

Given ZN constraints how many vehices can blere be? $X \in \mathbb{R}^{n}$ $O \leq X_{i} \leq 1$ i=1...n

$$\begin{array}{c} x \in \mathbb{R}^{n} \quad 0 \leq x_{1} \leq 1 \quad |z| \dots n \\ \label{eq:product} x \in \mathbb{R}^{n} \geq 1 \quad |z| \dots n \\ \end{tabular} \\ \end{tabular}$$

.

A set
$$B \in \{1...,n\}$$

not a correct because the constraints are linearly dependent
is an alternative description of a correct
is an alternative description of a correct
if $A_{g}:=$ subset of rows of A , with index in B
 $\overline{x} = A_{g}^{-1} \ b_{g}$, $A_{B}\overline{x} = b_{B}$
and \overline{x} is a correct (ie $A\overline{x} \in L$)
Given $A_{1}L$ ($x \in \mathbb{N}^{d}$ | $Ax \in L$)
Given $A_{1}L$ ($x \in \mathbb{N}^{d}$ | $Ax \in L$)
Going from welfex to welfex
We and to replace one index if B
by another index s
Each if B is a correct corres pondi D on edge
Here D decide which if $B/edge$ in give such that
woring along edge improves cTx^{3}
 $\stackrel{W'}{=} x + \lambda \cdot \Delta$
 $\int_{C} \frac{c}{D} Z$ $A \in \mathbb{N}^{d}$ direction of edge
We weed that $c^{T}x^{etw} > c^{T}x$
 T $(x + \lambda \cdot \Delta) = c^{T}x + \lambda \cdot c^{T}A$
 $\stackrel{W'}{=} x^{-}\Delta > D$

satisfy Ax <= b

Algorithm so fas

$$lingult: A, b, \times A \in \mathbb{N}^{n \times d}$$
, $b \in \mathbb{N}^{n}$, $x \in \mathbb{N}^{d}$, x is vertex
 $B \subseteq \{1...n\}$ such that A_{B} is hell vank and $A_{B}x = b_{B}$
 $compute \Delta_{i}$ for if B direction of edges (TODO)
pick i such that $c^{T}\Delta_{i} > O$
Pick largest λ such that $A(x + \lambda \cdot D_{i}) \leq b$
 $x \in x + \lambda \cdot \Delta_{i}$
 $B \in (B \setminus \{i\}) \cup \{j\}$ where j is such that $(A(x + \lambda \Delta_{i})) = b_{j}$
 $b \in (A \times j_{j} < b_{j})$