
Georgia Tech Fall 2024 CS 6515: Intro to Grad Algorithms

Lecture : Simplex Method
Scribe: Prisha Sheth; Siddharth M. Sundaram Last updated: March 18, 2025

1 Simplex Algorithm

1.1 LP Recap

We have the following standard form for LPs:

max cT x

s.t. Ax ≤ b

Pictorially

Goal: We want an algorithm that can solve these kinds of problems to find the optimal
value of x that satisfies the constraints.

1.2 High-Level Algorithm Idea

• Assume we have some vertex x ∈ Rd

• Repeat:

– Check all edges incident to the vertex
– If one of them is improving cT x, then move along that edge to the next vertex
– Else, return current vertex x

Our goal in this lecture is to formalize this intuitive algorithm.

Question 1. Why can’t there be a local optimum?

For a formal proof we need some more definitions,
so it’s deferred to Lemma 1, near the end of these
notes.
For now I’ll only give an intuitive explana-
tion/picture. Consider the picture on the right.
Assume we are in a local optimum (left vertex)
but there is another vertex with better c⊤x. Then
at least from the picture that would seem to vio-
late convexity. 1

2

Question 2. How does this not boil down to a graph problem? We are looking for a path,
so can’t we run BFS/DFS?

Answer: We could, but we do not know the graph. Computing the graph can take expo-
nential time! Formally, the graph is defined as follows:

Definition 1. Given a polytope P = {x | Ax ≤ b}, the “polytope graph” G = (V, E) is the
undirected graph where V =vertices of the polytope, E=edges of the polytope.

Keep in mind that the input when solving a linear program is matrix A, and vector b. We
do not know yet what the vertices are. Computing all the vertices is super slow because
there can be exponentially many vertices.
Withy only 2n constraints, we can already have 2n vertices.
Example: x ∈ Rn, 0 ≤ xi ≤ 1 forms a hypercube. Here each x ∈ {0, 1}n is a vertex, so
there are 2n many.
To prevent computation of the entire polytope graph, the simplex algorithm will only com-
pute the edges incident to the currently visited vertex. Then go along one of the edges to
the next vertex, and repeat. This way, we have a chance to only explore a small part of the
entire polytope graph.

Consider the example on the right. When-
ever we visit a vertex, we compute the inci-
dent edges (black lines), pick one of them (green
line) and move along that edge to the next ver-
tex. Then compute the incident edges for that
next vertex and repeat. Importantly, the dotted
edges/vertices are never visited by the algorithm
so we never compute them.

Question 3. In moving from one vertex to another, how should we choose among multiple
edges that increase the objective value?

Answer: There actually is not a clear answer to this question; it is still an open question as
to what the best strategy would be. A popular choice is to greedily pick the direction that
increases c⊤x the most, but there are counter examples where this can lead you to a very
long path.
Open Problem: Does there exist a path of polynomial length from any starting point to
the optimal point?

1.3 What is a vertex?

While we all have an intuitive understanding of what is a corner/vertex, let us formally
define the notion of a vertex.

3

Definition 2. For polytope P = {x ∈ Rd | Ax ≤ b}, vector
x ∈ Rd is a vertex if:

• Ax ≤ b, i.e., x is feasible

• For d constraints that are linearly independent, we have
that (Ax)i = bi

A vertex can be thought of as an intersection of d linearly independent constraints. Note
that we can completely characterize any vertex using a subset B ⊆ {1, ..., n} with |B| = d;
denote by AB and bB are the d rows of A and b respectively with index in B, then we
have ABx = bB ⇒ x = (AB)−1bB. For this to work, the linear independence is important.
Otherwise ABx = bB does not have a unique solution.

Definition 3. We also call the set of d linear independent constraints that define a vertex
a “feasible basis”.

This is because AB is a basis for Rd and because the solution ABx = bB is a feasible point
of the linear program (Ax ≤ b).

Question 4. What happens when we specify fewer than d con-
straints (i.e. d− k)?

Answer: Then we don’t have a vertex and have a k-dimensional
face of a polytope, where the dimension k is equal to the number
of missing tight constraints.
To see why, observe that the linear system ABx = bB has d
variables but only d − k linear independent constraints. So the
solution space is k-dimensional. E.g., for k = 1 (when we have
only d− 1 tight constraints) we are specifying an edge, since an
edge/line is 1-dimensional.

4

Question 5. What happens if we may consider some linearly dependent constraints in the
set of d constraints?

Answer: Again, we will not specify a unique point with AB = bB in that case, so we do not
get a vertex.

Question 6. To run simplex, we move from vertex to vertex; how do we get the first vertex?

Answer: Say our linear program is Ax ≤ b subject to x ≥ 0; we can assume this is the case
without loss of generality. This can be done via transformation where we split xi to x+

i , x−
i

similar to lecture 15. So any linear program can be converted to a linear program of this
form. Now, two cases arise:

1. If b ≥ 0, then we can pick x = 0 as the initial vertex. The constraints xi ≥ 0 are the
tight d linearly independent constraints.

