08 A* Tuesday, February 4, 2025 13:52

Idea:
$$h(u)$$
 is large then u is
deprivatived
 $h(u)$ is small than u is
privatized
 h is called theorytic
 $h(u) \approx dist(u, t) \leftarrow some$ estimate
for the distance

distance [U] = 01 //
$$a(v(1), V)$$

for $(V, u) \in E$
 $qv(w, a, dd)(d+C_{u_1}+h(u_1), d+c_{v_{u_1}}, v)$
 $Priority$ distance
Issue: Correctness proof of Difestim required priority = distance.
Not satisfied!
Does Algo still work?
 $Does Algo still work?$
 $Does Algo still work?
 $Does Algo still work?$
 $Does Algo still work?
 $Does Algo still work?$
 $Does Algo still work?
 $Does Algo still work?$
 $Does Algo still work?
 $Does Algo still work?
 $Does Algo still work?$
 $Does Algo still work?
 $Does Algo still work?
 $Does Algo still work?$
 $Does Algo still work?$
 $Does Algo still work?$
 $Does Algo still work?
 $Does Algo still work?$
 $Does Algo still work?$
 $Does Algo still work?
 $Does Algo still work?$
 $D$$$$$$$$$$$$$$$$

Lecture Notes Page 2

Def: h is called admissible it
h(u)
$$\leq$$
 disf(u,t) $\forall u \in V$
Thue: If h is admissible then A^{rs} without visited check will hind the
shortert path.
Proof: Assume distance [E3 is wrang even though h is admissible
Let v be the last writer on the correct should be the visited
v use visited \Rightarrow all neithors of v one in the great.
 10 us sist in great writer on the short
 10 u is skill in great with a invest on
 10 u is skill in great with 10 with 1

$$\frac{h(v) \leq h(u) + Cvu}{V} \quad \forall \quad (v,u) \in U$$
Thun: If h is consistent Hen A^* with visited check finds He sholed path.
 $(=) O(IEI(a_2IEI)) \quad wast-case hidds again)$
Lemma: C Let $P \leq E$ be a pull from u to v
 $h(u) \leq \text{length}(P) + h(v)$
 $u \quad v \quad v$
 $h(u) \leq \text{length}(P) + h(v)$
 $u \quad v \quad v$
 $h(z_1) \leq h(z_2) + C_{z_1, z_2} \leq (h(z_3) + (z_2z) + (z_{z_1 z_2} z_1))$
 \vdots
 $i \quad i \quad v$
 $h(z_1) \leq h(z_2) + C_{z_1, z_2} \leq (h(z_3) + (z_2z) + (z_{z_1 z_2} z_1))$

