrete Gauss-Bonnet formula, Eq. (2), that
holds for any triangle mesh M = (V = Vint ⊔ Vbdy, E, F):

∑
v∈Vint

K(v) + ∑
b∈Vbdy

kg(b) = 2πχ(M) = 2π(2 − 2g − n) (2)

Show explicitly, by calculating and summing Gaussian curvatures at vertices, that this
holds for the following two cases:

a. The regular tetrahedron that is the surface of the convex hull of:

{(0,0,0), (1,1,0), (1,0,1), (0,1,1)}.

b. The surface of the unit cube: {(x,y,z) ∈ R3 | 0 ≤ x,y,z ≤ 1} minus the bottom face
{(x,y,z) ∈ R3 | 0 ≤ x,y ≤ 1, z = 0}.

For the last example, feel free to choose any triangulation.

Extra Credit Question (+2 pts)

Prove in the case of triangle meshes without boundary (n = 0) that the Gauss-Bonnet
formula, Eq. (2), is implied by Euler’s Polyhedron Formula, Eq. (3), below:

|V| − |E|+ |F| = χ(M) = 2 − 2g. (3)

(Hint: use some mesh combinatorics, and remember the angle sum of a triangle is π).

Extra Extra Credit Question (+1 pt)

Prove in the case of triangle meshes with boundary (n > 0) that the Gauss-Bonnet for-
mula, Eq. (2), is implied by Euler’s Polyhedron Formula, Eq. (3), below:

|V| − |E|+ |F| = χ(M) = 2 − 2g − n. (4)

(Hint: same basic idea as above, but the combinatorics get messier and trickier).

2

Coding Part

The aim of the this exercise is to familiarize yourself with the halfedge-based mesh data
structure. Moreover, you will get an idea of how the various normals are different from
each other and how to compute curvatures with discrete operators. You will need to mod-
ify Curvature.cc (should already have), and use the plugin on meshes in dgp-exercise4.zip.
Please unzip and place the .off and .obj files in a folder on your machine.

Computing Vertex Normals (5pt)

Normal vectors for individual triangles T = (xi,xj,xk) can be computed as the normalized
cross-product of two triangle edges:

n(T) =
(xj − xi)× (xk − xi)∥∥(xj − xi)× (xk − xi)

∥∥ . (5)

Computing vertex normals as spatial averages of normal vectors in a local one-ring neigh-
borhood leads to a normalized weighted average of the (constant) normal vectors of in-
cident triangles:

n(xi) =
∑T∈N1(xi) αT n(T)∥∥∥∑T∈N1(xi) αT n(T)

∥∥∥ (6)

where αT are weights. In this exercise you will compute vertex normals with three most
frequently used types of weights.

• Consider the weights are constant αT = 1. Implement the compute normals with
constant weights() function in file Curvature.cc.

• Let the weighting be based on triangle area, i.e., αT = |T|. Exploit the relation-
ship between vector cross-product and triangle area to simplify the implemen-
tation. Implement the compute normals by area weights() function in file
Curvature.cc.

• Consider weighting by incident triangle angles αT = θT (see Figure 1). The in-
volved trigonometric functions make this method computationally more expensive,
but it gives superior results in general. Implement the compute normals with
angle weights() function in file Curvature.cc.

Figure 1: Incident triangle angle for normal weights.

3

You need to compute normals for all vertices and store them in vertex property vertex
normal . To visualize, you need to choose the corresponding normal type in the combox
and click on the Show Normal button. Observe the difference in the rendering when the
normals are computed with three different versions for weights (see Figure 2 for exam-
ple).

(a) Constant weights (b) Area weights (c) Angle weights

Figure 2: Difference in rendering when computing the normals with different weights.

4

2.1 Uniform Laplace Operator (3pt)

The uniform Laplace operator approximates the Laplacian of the discretized surface us-
ing the centroid of the one-ring neighborhood. For a vertex v let us denote the N neighbor
vertices with vi. The uniform Laplace approximation is

LU(v) =
1
N

|N|

∑
i
(vi − v)

Implement the uniform Laplace operator in the function calc uniform laplacian()
in the Curvature.cc file. Store (LU(v) · n)/2 in vertex property vertex curvature .
For the vertex normals, please use the constant weight normals (you may have to run the
normal calculation again to set this). Store the minimal Laplacian value in the min curvature
and the maximal Laplacian value in max curvature . To display the per-vertex Lapla-
cian operator, choose Uniform Laplacian in the combox and then click on the Show
Curvature button. The minimal and maximal Laplacian value will be displayed on the
standard output. You should get the result similar to Figure 3.

Figure 3: The uniform Laplacian operator at each vertex.

5

2.2 Laplace-Beltrami Curvature (3pt)

The discretization of the uniform Laplacian does not depend on vertex coordinates and
therefore does not take into account the geometry of the mesh. To obtain a mean curva-
ture approximation we need to introduce weights regarding the geometry. The Laplace-
Beltrami operator uses the following weights for the neighbor vertices:

LB(v) =
1

2A

|N|

∑
i
(cotαi + cot βi)(vi − v)

See the lecture slides and the picture on the
right for explanation about this formula. Again,
the half length of the Laplace-Beltrami approx-
imation gives an approximation of the mean
curvature. Study the calc weights() func-
tion to understand how and which weights are
computed. Use the stored weights values to
implement the mean curvature approximation
using the Laplace-Beltrami operator. The calc mean curvature() function in the
Curvature.cc file has to fill the vertex curvature property with the mean cur-
vature approximation values. Store the minimal curvature value in min curvature
and the maximal curvature value in max curvature . To display the per-vertex Lapla-
cian operator, choose Laplace-Beltrami in the combox and then click on the Show
Curvature button. The minimal and maximal curvature value will be displayed on the
standard output. You should get the result similar to Figure 4.

Figure 4: The Laplace-Beltrami approximation of the mean curvature at each vertex.

6

2.3 Gaussian Curvature (3pt)

In the lecture you have been presented an easy way to approximate the Gaussian curva-
ture on a triangle mesh. The formula uses the sum of the angles around a vertex and the
same associated area which is used in the Laplace-Beltrami operator:

G = (2π − ∑
j

θj)/A

Implement the calc gauss curvature() function in the Curvature.cc file so that it
stores the Gaussian curvature approximations in the vertex curvature vertex prop-
erty. Note that the vertex weight property already stores 1

2A value for every vertex,
you do not need to calculate A again. Store the minimal curvature value in min curvat-
ure and the maximal curvature value in max curvature . For the ”eight” mesh you
should get a Gaussian curvature approximation like on Figure 5.

Figure 5: Approximation of the Gaussian curvature at each vertex.

The blue color corresponds to the minimal value and the red color corresponds to the
maximal value of the current mesh. Explore the curvature of different given meshes.
In addition you are given a small sphere and a 10 times bigger sphere. Observe what
happens with the Uniform Laplacian and the Laplace-Beltrami operator on the spheres
of different sizes (hint: check on the maximal and minimal values). Compare the results and
comment on the difference. Write down your findings in the readme.txt.

7

	Note
	Theory Question (2 pts)
	Extra Credit Question (+2 pts)

	Goal
	Computing Vertex Normals (5pt)
	2.1 Uniform Laplace Operator (3pt)
	2.2 Laplace-Beltrami Curvature (3pt)
	2.3 Gaussian Curvature (3pt)

