
1 Triangle Detection vs Matrix Multiplication
Some problems can be solved via matrix multiplication, resulting in O(n3) time complexity. The ques-
tion is whether one could maybe get a faster than O(n3)-time algorithm without matrix multiplication,
or if we should just stay with the matrix-based algorithm and use existing libraries that optimize matrix
multiplication (numpy, BLAS etc).

Definition 1.1 (Boolean Matrix Multiplication). Given two n×n matrices A,B ∈ {0, 1}n×n, we define the
boolean matrix product C ∈ {0, 1}n×n as

Ci,j =

{
1 if (AB)i,j ̸= 0

0 else

For example, Ci,j = min(1, (AB)i,j). We only care about the zero/non-zero entries, but not the exact value
of the non-zero entries.

For intuition, boolean matrix multiplication can be interpreted as multiplying two matrices with non-
negative entries, and then asking which entries of the result are non-zero. I.e. we just care about the zero
vs. non-zero profile of the matrix but not the actual numbers involved. Example:[

0 2
3 4

]
·
[
2 0
1 0

]
=

[
2 0
10 0

]
regular product[

0 1
1 1

]
·
[
1 0
1 0

]
=

[
1 0
1 0

]
boolean product

Theorem 1.2 ([WW10]). If there exists an algorithm that can detect a triangle in an n-node graph in
O(n3−ϵ) time, then there exists an algorithm for computing a boolean matrix product in O(n3−ϵ/3 log n)
time.

The reduction is somewhat surprising given that triangle detection gives only a single bit of information
“is there a triangle, or not”. Yet somehow we can blow up that single bit into n2 many bits, since the result
of a matrix product consists of n2 entries.

Note that the opposite direction is easy: For a graph G = (V,E) we can find a triangle by computing
just 2 matrix products. Given adjacency matrix A, we compute A2 and check for each {u, v} if (A2)u,v ̸= 0.
So if we can multiply matrices in less than O(n3) time, then we can find a triangle in less than O(n3) time.

The above theorem says that the reverse is also true: If we can detect a triangle in subqubic time, then
we can multiply matrices in subqubic time.

On an intuitive level, the theorem says that if we manage to develop some new fast algorithm for triangle
detection, then we indirectly also invented a novel way to multiply matrices. However, matrix multiplication
is fundamental within computer science and developing fast algorithms for matrix multiplication is a very
active fields of research. So beating existing work will definitely be difficult. For us, it would be easier to
just use their existing fast matrix multiplication results and use them to detect triangles.

To prove the above theorem, we start with the following lemma.

Lemma 1.3. Given a triangle detection algorithm with complexity O(T (n)), two boolean matrices A,B, and
a set M ⊂ {1, ..., n}×{1, ..., n}. We can find all (i, j) ∈ M with (A·B)i,j ̸= 0 in time O(T (n)+(T (n)·k·log n),
where k is the number of such non-zero entries.

Proof. We construct a graph with vertices u1, ..., un, v1, ..., vn, w1, ..., wn. We add edges (ui, vj) for all i, j
with Ai,j = 1, and edges (vi, wj) for all i, j with Bi,j = 1, and edges (wi, uj) for all (i, j) ∈ M .

There exists a triangle in this graph, if and only if there is some (i, j) ∈ M with (A ·B)i,j = 1. This is
because (A · B)i,j =

∑
k Ai,kBk,j which is non-zero if and only if there is k with Ai,k = Bk,j = 1, i.e. we

have a triangle uivkwj .
We can now find all the indices (i, j) ∈ M with (A ·B)i,j = 1 via binary search on set M .

1



Proof of Theorem 1.2. Given A,B, we split the matrices into blocks of size n1/3 × n1/3. Let’s call these
blocks Ai,j ,Bi,j for i, j = 1, ..., n2/3. Let C = AB and perform the same split on C, so we have

Ci,j =

n2/3∑
k=1

Ai,kBk,j .

Observe that since we only care about the non-zero entries we do not need to compute (Ai,kBk,j)a,b for
a, b ∈ {1, ..., n1/3} if we know (Ai,k′

Bk′,j)a,b ̸= 0 for some k′ ̸= k. That’s because if (Ai,k′
Bk′,j)a,b ̸= 0, then

we already know that Ci,j
a,b ̸= 0, so we do not need to compute (Ai,kBk,j)a,b anymore.

Thus we can compute all Ci,j via the following algorithm.

• For i, j = 1, ..., n2/3:

– //We now compute Ci,j

– M = {1, ..., n1/3} × {1, ..., n1/3}
– //We now check for all (a, b) ∈ M whether Ci,j

a,b ̸= 0.

– For k = 1, ..., n2/3

∗ Find all non-zeros (Ai,kBk,j)a,b for (a, b) ∈ M via Lemma 1.3.
∗ For the discovered non-zero entries a, b, set Ci,j

a,b = 1 and remove (a, b) from M .

Let Ki,j,k be the number of non-zero we found in product Ai,kBk,j . Since we only look for non-zeros in
set M (which is initially of size (n1/3)2) and remove each (a, b) if (Ai,kBk,j)a,b ̸= 0, we have for all i, j that

n2/3∑
k=1

Ki,j,k = (n1/3)2 = n2/3.

Hence, by Lemma 1.3 the total time complexity of this is

O((n2/3)2(
∑
k

Ki,j,kT (n
1/3) log n)) = O(n4/3(n2/3n(3−ϵ)/3) log n) = O(n3−ϵ/3 log n).

References
[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix

and triangle problems. In FOCS, pages 645–654. IEEE Computer Society, 2010.

2


	Triangle Detection vs Matrix Multiplication