2. If b has negative entries:

• Add a new variable z and solve the linear program:

min − z

s.t. Ax− z ≤ b

z ≥ 0

Here, we use the initial vertex x = 0 and z = −mini bi. This is a vertex because
we have d + 1 linearly independent tight constraints x ≥ 0 and (Ax − z)i = bi

for the i with smallest bi.
• Observe that the optimal solution has z = 0 if and only if there exists an x with

Ax ≤ b.
• After solving the new linear program, we can use the computed x as the initial

vertex for the original linear program.

Question 7. To specify a vertex, we must specify d constraints of the linear program to be
tight; what if the linear program itself has less than d constraints?

Answer: Generally, these LPs would have unbounded feasible regions. In linear algebra
terms, any such subset of constraints when specified to be tight (equality) would be un-
derdetermined.
To summarize:

• We can identify a vertex by the set B ⊆ {1, ..., N} that are the indices of the tight
constraints (ones that have equality instead of inequality)

• Given B, the vertex is x = (AB)−1bB

If you pick an arbitrary value of B (number of constraints), then we can end up with an
infeasible solution.

5

1.4 What is an edge?

We said the simplex algorithm goes from vertex to vertex by moving along edges. So we
need characterization for the edges, and what it means for two vertices to be connected by
an edge.

Two vertices x and x′ are connected by an edge if there are feasible bases B and B′ (with
ABx = bB and AB′x′ = bB′) that differ by only one element (i.e. |B△B′| = 2, where △
denotes symmetric difference). Thus it will satisfy:

B′ = B\{i} ∪ {j}

for some indices i, j ∈ {1, .., n}.
Observe that all points p on the edge connecting x and x′ will satisfy AB\{i}p = bB\{i} (this
is a linear system with d− 1 equalities, so the solution space is 1-dimensional).

1.5 How do we get all edges incident to a vertex?

When the simplex algorithm is at some vertex x, it must check which edges could improve
c⊤x. For this we need to compute the set of edges.

For feasible basis B (ie, vertex x), each index i ∈ B (the constraint that we could remove)
represents an edge.
(Small remark: it could technically happen that the edge has length 0, more on this later
in Section 2.)

1.6 How do we get the direction of an edge?

We previously said that an edge can be represented by the index i ∈ B that will be removed.
But how do we compute the direction ∈ Rd in which that edge is going? We need that
direction to figure out if c⊤x will be improved.

https://en.wikipedia.org/wiki/Symmetric_difference

6

Intuition: If we perturb a face (constraint) of the feasible region by a slight amount to
restrict further the feasible region, the direction the face would be pushed is the same of
that of the incident edge. Pictorially:

In the above, we consider x, and its corresponding specifying subset of constraints B. We
consider some i ∈ B, say constraint (Ax)i ≤ bi, and for small ϵ > 0, we consider the
perturbed constraint (Ax)i ≤ bi− ϵ. Clearly, this new constraint is more restrictive, and so
the feasible region should decrease in size as shown above. Accordingly, this would give the
direction of an incident edge. Say the vertex x get shifted to x′ under the new constraint.
Now, the direction of the edge can be computed as the vector from x to x′ as follows:

x′ − x = (AB)−1(bB − ϵ · ei)− (AB)−1bB

= −(AB)−1ei · ϵ

In the above, (AB)−1ei gives the direction of the edge (since ϵ is a scalar).
Now, which edge are we interested in? We are only interested in traversing an edge which
improves our objective value. So, we desire:

cT x′ > cT x⇔ cT · (x′ − x) > 0⇔ cT (AB)−1ei < 0

As a result, picking the edge to improve the solution precisely means to pick i ∈ B where
cT (AB)−1ei < 0 ⇔ (cT (AB)−1)i < 0. Note that cT (AB)−1ei = (cT (AB)−1)i since ei has 1
only at entry i and 0 everywhere else.
Picking the correct edge to improve the solution means to pick i ∈ B where (cT (AB)−1)i < 0.

1.7 How far can we move?

From the above, we saw that for a step size ϵ the new vertex point x′ becomes x′ =
x− (AB)−1ei · ϵ. For convenience, we now switch notation and use λ instead of ϵ. We now
desire to find the largest value of λ so that x′ = x − (AB)−1ei · λ still remains inside the
feasible region.

