
Simplex Algorithm
Problem Set 8 – CS6515 (Spring 2025)

• This problem set is due on Thursday March 27th. (This is 2 weeks, because of Spring break.)
• Submission is via Gradescope.
• Your solution must be a typed pdf (e.g., via LaTeX, Markdown, etc. Anything that allows you to type

math notation) – no handwritten solutions.
• Please try to make your solutions as concise and readable as possible. Most problems will have solutions

that are no more than a page long. Consider using bullet points and adding space to break up large
paragraphs into smaller chunks.

• There are 3 problems. Each problem is graded with 20p. There is +1p bonus per problem for
stating (i) how long it took you to solve that problem, and (ii) how long it took you to type the answer.

22 Faster Matrix Inversion
For a linear program Ax ≤ b where A ∈ Rn×d (n ≥ d), the simplex algorithm picks d linear independent
rows of A to form M ∈ Rd×d. It must then compute M−1. Computing a matrix inverse from scratch takes
O(d3) time1. However, the matrix M changes by only one row per iteration, so there is no need to recompute
the inverse from scratch.

Problem Design and analyze an algorithm that, when given M, M−1 ∈ Rd×d, index i ∈ {1...d}, and
vector a ∈ Rd, returns M′−1 (where M′ is the matrix M but we replaced the ith row by a⊤). Give algorithm
description, proof of correctness, and complexity analysis.

Hint: Use the “Sherman-Morrison-Identity” which states that

(M + uv⊤)−1 = M−1 − M−1uv⊤M−1

1 + v⊤M−1u
.

For full points, the time complexity should be O(d2).
In your algorithm description, be very clear about the order in which you multiply things.

1O(d2.372) is also possible via “fast matrix multiplication,” but there are incredibly large constants hidden in O-notation.
https://arxiv.org/pdf/2307.07970

1

https://arxiv.org/pdf/2307.07970

23 Geometric Interpretation of Dijkstra’s Algorithm
Let G = (V, E) be a directed graph with positive edge lengths ce. Let s, t be some vertices and we want to
compute the distance from s to t. We could do that via Dijkstra’s algorithm. Alternatively, we could solve
the following linear program via the simplex algorithm

max
x∈RV

xs (1)

xu − xv ≤ cuv for all (u, v) ∈ E

xv ≥ 0 for all v ∈ V \ {t}
xt ≤ 0

In this exercise, we want to compare Dijkstra’s algorithm and the simplex algorithm. Consider the following
graph G = (V, E):

s

B

D

E

t

C

1

2

3

3

7

6

1

4

2

We will use the following slightly modified Dijkstra’s algorithm. The changes are highlighted (blue).

Algorithm 1: Dijkstra
1 procedure Dijkstra(G = (V, E), s, t)
2 Queue.insert(0, s, ·)
3 T = ∅
4 while Queue not empty do
5 d, v, e = Queue.pop() // priority queue
6 if visited[v] then
7 continue
8 visited[v] = true
9 distance[v] = d

10 T = T ∪ {e} // Store edge used to visit v, i.e., T is shortest path tree
11 Construct a vector x ∈ RV with xz = d − distance[z] for all visited z ∈ V , and xz = 0 for

unvisited z ∈ V .
12 if v == t then return d, T // We found the distance to t, so we can terminate;
13 for neighbor u of v do
14 Queue.insert(d+cvu, u, (v, u))

Questions/Problems:

1. Run modified Dijkstra’s algorithm on above graph. Fill the following table, each row corresponds to
an iteration where we visit a vertex for the first time. List (i) the vertices that have not been visited

2

yet at the start of that iteration, (ii) the vertex that is newly visited, (iii) the vector x computed in
that iteration, (iv) set T at the end of that iteration.
The following table shows the first 2 iterations.

Un-visited vert. Newly
visited

Vector x[
xs xB xC xD xE xt

] tree T

s,B,C,D,E,t s
[
0 0 0 0 0 0

]
∅

B,C,D,E,t B
[
1 0 0 0 0 0

]
{ (s, B) }

2. Run the simplex algorithm on linear program (1) (for the same graph G as in subproblem 1.). Use
initial-point x = 0⃗. For each iteration list the following information: (i) x at the start of the iteration,
(ii) the tight constraints, (iii) the direction in which we move next, (iv) how far we move in that
direction, (v) which constraint has been removed and added to the set of tight constraints.
The following table shows the first 2 iterations.

x tight constraints direction λ tight constraint change
xs

xB

xC

xD

xE

xt

 =


0
0
0
0
0
0


xs ≥ 0

xB ≥ 0
xC ≥ 0

xD ≥ 0
xE ≥ 0

xt ≤ 0


1
0
0
0
0
0

 1

Removed Constraint
xs ≥ 0

Added Constraint
xs − xB ≤ 1

xs

xB

xC

xD

xE

xt

 =


1
0
0
0
0
0


xs −xB ≤ 1

xB ≥ 0
xC ≥ 0

xD ≥ 0
xE ≥ 0

xt ≤ 0


1
1
0
0
0
0

 1

Removed Constraint
xB ≥ 0

Added Constraint
xs − xD ≤ 2

3. Compare the two algorithms: How do x, tight constraints, removed&added constraint in each iteration
of the simplex algorithm relate to the values computed in each iteration of Dijkstra’s algorithm?

