
DFS/BFS/Dijkstra
Problem Set 3 – CS6515 (Spring 2025)

• This problem set is due on Thursday February 6th.
• Submission is via Gradescope.
• Your solution must be a typed pdf (e.g., via LaTeX, Markdown, etc. Anything that allows you to type

math notation) – no handwritten solutions.
• Please try to make your solutions as concise and readable as possible. Most problems will have solutions

that are no more than a page long. Consider using bullet points and adding space to break up large
paragraphs into smaller chunks.

• There are 3 problems. Each problem is graded with 20p. There is +1p bonus per problem for
stating (i) how long it took you to solve that problem, and (ii) how long it took you to type the answer.

Remark on algorithm descriptions To make things easier for the TAs to grade, please use a combination
of plain English and mathematical notation. Do not write code (C, Java, etc.). For example, you can say
something like “x := maxi=0,...,n−1 A[i]” or “Find the maximum value in the array A” instead of writing a
for-loop that computes the maximum.

7 One-Way Streets
We have a street network and want to convert all streets into one-way streets. When assigning directions to
the streets, it’s important that drivers will never get trapped, and can always drive from any point A to any
other point B in the network.

Formally, we say a directed graph G = (V, E) is “strongly connected” if for every pair u, v ∈ V there
exists a path from u to v.

Problem: Given an undirected connected graph G = (V, E), we want to assign each edge a direction, such
that the new graph is strongly connected. If that is not possible, then the algorithm should return “invalid.”

1. Prove the following: When running DFS on an undirected graph, then there are no forward and no
crossing edges. (Hint: Compare pre and post numbers and use them to argue that DFS should have
used the edge in the opposite direction.)

2. Prove the following: We can assign valid directions if and only if: After running DFS, for every tree
edge (u, v) there is a back-edge from some descendant of v to an ancestor of u. (Hint: (i) →: If there
is no backedge then... (ii) ←: Argue, if there is a back-edge then from v we can move “up” in the DFS
tree. Why does that allow us to reach every other vertex?)

3. Give an algorithm that solves the problem, and analyze the time complexity. (No need to prove
correctness, as it follows from point 2.)

For full points, the algorithm should run in O(|E|) time.

8 Dijkstra With Delays
You are walking on a weighted directed graph G = (V, E) with n vertices and m bridges. Each bridge e ∈ E
is assigned 3 numbers We, Se, Re. It takes We minutes to walk across bridge e, and the bridge is only open
between time Se to Re every day (0 ≤ Se < Re ≤ T, Se + We ≤ Re) where T = 1440 is the number of
minutes in a day. You must exit the bridge before it closes. You are allowed to wait at a vertex for an
adjacent bridge to open and you can also wait until the next day for the bridge to open again.

What is the minimum time needed to get from vertex 0 to n− 1?

1

Problem: Give an algorithm that solves the above problem and analyze its time complexity. Also give a
brief explanation why the algorithm is correct. (You do not need to write a full proof. The explanation is
only there to help the TAs understand your algorithm.)

For full points, the algorithm should be as fast as possible.

8.1 Programming Option
Instead of submitting a pdf for the question above, you can write a Python program.
Grading: Gradescope will automatically test your submission. You can resubmit as often as you want
(until the due date) and you can see on gradescope how many test cases you currently passed. You will likely
receive 16 (of 20) points for passing the first 11 test cases, and 20p for passing all test cases, but the final
grading decision is made by a TA. (This is to make sure your submission is actually solving the problem
described above. For example, hardcoding the output is obviously not a valid solution.) We need this rule
because all test cases are public (on Piazza) to help you test/debug your program.
Input and Output: A template is provided on Piazza to help you get started. The template handles how
to read the input and write the output, so you can just focus on implementing the algorithm. If you do not
want to use those templates, we have a description on how to read the input and write the output below.

The program reads the input from standard input and prints its output to standard output. The input
format is as follows: The first line provides two numbers n (number of nodes) and m (number of edges). The
next m lines list 5 numbers separated by space: u v We Se Re, representing the directed edge (u, v) with
positive integer weights We Se Re. Example:

5 5
0 1 720 240 1200
0 2 420 0 420
1 4 30 120 480
2 3 30 360 1320
3 4 240 0 240

Here we can go from vertex 0 to vertex 4 in 1590 minutes using the following path:
0→ 1, we wait 240min until the bridge is open, then we spend 720 minutes to cross the bridge.
1 → 4, first waiting 600min (wait 1440 − 960 until midnight, then wait 120 until bridge opens, so 600min
in total) because the bridge is closed and we must wait until the bridge opens again. Then spend 30min to
cross the bridge.
Total time: 240+720+600+30 = 1590.

9 Minimum Fancy-Weight Spanning Tree
We are given a connected undirected weighted graph G = (V, E) (with positive edge weights we ∈ R>0 for
e ∈ E) and a vertex r ∈ V to be used as root. We want to construct a minimum fancy-weight spanning tree,
which is a spanning tree that minimizes the sum of the fancy-weights of the edges. The fancy-weight of an
edge is not fixed and depends on the number of descendants in the tree. In particular, for a spanning tree
T , the fancy-weight of an edge {u, v} ∈ T , where v is descendant of u, is

wuv · (# descendants of v in tree T)

When counting the number of descendants we include v. So the number of descendants of a leaf would be 1
and the number of descendants of the root would be |V |.

1. Give an algorithm that solves the above problem.

2. Give a brief explanation why the algorithm works.

3. Analyze your algorithm’s time complexity.

For full points, the algorithm should be O(|E| log |E|). You may assume the graph is connected (ie, a
spanning tree exists).

2

Hint: Consider the partial tree T that your algorithm constructed so far. If you add an edge e to it, by
how much does the weight of the tree increase?

The orange cat jumped over the fence, chasing a curious butterfly into the garden.

3

	One-Way Streets
	Dijkstra With Delays
	Programming Option

	Minimum Fancy-Weight Spanning Tree

