
Digital 3D Geometry Processing

Exercise 6 – Smoothing and Feature Enhancement

February 29, 2024

Note

Hand in a .zip compressed file renamed to Exercisen-GroupMemberNames.zipwhere
n is the number of the current exercise sheet. It should contain:

• Only the files you changed (headers and source). It is up to you to make sure that
all files that you have changed are in the zip.

• A readme.txt file containing a description on how you solved each exercise (use
the same numbers and titles) and the encountered problems.

• Other files that are required by your readme.txt file. For example, if you mention
some screenshot images in readme.txt, these images need to be submitted too.

• Submit your solutions to Gradescope before the submission deadline.

1



Goal

In this exercise you will implement the following tasks in the file Smoothing.cc:

• Surface smoothing using the uniform Laplace operator and the normalized cotan
Laplacian operator;

• Implicit surface smoothing by solving a linear system;

• Enhance surface features, using the difference between a mesh surface and its Laplace
smoothing.

1 Explicit Smoothing (4 pts)

Explicit integration of the diffusion equation with the cotangent discretization of the
Laplace-Beltrami operator quickly becomes unstable with increasing time steps. In prac-
tice, using a normalized Laplacian has proven useful:

L(pi) =
1

∑j wj
∑

j
wj(pj − pi),

where pi is a position of vertex vi, and {vj} are the one-ring neighbors
of vi. We consider two variants. One is using constant weights wj = 1,
and we will call it Uniform Laplacian. The other one is using cotan
weights wj = cotαij + cot βij corresponding to the edge vi vj (see the
figure on the right). This one is called Normalized Cotan Laplacian, but
for the simplicity of notation in this exercise in the future text we will
refer to it as Cotan Laplacian.
Implement both versions of explicit smoothing and comment on the differences you ob-
serve. Within the framework, you need to implement uniform Laplacian smoothing and
cotan Laplacian smoothing by completing the member function uniform smooth(...)
and cotan laplacian smooth(...) respectively. The mesh is stored in the data
member mesh , and you need to update its vertex positions according to the smooth-
ing result. The position pi of each vertex vi is updated to a new position p′

i as

p′
i = pi + δtλL(pi),

where L(pi) is a uniform Laplacian or cotan Laplacian, δt time step and λ a diffusion
constant. In your implementation δtλ should be a constant number smaller or equal to
1
2 . Note that you should only update non-boundary vertices and keep boundary vertices
fixed. You can use the member function calc edge weights() to precompute the edge
weights {wj}, which will be stored in the edge property edge weight . Afterwards, you
can select Uniform Laplacian or Cotan Laplacian in the combo box and press the
Smooth button to run n iterations of smoothing, where n is the value you fill in the spin
box Iterations. Examples are shown in Figure 1 and Figure 2.

2



Figure 1: Mean curvature approximation of the bunny model, before and after 10 itera-
tions of Uniform Laplacian smoothing.

Figure 2: Mean curvature approximation on the scanned face model, before and after 10
iterations of Cotan Laplacian smoothing.

2 Implicit smoothing (4 pts)

Implicit integration avoids the difficulties of instability and allows using larger timesteps.
Implement the implicit smoothing algorithm, using the method presented in class, which
is based on solving the following equation:

(D−1 − δtλM)P(t+1) = D−1P(t).

3



Figure 3: The Stanford bunny and its smoothed version using implicit smoothing.

This method is called via the Smooth button when you choose Implicit Smoothing
in the combo box and the code is located in the implicit smoothing(...) function
inside Smoothing.cc. The effect on the bunny mesh is shown in Figure 3.
Note: You can use the vertex property vertex weight to get the vertex area used to set-
up the system above, i.e. the diagonal terms of D.

For curves we saw that any curve under curvature flow goes to a convex shape and then
converges to a point (Gage-Hamilton-Grayson theorem, see this webpage
https://en.wikipedia.org/wiki/Curve-shortening_flow#Gage
.E2.80.93Hamilton.E2.80.93Grayson_theorem).
Do you experience an analogous behavior for surfaces? Experiment with various meshes,
time steps, and number of iterations. Briefly comment on your observations (no formal
proof expected).

3 Feature Enhancement (4 pts)

Mesh smoothing using Laplace operators can be seen as low-pass filtering, such that the
resulting mesh consists of low-frequency geometric signals from the input mesh. And
the high-frequency features of the input mesh are represented by the difference between
the vertex positions before and after smoothing. This allows us to enhance the features of
the input mesh as follows. Let {pin

j } and {pout
j } be the vertex positions before and after

smoothing, respectively. Then we can compute the vertex positions {p∗
j } of an enhanced

mesh by
p∗

j = pout
j + α · (pin

j − pout
j ). (1)

Here pin
j −pout

j corresponds to the high-frequency features we want to enhance, and α ≥ 1
is a scalar coefficient that determines the magnitude of enhancement. When α = 1 we
recover the input mesh, while for α > 1 the features are amplified.
Within the framework, there are two member functions for feature enhancement:

• uniform laplacian enhance feature(...)

• cotan laplacian enhance feature(...)

4

https://en.wikipedia.org/wiki/Curve-shortening_flow#Gage.E2.80.93Hamilton.E2.80.93Grayson_theorem


Figure 4: Feature enhancement of the bunny model, using 10 iterations of Cotan Lapla-
cian smoothing, and with α = 2.0.

They perform feature enhancement using the uniform Laplace operator and the cotan
Laplacian operator, respectively. You need to complete these two functions by imple-
menting the following:

1. Perform a certain number of iterations of mesh smoothing, using the functions
cotan laplacian smooth(...) or uniform smooth(...). The required num-
ber of iterations can be modified in the spin box Iterations.

2. Compute the enhanced mesh vertex positions according to Eq. (1), and update the
data member mesh accordingly. The value of α in Eq. (1) can be changed in the
spin box Feature enhancement coefficient.

Afterwards, you can perform feature enhancement in the viewer using the Enhance
Feature button. Figure 4 shows an example with these parameters. You can modify
the number of iterations and α to experiment with different parameter values. Note,
however, that in general you cannot set α to a very large value, because this can lead to
self-intersection of the enhanced mesh in concave regions.
Typically we can only perform feature enhancement for a few times on a given mesh,
before it contains flipped triangles. You can recover from such bad shapes using a few it-
erations of uniform Laplacian smoothing. With this approach, you can alternate between
multiple iterations of feature enhancement, and uniform Laplacian smoothing to recover
from flipped triangles. Figure 5 shows a result that is achieved in this way.
You are given a bad quality mesh Bad Max and a good quality mesh Nice Max of a same
model. Observe the difference when applying the algorithms on these meshes. Why are
the methods unstable when applied on a bad quality mesh?
In your submission, please also provide the following:

• At least three images of interesting feature enhancement results.

• In the readme.txt file, explain how you achieve these results (including param-
eter values, the order of applying enhancement/smoothing, the iterations of en-
hancement/smoothing, etc.).

5



Figure 5: Processing result on the Max Plank model, by alternating between of feature
enhancement and uniform Laplacian smoothing.

• From a signal processing point of view, what are the effects of the operations you
apply, and why do they produce the results you show? Please provide your answer
in the readme.txt file.

6


	Note
	Goal
	1 Explicit Smoothing (4 pts)
	2 Implicit smoothing (4 pts)
	3 Feature Enhancement (4 pts)