7

So, we have to maximize λ such that:

(A(x− (AB)−1ei · λ))j ≤ bj , ∀j
⇔− (A(AB)−1ei · λ)j ≤ bj − (Ax)j

⇔λ = min
j /∈B

bj − (Ax)j

−(A(AB)−1ei)j

The above expression, while looking convoluted has the following intuitive meaning:

• λ represents a notion of “how long” (time) that a vertex can be moved while remaining
in the feasible region, i.e., before we hit the first different constraint (outside B)

• j is the first constraint we hit

• −(A(AB)−1ei)j represents a notion of velocity

• bj − (Ax)j represents a notion a distance of “how far” the constraint j is from being
tight (achieving equality)

• Then, the above formulae simply boil down to the relation: distance = time * velocity

1.8 Algorithm

Algorithm 1 Simplex Algorithm for initial vertex x (specified by B ⊆ {1, ..., n})
1: repeat
2: Find i ∈ B where (cT (AB)−1)i < 0 ▷ Check edges. Does one improve the solution?
3: if there exists such i then: ▷ There is an edge that improves the solution
4: λ = minj /∈B,(A(AB)−1ei)j<0

(b−Ax)j

−(A(AB)−1ei)j
▷ Compute how far we can move

along that edge
5: B ← (B\{i}) ∪ {j}
6: x← x− λ · (AB)−1ei ▷ Move our vertex
7: else
8: return x

2 Optimality & Time Complexity

At the start of these notes, there was Question 1, asking why we do not get stuck in a local
optimum. The following lemma proves this cannot happen.

Lemma 1. If (c⊤(AB)−1)i ≥ 0 for all i, then the vertex x is optimal.

Observe that the simplex algorithm only terminates when (c⊤(AB)−1)i ≥ 0. So the Simplex
algorithm only terminates when it found an optimal solution.

8

Proof. Our algorithm is running on a linear program of form max c⊤x, Ax ≤ b. The dual
is min b⊤y, A⊤y = c, y ≥ 0.
Assume for simplicity that B = {1....d} (i.e., by reordering the rows of A). Let yi :=
(c⊤(AB)−1)⊤

i = ((A⊤
B)−1c)i for i ∈ B, and yi = 0 for i /∈ B. Then y ≥ 0 and A⊤y = c. So

this is a feasible solution for the dual linear program. We also know that b⊤y = ∑
i∈B biyi =

b⊤
B(A⊤

B)−1c = x⊤c, where x is the vertex corresponding to B. Thus by strong duality that
x is an optimal solution.

Stalling It could be that λ = 0 in Algorithm 1. This can happen when a vertex is touching
more than d facets, i.e., if there are multiple different choices for the set B where ABx = bB.
Such a vertex is also called “degenerate.” Consider for example the picture below. The
vertex at the top has 4 incident facets: left, right, front, and back.

Now consider what the Simplex algorithm does when the direction c is to the right and
initially our B are only the back, left and front constraint (highlighted in blue). When
running simplex, then we get λ = 0, i.e., we are in a sense moving along an edge of length
0 and immediately hit the constraint on the right. Now our B is the front, back, and right
constraint. While the set B changed, the vertex (highlighted in green) did not change. Only
in the next iteration of the simplex algorithm can finally move to another vertex further on
the right.
When getting stuck at a vertex for several iterations, such as the picture above, we refer to
this as stalling. This happens often in practice.

Runtime The simplex algorithm as presented in Algorithm 1 could actually run in an
infinite loop. That is a more extreme case of the stalling mentioned above. It could for
example happen that when λ = 0 for several iterations, we end up with the same B that
we had a few iterations before. This is referred to as cycling. There are various ways to
prevent this, e.g., if we add tiny random noise to vector b then no vertex is degenerate and
we always have λ > 0. There are also rules for tie-breaking the choice of i and j (e.g.,
Bland’s rule) which prevent cycling. For the purpose of this course, we assume cycling does
not happen since we can just apply Bland’s rule.
If there is no cycling, then we can have at most

(n
d

)
iterations, because there are at most

that many different sets B ⊂ {1....n}.

https://en.wikipedia.org/wiki/Bland%27s_rule

9

Lemma 2. If the polytope has at most T feasible bases, then the simplex algorithm termi-
nates after T iterations. In general, T ≤

(n
d

)
< nd.

While nd is exponential, in practice the simplex algorithm is observed to typically need
only O(n) iterations. One can also prove that adding small random noise to b results in a
polynomial number of iterations in worst-case (see Smoothed Analysis).
Each iteration costs O(d2 + nnz(A)) < O(n3) time, where nnz(A) is the number of non-
zero entries in A. The O(d2) is the cost for computing (AB)−1 (see problem set 8). The
O(nnz(A)) is the cost for computing (b−Ax)j

−(A(AB)−1ei)j
for all j /∈ B.

From a theory perspective, O(n1.529) time per iteration is also possible1, but it has very
large constant hidden in O(·) notation and you wouldn’t want to use that in practice.

1https://arxiv.org/pdf/2010.13888

https://en.wikipedia.org/wiki/Smoothed_analysis
https://arxiv.org/pdf/2010.13888

	Simplex Algorithm
	LP Recap
	High-Level Algorithm Idea
	What is a vertex?
	What is an edge?
	How do we get all edges incident to a vertex?
	How do we get the direction of an edge?
	How far can we move?
	Algorithm

	Optimality & Time Complexity