Remark: You do not need to solve all the linear systems by hand and show calculation. Instead, it’s fine
if you guess+verify the direction in each iteration (i.e., check that moving x along that direction will replace
only one of the tight constraints).

You do not need to write your values in a table. You can also list them in some other form, eg bullet
points. Important is that you provide all the required information that is also listed in the above examples.

Context: In class, we motivated the simplex algorithm as a generalization of augmenting paths for bipartite
matching. Here we see that it’s also a generalization of Dijkstra’s algorithm. The main difference is that
the calculations are done via Linear Algebra/Geometry. The simplex algorithm also generalizes many other
combinatorial optimization algorithms.

In general, the simplex algorithm has exponential worst-case time complexity, because it could have
exponentially many iterations. However, in practice it often terminates after only O(n) iterations. Es-
pecially for many combinatorial problems (matching, paths, flows, etc) it has few iterations since it is a
geometric/algebraic interpretation of other combinatorial/graph-based algorithms.

3

24 Constructing the Polytope Graph
We are given a polytope via the constraints Ax ≤ b where A ∈ Rn×d, b ∈ Rn, n ≥ d. We want to compute
the polytope graph (i.e., construct an undirected graph G = (V, E) where each v ∈ V corresponds to a
vertex/corner of the polytope, and each edge e ∈ E of the graph is an edge of the polytope connecting two
vertices/corners).

Problem:

• Design an algorithm that, given A, b, returns the polytope graph. (Please explain what the algorithm
does and why it works. The explanation itself is not graded, but if the TA does not understand your
algorithm/solution, then they can deduct points.)

• Analyze the algorithm’s time complexity.

For full points, the algorithm should run in time O(T poly(n)) where T is the number of vertices. In
particular, when the number of vertices is small (i.e., bounded by poly(d)) then the algorithm should run in
polynomial time. Brute-force by trying all d-sized subsets of n constraints would be exponential in d, and
not accepted.

You can assume calculation of an n × n matrix inverse is bounded by O(n3) time.
You may assume 0⃗ is a vertex of the polytope.
You may assume the polytope is non-degenerate (i.e., every vertex has a unique feasible basis).

Hint: The simplex algorithm attempts to find a path from start vertex to optimal vertex by going along
edges. We now want to instead find all vertices and edges instead of a single path. How can we modify the
simplex algorithm so it explores all vertices/edges?

The next pages are ungraded questions. They are questions that would be given in an advanced algorithms
class (eg 7000 or 8000 level). If simplex algorithm is a topic that interests you, you can try to solve them
for fun.

4

Ungraded Question: An Algorithm for Online Linear Programs
We have a linear program of form max c⊤x subject to Ax ≤ b for A ∈ Rn×d. Assume we already solved the
linear program and have computed the optimal solution x∗.

Next, a new constraint a⊤x ≤ β arrives (a ∈ Rd, β ∈ R) and we consider the new linear program

max c⊤x subject to Ax ≤ b and a⊤x ≤ β. (2)

Since we have an extra constraint, the old optimal solution x∗ might no longer be valid. Re-solving the
problem from scratch could be slow, especially if the new constraint didn’t cut off much from the old feasible
space. Let us assume that the piece C that was cut off by the new constraint is relatively small and has at
most T vertices. (You may even assume that the number of feasible bases for Ax ≤ b, a⊤x ≥ β is bounded
by T . Note the flipped inequality on a⊤x ≥ β, because this describes the piece that was cut off.)

Ax ≤ b

a⊤x ≤ β

x∗, which is no longer feasible

cut piece C on the right has only T vertices
(In this picture T = 4)

The next questions will guide you towards an algorithm that can quickly find the new optimal solution, if
we already have the old solution x∗.

1. Describe and analyse an algorithm that, given A, b, c, x∗, a, β, finds in O(Tn3) time a feasible vertex
for the new linear program (2).

2. Prove that if a⊤x∗ > β, then there is an optimal solution x∗∗ for the new linear program (2) that also
satisfies a⊤x∗∗ = β.

3. Design and analyse an algorithm that, given A, b, c, x∗, a, β, finds in O(Tn3) the new optimal solution
for (2). You may call/use your algorithm from 1, even if you did not solve that question.

