
Digital 3D Geometry Processing

Exercise 5 – Delaunay Triangulation

February 22, 2024

Note

Hand in a .zip compressed file renamed to Exercisen-GroupMemberNames.zipwhere
n is the number of the current exercise sheet. It should contain:

• Only the files you changed (headers and source). It is up to you to make sure that
all files that you have changed are in the zip.

• A readme.txt file containing a description on how you solved each exercise (use
the same numbers and titles) and the encountered problems.

• Other files that are required by your readme.txt file. For example, if you mention
some screenshot images in readme.txt, these images need to be submitted too.

• Submit your solutions to Gradescope before the submission deadline.

1

Coding Exercise (6 pts)

The goal of this exercise is to implement the Delaunay Triangulation algorithm which
maximizes the minimum angle of all the angles of the triangles in the triangulation. Af-
ter correct implementation, the demo will help you to build a connection between the
Voronoi diagram and the triangulation in an interactive way.

• By clicking the button Create Initial Mesh in the Plugin-DGPExercises,
the demo starts with an initial triangle mesh containing two triangles and four ver-
tices. The corresponding Voronoi cells are visualized as projections of cones on the
base plane in different colors. The Voronoi edges are the projections of the cone
intersections on the base plane (See Figure 1). In case the view is changed, you can
restore the perspective by pressing the Set 2D View button.

• In the demo, you need to incrementally add points to the triangle mesh. The picking
mode should be activated by clicking on the arrow icon in the OpenFlipper toolbox.
Then you can left click with your mouse inside the initial mesh to add a point. If
the newly added point is on a mesh edge, it will perform an edge split; otherwise it
will do a face split. The Voronoi diagram will be updated simultaneously.

• First, implement the is delaunay(...) function in the file DelaunayTriangu-
lation2D.cc. Fill in the missing code which tests whether an edge is Delaunay
or not. It will serve as a basic operator for the next function.

• Then, add your code to the insert point(...) function in the file DelaunayTri-
angulation2D.cc. The first part of the function inserts the new vertex (either on
an edge or inside a triangle) and is already implemented. You thus need to imple-
ment the algorithm that checks if the new triangles meet the Delaunay condition
and flips edges if not. Recall that multiple edges might have to be flipped at each
insertion. Overall, your task is to make sure the Delaunay property is valid over
the whole mesh.

Figure 1: The initial mesh and Voronoi diagram.

2

Extra Credit Coding (+6 pts)

This quite open-ended extra credit assignment may be turned in anytime before Spring
Break (March 8). It will build upon the framework for this assignment, but will require
you to modify the interface, via DGPExerciseToolbarBase.ui, and to write some
new functions.

What I’d like people to do is code up a button that performs approximate Lloyd iterations,
which will converge to centroidal Voronoi diagrams. For a reminder of these terms, see
the end of Lecture 4 on Delaunay triangulations.

The iterations will be approximate because we do not have an explicit representation of
the Voronoi diagram (only a visualization via intersecting cones). Without this, it will
be challenging to calculate exact centers-of-mass (centroids) for Voronoi cells. Thus, I
would like people to use Monte Carlo integration to estimate the centroids. In this instance,
this boils down to using a large random sample of points {q1, . . . ,qM} from the square
domain, and then averaging the positions of sampled points within each cell Vi to find
an approximate centroid ci for each cell.

ci =
1

|{qj ∈ Vi}| ∑
qj∈Vi

qj

Upon each button press:

• your seed points pi (minus the corner points, which should remain fixed), should
move to the approximate centroid ci of their corresponding Voronoi cells Vi,

• the cones and thus the visualized Voronoi diagram should shift appropriately,

• and the Delaunay triangulation should update (this can be done via your incremen-
tal algorithm implemented above).

3

	Note
	Coding Exercise (6 pts)
	Extra Credit Coding (+6 pts)