You may use the simplex algorithm as blackbox, i.e., your algorithm is allowed to call “Simplex(A′, b′, c′, x′)”
to solve min c⊤x subject to A′x ≤ b′. Here the input x′ must be some vertex of the polytope.

Hint: Consider the cut off piece C. It has T corners and x∗ is a corner of C.

Remark: This problem is also referred to as “cutting planes” because a⊤x = β is a plane that cuts off a
part of the polytope. This is a popular framework for solving integer linear programs2.

2https://en.wikipedia.org/wiki/Cutting-plane_method

5

https://en.wikipedia.org/wiki/Cutting-plane_method

Ungraded Question: Geometric Interpretation of Dijkstra’s Algo-
rithm (General Case)
Let G = (V, E) be a directed graph with positive edge lengths ce. For simplicity assume the shortest paths
are unique (e.g., by adding tiny random noise to each edge weight ce.) Let s, t be some vertices and we want
to compute the distance from s to t. We could do that via Dijkstra’s algorithm.

Alternatively, we could solve the following linear program via the Simplex algorithm

max
x∈RV

xs

xu − xv ≤ cuv for all (u, v) ∈ E

xv ≥ 0 for all v ∈ V \ {t}
xt ≤ 0

In this exercise, we want to compare Dijkstra’s algorithm and the Simplex algorithm.
Consider the following small modification of Dijkstra’s algorithm. The changes are highlighted (blue).

Algorithm 2: Dijkstra
1 procedure Dijkstra(G = (V, E), s, t)
2 Queue.insert(s, 0)
3 while Queue not empty do
4 v, d = Queue.pop() // priority queue
5 if visited[v] then
6 continue
7 visited[v] = true
8 distance[v] = d
9 Construct a vector x ∈ RV with xz = d − distance[z] for all visited z ∈ V , and xz = 0 for

unvisited z ∈ V .
10 if v == t then return d // We found the distance to t, so we can terminate;
11 for neighbor u of v do
12 Queue.insert(u, d+cvu)

Let x1, x2, x3, ... ∈ RV be the sequence of vectors constructed by Dijkstra’s algorithm above (blue lines).

1. What does the first vector x1 look like?

2. Show that each xi is a feasible vector for above linear program, and there are |V | constraints that are
tight (satisfied with equality).

3. Consider the tight constraints of xi and the tight constraints of xi−1. How different are those two sets
of tight constraints? How many tight constraints do they share?

4. Consider the tight constraints of xi. Explain why the set of tight constraints is linearly independent.

5. Assume we run the simplex algorithm on the linear program above from starting point 0-vector. Let
y1, y2, y3, ... ∈ RV be the sequence of corners of the polytope visited by Simplex algorithm. Compare
this sequence to x1, x2, x3, Are they the same or different? Why? (Short 1-2 sentence answer
suffices.)

6

Ungraded Question: Geometric Interpretation of Augmenting Paths
Let G = (V, E) be a bipartite graph and consider the linear program representation of matching:

max
∑

e

xe∑
u, neighbor of v

xuv ≤ 1 for all v ∈ V (3)

xe ≥ 0 for all e ∈ E (4)

1. Let M ⊆ E be a matching (M does not need to be maximum) and let x ∈ RE with xe = 1 if e ∈ M
and xe = 0 otherwise.
Give a subset of |E| tight constraints (3) and (4) that is linearly independent. (You do not need to
prove your set is linearly independent, just listing the set suffices.)

Remark. Answer for 2 is also an answer for 1.

2. Consider a matching M , an augmenting path p, and the matching M ′ obtained by augmenting M by
p. Let x, x′ ∈ RE be the vectors corresponding to M and M ′.
Give two subsets B, B′ of linear independent constraints (3) and (4). Both B and B′ must contain |E|
many constraints, and the constraints in B, B′ must be tight for x and x′ respectively. Further, B′ can
be obtained from B by replacing only one constraint, i.e., |B∆B′| = 2. (You only need to list the sets,
you do not need to prove the linear independence.)

Remark: 1. Shows x is a corner of the polytope, and 2. shows the corners are connected by an edge of the
polytope. The simplex algorithm moves along edges from corner to corner of the feasible polytope. Above
exercise shows that running augmenting paths to find the maximum matching does the same thing. The
main difference is that the simplex algorithm uses linear algebra and geometry to compute the augmenting
paths, whereas algorithms like Ford-Fulkerson use BFS/DFS.

The fastest algorithms for flows and bipartite matching use a combination of both linear algebra and
graph perspective3.

The orange cat jumped over the fence, chasing a curious butterfly into the garden.

3See, e.g., https://arxiv.org/pdf/2203.00671 and https://arxiv.org/pdf/2009.01802.

7

https://arxiv.org/pdf/2203.00671
https://arxiv.org/pdf/2009.01802

	Faster Matrix Inversion
	Geometric Interpretation of Dijkstra's Algorithm
	Constructing the Polytope Graph

